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The Physics and Applications of  
High-Efficiency, Ultra-Thin Solar Cells 

1.  Physics of high-efficiency solar cells 

2.  Manufacturing high-efficiency solar cells 

3.  Applications for high-efficiency, ultra-thin solar cells 



MicroLink Company Background 

o  Established in 2000 to manufacture heterojunction bipolar transistors  
o  30,000 sq ft facility located in Niles, IL 
o  2014 ~40 employees  
o  ~15 employees involved in developing high efficiency solar cells 
o  Pilot-scale production line manufacturing epitaxial lift-off solar cells 
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My Background 
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o  2007-2011:  
PhD Experimental Solid State Physics 
(Quantum Photovoltaics Group) 
Imperial College London 

o  2011-Present:  
Sr. R&D Engineer 
(Engineering Group) 
MicroLink Devices, Niles IL 



1. Physics of High-Efficiency 
Solar Cells 
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Worldwide power consumption: 16 TW 
Incoming solar power: 86,000 TW 



The Case for Higher Efficiency 
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Single junction limit 

Ultimate efficiency limit 

o  Solar cells with efficiency >30% are required to enable low $/W and high 
W/kg applications 



Solar Cell Physics 101 

Solar cell 

1.  Sunlight hits the solar cell and photons are absorbed 
2.  The energy from the sunlight is given to charge carriers inside the material 
3.  The carriers are separated by the electric field in the device and travel to metal 

contacts on the surfaces of the solar cell 
4.  From the metal contacts, the carriers are extracted to an external circuit 
5.  The carriers then give up their energy to an external load 
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Physics: Power Generation in 
a Single-Junction Solar Cell 
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o  High bandgap: low thermalization loss, 
low recombination rate 

o  Low bandgap: low below-bandgap 
photon loss 



Optimizing the Solar Cell 
Bandgap 
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P = V x I 

Efficiency = 
Power in 

Power out 
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Single-Junction Solar Cell 
Efficiency Limits 

William Shockley 

Hans Queisser 
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Shockley-Queisser 
Limit 



Achieved Single-Junction Cell 
Efficiencies 
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o  Max theoretical efficiency 
for a single-junction solar 
cell ~33% 

o  GaAs cell efficiency record: 
28.8% 

o  Si cell efficiency record: 
25% (indirect bandgap) 



Dividing the Spectrum with 
Multi-Junction Solar Cells 
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Vcell 

Icell 

o  Cell voltage is sum of subcell voltages 

o  Cell current is that of limiting subcell 

o  Theoretical optimum triple-junction bandgap combination arises from 
subcell current-matching requirement: 1.7 / 1.2 / 0.7 eV 



Best Research-Cell Efficiencies 
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2. Manufacturing High-Efficiency 
Solar Cells 
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Making Epitaxial Solar Cells 
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Growth Design Test Fabrication 



Designing a Multi-Junction 
Solar Cell 
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o  Epitaxial materials usually grown by: 
n  Metal-organic chemical vapor deposition (MOCVD) 
n  Molecular beam epitaxy (MBE) 

o  Layer-by-layer growth on a substrate 

o  Lattice-matched growth has lowest defect density 



Inverted Metamorphic (IMM) Solar Cell: 
High Efficiency, Low Weight 
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IMM: 44.4% (302X), Sharp 

GaAs substrate 
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MM Buffer 

InGaAs 1.0eV 

GaAs substrate 

InGaP 1.9eV 

GaAs 1.4eV 

MM Buffer 

InGaAs 1.0eV 

Carrier  

Carrier 

InGaAs 1.0eV 

MM Buffer 

GaAs 1.4eV 

InGaP 1.9eV 

* 

*Takamoto et. al., Proc. IEEE PVSC 35, 
(2010). 



Inverted Metamorphic Solar 
Cell Structure 
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o  IMM triple-junction structure 

o  Three subcells series-connected via 
tunnel junctions 

o  Transparent metamorphic buffer for 
growth of lattice-mismatched InGaAs 
subcell 

o  Release layer to facilitate removal of 
epitaxial layers by wet chemical process 

• 1cm2 

Top cell 

Bottom 
cell 

Growth  
Direction 

GaAs substrate 

Contact 
Window 

InGaP emitter 

InGaP base (1.88 eV) 

Back surface field 
Tunnel junction 

Release Layer 

Window 

GaAs emitter 

GaAs base (1.42 eV) 

Back surface field 

Contact 

Tunnel Junction 

Metamorphic buffer 

Window 

InGaAs emitter 

InGaAs base (1.0 eV) 

Back surface field 

Middle 
cell 



History of Epitaxial Lift-Off 
(ELO) 

J.J. Schermer, et al., phys. stat. sol. (a) 202, No. 4, 501–508 (2005) 

o  ELO originally developed in the late 1970s 
o  Incorporation of sacrificial release layer to remove epitaxial material 
o  Initially plagued by very slow etch rates, crack formation, difficult to lift off large 

areas 
o  More recent work (Schermer, et al.) has improved etch rate (hours instead of 

days) 
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Epitaxial Lift-Off Solar Cells 
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o  Developed wafer-scale ELO technology 

o  Compatible with low-cost batch processes 

o  Substrate intact and reusable 

4” wafer ELO (2x20cm2 cells) 6” wafer ELO (2x61cm2 cells) 
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ELO for Cost and Weight 
Reduction 

o  Reduced cost: Substrate is ~50% of cost of cell bill of materials 
o  Low weight: Enables airborne and space applications 
o  Flexibility: Wrap cell around curved objects 
o  Compatible with high efficiency cell designs (inverted metamorphic) 

Specific Power Increase Substrate Reuse Cost Reduction 

$180/wafer:6” 

$90/wafer:4” 

Repolish: 
$5/wafer 
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<$/W  >W/kg  



Fabrication Process by ELO 
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Start 



Cell Testing 
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Quantum efficiency 
measurement 

Illuminated current-
voltage measurement 

Electroluminescence 



3. Applications for  High-Efficiency 
Ultra-Thin PV 
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Unmanned Aerial Vehicles 
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Raven 

Puma 



Portable Power 
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Testing at Limited Objective Experiment 

12 W portable sheet 



Possible Application: Space 
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Venera – 3 (1965) Lunokhod – 2 (1972) 
ISS 

Venera 2 & 3 launched 1965:  2 m2 GaAs PV 
Lunokhod-1 & 2, 1970/72:  4 m2 GaAs PV,  11% Efficiency 



Possible Application: 
Concentrator PV 
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Solar Systems - Australia 

Amonix - USA 



Industry at the Cutting Edge 
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50%, 2016 



Summary 

o  The solar resource is huge: >5000x more power falls on 
Earth’s surface from sun than we consume 

o  For terrestrial applications it is critical to reduce the solar 
cell $/W 

o  For airborne applications it is necessary to increase the 
solar cell W/kg 

o  Both of these are achieved via the epitaxial lift-off and 
substrate reuse process 
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Thank You. 


