

Principles of photovoltaic energy conversion and pathways to high efficiency

Louise C. Hirst

NRC associate U.S. Naval Research Laboratory

U.S. Naval Research Laboratory

- The Naval Research Laboratory provides:
 - Primary in-house research for the physical, engineering, space, and environmental sciences
 Fundamentals → New capabilities → Field demonstration
 Theorist → Experimentalist → Test engineer
- Founded by Thomas Edison in 1923
 Key achievements:
 - First modern U.S. radar
 - First operational U.S. sonar
 - NAVSTAR GPS based on the NRL TIMATION program
 - First US Earth orbiting spacecraft Vanguard I
 - Semi-Insulating Gallium Arsenide Crystals -Technique for growing high-purity single crystals

Opto-electronics and radiation effects

- III-V device design an fabrication
 - Simulation capabilities
 - Growth & characterization
 - 5000 ft² class 100 cleanroom

Satellite space experiments

- Design, build, operate, and post-flight analysisRadiation effects
- Optical detectors for imager technologies
 - Night vision, thermal imaging, missile detection

- Photovoltaics
 - Innovation for high specific power and power density for specialized applications
 - Operation in extreme environments (e.g. space, underwater)
 - Large scale power generation

The Solar resource

The Sun is a blackbody with temperature ~6000 K

$$I(E) = \frac{2\Omega_A}{c^2 h^3} \frac{E^2}{\exp(E/kT)-1} dE$$

■ 1000 W.m⁻² peak incident power

- Solar energy use is innate
 - Directly as heat
 - Chemical, mechanical & electrical conversion
- Indrect an inefficient processes
- Photovoltaics provides direct conversion

Incumbent PV technology

- 1839 Becquerel demonstration of photovoltaic effect
- 1954 Bell Labs first ``high-power" Si solar cell (6%)
- Extremely fast growing industry 38 GW capacity installed in 2013
- Si-wafer PV 90% of 2013 production
- Multi-crystalline Si 55% of total production
 - Record conversion efficiency for this technology is 20.4%
 - Most installed system ~15%
 - Extremely cheap cells produced \$0.2/W
 - Achieving grid parity in many parts of the world
 - US residential installations outstripping non-residential
 - 1/3 coming online without state incentives

High efficiency PV

- Key issue with multi-crystalline Si:
 - Limited applications
 - Domestic power generation, suburban or rural residential installation
 - 22% energy consumption residential (2011)
 - Industrial, commercial and transport
 - X Weight/area are significant
 - X Industrial architectures
 - X High power density requirements
 - X Portable
 - Iow power density (W/m²)
 - Iow specific power (W/kg)

High efficiency PV provides solutions

- World record efficiency 44.7%
 - Why is the efficiency of incumbent technology is fundamentally limited?
 - Mechanisms for achieving high efficiency

Solar heat engine

- How do current PV technologies deviate from the ideal?
 - $\eta = \left(1 \frac{T_A^4}{T_S^4}\right) \left(1 \frac{T_0}{T_S}\right) \qquad \begin{array}{l} 84.9\% \text{ at} \\ T_A = 2480 \text{ K} \end{array}$
- Mismatch between absorption and emission angles
 -the terrestrial absorber is not a perfect blackbody cavity
- Some energy transfers from T_s to T_o without being absorbed
- Some heat dissipation dewar flasks are not perfect thermal insulators

Semiconductors as absorbers

- Semiconductors have an bandgap
- Some transmission permitted to prevent total thermalization

Recitification: with charge separation, the chemical potential becomes a voltage across the device

- The Photovoltaic Effect
- Most often realized in a pn junction structure

Detailed balance approach:

$$J = J_{abs} - J_{emit}$$

= $e \int_{0}^{\infty} \alpha(E).n(E, T_s, \mu = 0, \Omega_s).dE$
- $e \int_{0}^{\infty} \alpha(E).n(E, T_A, \mu_A = eV, \Omega_{emit}).dE$

Generalized Planck equation

n(E, T, μ, Ω).dE =
$$\frac{2\Omega}{c^2h^3} \frac{E^2}{exp(E-\mu/kT) - 1}$$
.dE

Particle number conserved

Unity absorptivity above Eg and zero below

- All recombination radiative
- Infinite carrier mobility
- Maximum power point opperation
- Boltzmann approximation: $(E-\mu)/kT \gg 1$

Mismatch between absorption and emission angles:

$$kT_A$$
. $ln(\Omega_{emit}/\Omega_{abs})$. J_{opt}

- Transmission of low energy photons $\int_{0}^{E_g} E.n(E, T_s, \mu=0, \Omega_s).dE$
- Mismatch between absorption and emission angles:

$$kT_A$$
. $ln(\Omega_{emit}/\Omega_{abs})$. J_{opt}

Intrinsic losses

$$kT_A$$
. $ln(\Omega_{emit}/\Omega_{abs})$. J_{opt}

Intrinsic losses

- Carnot Emission $E_g(T_A/T_S). J_{opt}$ $E_g. J_{emit}$
- Thermalization of high energy photons
 ∫ E.n(E, T_s, μ=0, Ω_s).dE - E_g. J_{abs}
 E_g
 Transmission of low energy photons
 ∫ E.n(E, T_s, μ=0, Ω_s).dE
 Mismatch between absorption and emission angles:

$$kT_A$$
. $ln(\Omega_{emit}/\Omega_{abs})$. J_{opt}

Sequential absorption and MEG

 Optimal Eg and separately contacted junctions assumed

- Increasing junction number increases efficiency through a reduction in thermalization and below Eg losses
- Bandgap optimization is a materials engineering challenge
- Conditions:
 - Spectral conditions: terrestrial/space concentrator/flat plate?
 - Stacked cell or monolithic growth?
 - Separately contacted or current matched?

