Proton Irradiation Tolerance of Wide and Narrow Band Gap Mixed Organic-Inorganic Halide Perovskites: Implications for Power Generation in Space

Brandon K. Durant,1 Hadi Afshari,1 Vishal Yeddu,2 Matthew T. Bamidele,2 Bibhudutta Rout,3 Do Young Kim,2 Giles E. Eperon,4 Ian R. Sellers1

1Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma
2School of Materials Science and Engineering, Oklahoma State University Tulsa
3Department of Physics, University of North Texas
4Center for Chemistry and Nanoscience, National Renewable Energy Laboratory
Outline

• Motivation
• Hybrid Organic-Inorganic Perovskites
• Temperature Dependent Device Characterization
• Proton Irradiated Solar Cells
• Conclusions and Acknowledgments
Motivation

Requirements for space applications:
- High specific power (W/kg)
- Withstand extreme temperature fluctuations and vacuum
- Tolerate high energy particles (mainly electrons and protons)

Perovskites adaptable to flexible architecture
- Low packing volume, lightweight, high specific power
- Composed of Earth abundant elements
- Low energy processing requirements

Juno and Artemis: www.nasa.gov
Hybrid Organic-Inorganic Perovskites

- ABX$_3$ composition
- A=methylammonium, formamidinium, or Cs
- B=Pb or Sn
- X=I, Br, or Cl
- Solution processable
- Tunable band gap
- 23% power conversion efficiency with polycrystalline thin film solar cells

Y. Yang, et al., Nature Photonics, 10 (2015) 53

1.24 eV
• >13% PCE (AM1.5)
• 3:2 FASnI$_3$:MAPbI$_3$ absorber layer
 FA=Formamidinium
 MA=Methylammonium
• SnF$_2$ antisolvent additive
• Organic-based electron and hole transport layers
• TmPyPB small molecule interfacial layer1

1M. Li, et. al., RSC Advances, 7 (2017) 31158-31163

Developed by Do Young Kim’s group at OSU Tulsa
Current Density-Voltage Curves

Fill Factor (FF) = \(\frac{V_{\text{max}} \times J_{\text{max}}}{V_{\text{o}} \times J_{\text{sc}}} \)

Power Conversion Efficiency (PCE) in %

\[
= \frac{V_{\text{max}} \times J_{\text{max}}}{P_{\text{in}}} \times 100
\]

\[
= \frac{J_{\text{sc}} \times V_{\text{o}} \times FF}{P_{\text{in}}} \times 100
\]

Spectrum is typically:
- AM1.5 (terrestrial)
- AM0 (outside atmosphere)
JV, External Quantum Efficiency, Photoluminescence

AM0 (outside atmosphere)

- **Voc**: 0.77 V
- **Jsc**: 31.4 mA/cm2
- **FF**: 71%
- **PCE**: 12.8%

Absorption onset and Photoluminescence well matched = 1.24 eV

Organic layers low absorption and photocurrent

B Durant, H Afshari, I Sellers, *et al*, coming soon
Temperature Dependence

Reduced temperatures increase in Voc and Jsc

- Increased collection efficiency throughout absorber
- Decrease in band gap
- Parasitic barrier to carriers (also decrease in dark current)
- Probable phase transition <100 K

B Durant, H Afshari, I Sellers, et al, coming soon
Proton Irradiation

Solar Winds
www.nasa.gov

- Ejected from sun as solar winds
- Trapped in the magnetosphere (Van Allen Belt)
- Europa very high due to Io’s volcanic activity
- Non elastic nuclear scattering vs electronic ionization (nuclei recoil and displacement)
- 3 years GEO $\approx 10^{12} \text{ H}^+/\text{cm}^2$ accumulated fluence

Polycrystalline Thin Film Photovoltaics
- Thin absorber = less interaction length
- Diffusion lengths already lower

• Competing thin-film technology
• Unencapsulated flexible CIGS solar cells
• 1.5 MeV proton energy
• Radiation hard compared to III-V based technologies

Proton Irradiation:
\((\text{FASn})_{0.6}(\text{MAPb})_{0.6}\text{I}_3\)

3.7 MeV H⁺
(100 μm coverglass back encapsulation)

1E11 H⁺/cm² fluence

• Remarkably tolerant compared to CIGS
• Halide displacements less detrimental

B Durant, I Sellers, et al, coming soon
3.7 MeV H⁺
(100 μm coverglass back encapsulation)

1E12 H⁺/cm² fluence

Long-term and thermal stability issues remain
• Must tolerate vacuum
• Sn/Pb phase segregation
• Sn oxidation

B Durant, I Sellers, et al, coming soon
1.7 eV E_g

- 50 keV H+ (10's nm encapsulation)
- 1E12 H+/cm2 fluence

Stopping and Range of Ions in Matter: 80 keV
Proton Irradiation: $\text{FA}_{0.8}\text{Cs}_{0.2}\text{PbI}_{2.4}\text{Br}_{0.6}$

- >50 keV deeper, can result in heating/ionization

Remaining Factor = $\frac{\text{Final Value}}{\text{Initial Value}}$

B Durant, G. Eperon, I. Sellers, *et al.*, *in preparation*
Conclusions

• Remarkable tolerance for both wide and narrow band gap perovskite based solar cells compared to other technologies
• All Perovskite tandem devices could be attractive candidates for high energy particle environments
• Prohibitive effects of low temperatures, thermal cycling and vacuum still need continued research efforts

Acknowledgements

The UNIVERSITY of OKLAHOMA

Cooperative Agreements for Research and Development Programs OK-19-EPSCoR-0004

Oklahoma Center for the Advancement of Science & Technology (OCAST) Program No.: AR18-052