

Hot Carrier Dynamics in Bulk and 2D Perovskites

V. R. Whiteside¹, H. Esmaeilpour¹, Shashi Sourabh¹, <u>B. K. Durant¹</u>, Giles E. Eperon², J.T. Precht³, Matthew C. Beard², H. Lu² and Ian R. Sellers¹

¹Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73017

²National Renewable Energy Laboratory, Golden, CO 80401

³Department of Chemistry, University of Washington, Seattle, WA 98195

The UNIVERSITY of OKLAHOMA

Photovoltaics Materials & Devices Group: http://www.nhn.ou.edu/~sellers/index.html

Outline

- Motivation
- Hybrid Organic Perovskites (2D vs 3D)
- Temperature dependent photoluminescence (PL) and transmission
- Exciton dynamics in 2D
- Carrier-phonon interactions in 2D vs 3D
- Conclusions

Motivation

 \mathfrak{S}

- Sellers group strong background in hot carrier dynamics (III-V)
- Slower apparent thermalization than GaAs
- Slower thermalization at higher temperatures

Y. Y., D.P. O., R.M. F., K. Z., J. van de Lagemaat, J.M. L., M.C. B., Nature Photonics, 10 (2015) 53

Motivation

- Temperature dependent photoluminescence vs absorbance shows stokes shift
- Carrier dynamics changing

Hybrid Organic Perovskites

- ABX₃ composition
- A=methylammonium, formamidinium, or Cs
- B=Pb or Sn
- X=I, Br, or CI
- Solution processable
- 23% power conversion efficiency with polycrystalline thin film solar cells
- Increase ionicity I<Br<Cl
- Eg increases with increasing temperature (stabilization of out-ofphase band edge states)

B. Saparov, D.B. Mitzi, *Chem. Rev.*, 2016, 116, 7, 4558-4596 Y. Yang, *et. al.*, Nature Photonics, **10** (2015) 53

Ruddlesden Popper Butylammonium Lead Iodide

(BA)₂(MA)_{n-1}Pb_nI_{3n+1} (Ruddlesden-Popper) films

- BA=n-butylammonium
- MA=methylammonium
- Solution processable thin films
- Single inorganic layer (2D) n=1
- Fully 3D perovskite n=∞
- 2D structures high quantum and dielectric confinement

J. Phys. Chem. C 2017, 121, 47, 26566-26574

Temperature Dependent PL

- Increased bandgap and exciton binding energies with increased confinement (n = ∞→1)
- 3D: orthorhombic to tetragonal transition at ~130K
- 2D: orthorhombic to orthorhombic phase transition at 280K

Temperature Dependent PL

- Increased bandgap and exciton binding energies with increased confinement (n = ∞→1)
- 3D: orthorhombic to tetragonal transition at ~130K
- 2D: orthorhombic to orthorhombic phase transition at 280K

Temperature Dependent PL

 $(BA)_2PbI_4$

- Two dominant transitions with strong absorption resonances (P1 and P3)
- Well separated from continuum (2.9 eV)
- Increasing temperature results in broadening and reduced number of peaks due to thermally mediated escape of trapped carriers

Hamidreza Esmaeilpour, Brandon K. Durant, Ian R. Sellers, paper under review

Exciton Dynamics

P3 (2.4 eV at 4.2K)

- 630 meV binding energy (4.2 K)
- LO phonon replicas spaced 12, 27, 43 meV on low energy tail
- More localized
- Lack of phonon broadening with increased temperature

P1

- 2.55 eV (4.2K)
- Closer to continuum by 140 meV
- Strong thermal stability/binding up to 280 K

Exciton Dynamics 2D vs 3D

 $\Gamma_{tot}(T) = \Gamma_0 + \Gamma_{LA}T + \frac{\Gamma_{LO}}{[exp\left(\frac{E_{LO}}{k_BT}\right) - 1]} + \Gamma_{imp}exp\left(\frac{E_B}{k_BT}\right)$ = 2 50 (1994) 4463-4469.

MAPbl₃

Γ _o (FWHM) (meV)	E _{LO} (meV)	Ε _в (meV)	Γ _{ιο} (meV)
21	11.5*	10*	47.5 ± 1.0
BA ₂ PbI ₄			

Γ ₀ (HWHM)	E _{LO}	Ε _в	Γ _{LO}
(meV)	(meV)	(meV)	(meV)
8.3	57.4 ± 1.1	490	148.4 ± 7.1

*Wright, A., Verdi, C., Milot, R. et al. *Nat. Commun.* **7**, 11755 (2016)

Exciton Dynamics 2D vs 3D

$$\Gamma_{tot(T)} = \Gamma_0 + \Gamma_{LA}T + \frac{\Gamma_{LO}}{\left[exp\left(\frac{E_{LO}}{k_BT}\right) - 1\right]} + \Gamma_{imp}exp\left(\frac{E_B}{k_BT}\right)$$

J.V.D. Veliadis, et. al., Phys Rev B, **50** (1994) 4463-4469.

MAPbl₃

Γ _o (FWHM)	E _{LO}	Ε _в	Γ _{ιο}
(meV)	(meV)	(meV)	(meV)
21	11.5*	10*	47.5 ± 1.0

BA_2PbI_4

Γ ₀ (HWHM)	Ε _{ιο}	E _B	Γ _{LO}
(meV)	(meV)	(meV)	(meV)
8.3	57.4 ± 1.1	490	148.4 ± 7.1

 E_{LO} Γ_{LO} for 2D 5x and 3x, respectively, compared to 3D

Stronger carrier-phonon interaction in 2D

P3

- Strongly bound
- Frenkel-like complex with much lower Fröhlich broadening

P1

- More weakly bound
- Less localized ("freer" carrier)
- Greater Fröhlich broadening
- Large E_{LO} may represent energy of polaron-exciton complex

*Wright, A., Verdi, C., Milot, R. et al. *Nat. Commun.* **7**, 11755 (2016)

Hot Carrier Thermalization

- Hot carrier thermalization restricted
- Higher carrier density 3 orders of magnitude increase in phonon emission time constant

Y. Y., D.P. O., R.M. F., K. Z., J. van de Lagemaat, J.M. L., M.C. B., Nature Photonics, 10 (2015) 53

Conclusions

- 2D perovskites show much greater binding energies for multiple exciton transitions
- Highly bound exciton Frenkel-like
- Weakly bound exciton stronger ionic coupling and longrange polarization of the lattice
- Short range variations in structure
- Studies on varying the ionicity of 3D thin films ongoing

Acknowledgements

@SellersPVGroup

ALIOHOT

Marie Sklodowska-Curie Grant Agreement No. 699935 Program of Basic Energy Sciences Materials Sciences & Engineering Division Award No. DE-SC0019384

Department of Energy Contract No. DE-AC36-08GO28308

Office of Science

Photovoltaics Materials & Devices Group: http://www.nhn.ou.edu/~sellers/index.html