- Industry work horse, space applications:
 - InGaP/GaAs/Ge EMCORE ZTJ - 29.5 %
- Current matching
- % Eg optimization
- Emerging technologies for high efficiency:

- Industry work horse, space applications: InGaP/GaAs/Ge
 - EMCORE ZTJ 29.5 %
- Current matching
 - Eg optimization
- Emerging technologies for high efficiency:
- Quantum wells

- Reduce middle cell Eg for current matching
- Felixble system for Eg optimization

Ekins-Daukes et al., Appl. Phys. Lett., 75, p. 4195 (1999)

MM cell

- Industry work horse, space applications:
 - InGaP/GaAs/Ge EMCORE ZTJ - 29.5 %
- Current matching
 - 29.5 % Eg optimization
- Emerging technologies for high efficiency
- Quantum wells

- Reduce middle cell
 Eg for current matching
- Felixble system for Eg optimization
- Metamorphic growth
 - Confine defects to a buffer layer to move lattice constant

- Industry work horse, space applications:
 InGaP/GaAs/Ge
 Current matching
 EMCORE ZTJ 29.5 %
 Eg optimization
- Emerging technologies for high efficiency:
- Quantum wells

- Reduce middle cell
 Eg for current matching
- Felixble system for Eg optimization
- Metamorphic growth
 - Confine defects to a buffer layer to move lattice constant

Geisz, et al., Appl. Phys. Lett, 93, p. 123505 (2008)

- Industry work horse, space applications: InGaP/GaAs/Ge
 Current matching
 - EMCORE ZTJ 29.5 % Eg optimization
- Emerging technologies for high efficiency:
- Quantum wells

- Reduce middle cell
 Eg for current matching
- Felixble system for Eg optimization
- Metamorphic growth
 - Confine defects to a buffer layer to move lattice constant
- Bonded 4J Soitec World record (44.7%, 297X)
 Epitaxial lift-off & mechanical stacking
 Dimmroth, et al. Prog. Photovolt., 22, p. 277 (2014)

NRL pathway to 50%

■ 3J on InP (1.74, 1.17, 0.7 eV)

- AM1.5D, low AOD, 500X
- InGaAs/InGaAs strain compensated QW

- InAlAsSb quaternary new material
 - Simulate material properties:
 - Ternary end point lattice constants and band alignements from experiment
 - Estimate bowing parameter to interpolate
 - MBE growth for development:
 - Immiscibility kinetics and thermodynamics
 - Temperature Growth and anneal
 - Characterization:
 - Emission : PL Device: QE and DLTS
 - Absorption: PLE and transmission

Broader perspective

Still significant issues with MJ devices other than laboratory efficiency:

Cost - extremely expensive materials and fabrication methods
 Implement in highly focusing solar concentrator systems
 Improved efficiency through Boltzmann loss reduction
 Severly limits applications options - only suitable for desert power stations
 \$/W values - difficult to compete with flate plate Si
 Industrial, commercial, transport & portable applications
 low power density (W/m²)
 low specific power (W/kg)

X Materials abundance

X Spectral sensivity - limits annual energy yields

✓ Substrate removal and reuse

Recycling

X Ultimately limited by junction number - complexity is not free and only offers incremental improvement in efficiency

The hot-carrier solar cell

- Fundamentally different heat engine
- Carriers do not fully thermalization
- Change the rate balance between absorption and thermalization
 - Steady-state hot-carrier population
- Contact to the hot-carrier population via an energy selective contact
 - Cooling confined within an ∞ narrow energy range is isoentropic
 - Carrier population thermally equilibrates without dissipating excess heat energy
- Most like the Carnot engine

Device solutions

Hot-carrier absorber

- Broadband absorber
- Restricted carrier-phonon interaction
 - Steady-state non-equilbrium hot carrier population
 - Achievable levels of solar illumination
- Slow carrier cooling in QWs
 - Record low thermalization coefficient in InAlAs/InGaAs wells in press IEEE J. Photovolt., 2014

- E-field enhancement nanostructures
 - Absorption in ultra-thin device
 - High carrier density -> hotter carriers

Energy selective extraction

- Energy selective contact
 - Reduced range of energy states relative to absorber
- Carrier transmission
 - High current, concentrator devices
- Recent progress
 - Resonant tunneling
 Dimmock et al., Prog. Photovolt, 22, p. 151, 2014

- Semi-selective energy barrier Hirst et al., Appl. Phys. Lett., 2014
- Quaternary superlattice structures on InP for miniband formation

field enhancement in ultra-thin InGaAs quantum engineered PV converter

- Ultra-thin (active region < 100 nm)
- Reduction thermalization quantum well hot-carrier absorber
- Superlattice energy selective contact
- Plamonic waveguiding nanostrucutre

Cost

✓ Spectral sensivity

✓ No complexity limit

CMP tomorrow 2:30pm in room 103 Nielsen Hall

- Multi-crystalline Si 55% of total production
- Extremely cheap cells produced \$0.2/W
- Key issue with multi-crystalline Si:
 - Iow power density (W/m²)
 - Iow specific power (W/kg)

Pathways to high efficiency

- MJ Leading high efficiency PV technology
- Race to 50%
 - Metamorphic buffers
 - Quantum wells
 - ELO and bonding
- Ultimately limited by junction number
- What's there at the finish line?

