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Lecture 4

Topology in quantum computation 



The transmission of information in any digital system, including classical 
computers, relies on error correction.  



In coding theory, the simplest way to implement error correction 
is through redundancy, in which every bit of information 

is transmitted multiple times. 
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If Bob receives something else, say 101, 
then an error has occurred. 

If Alice would like to send a bit to Bob, she would send 000 for a 
0 bit and 111 for a 1 bit. 
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If the probability of an error is small, then one can assume that the 
3 digit string has no more than one error.  Therefore,
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after error correction. 
Error Correction



In quantum computers, one cannot copy qubits 
because of the non-cloning theorem!
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To protect quantum information, any error correction code 
requires fixing qubits without actually reading them! 



In 1998, Peter Shor showed that one could use entanglement of several 
physical qubits with a logical qubit to correct quantum information. 



The logical process of entangling two qubits requires the use 
of a CNOT gate, 
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For example, we take 
1

0
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1
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+  as the top qubit and 0  for the 

bottom one.

The input is 
1

0
1

1 0
1

00
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10
2 2 2 2

+



 ⊗ = + . This is sent by the 

CNOT gate to 
1

00
1

11
2 2

+ .

This state, as we recognize from the EPR experiment, is an entangled 
state. Consequently, we cannot assign individual states to the top and bot-
tom wires on the right side. We draw the diagram in the following way.
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is still true for qubits if the top qubit is either 0  or 1 , but it is not true for 
other qubits.

The wires represent our electrons or photons. These are separate objects 
and can be far apart. We will often talk about the top qubit and the bot-
tom qubit and think of them as being far apart. But, remember, if they are 
entangled, a measurement on one will affect the state of the other.

This example illustrates how we will often use this gate. We can input 
two unentangled qubits and use the gate to entangle them.

Quantum Gates

Notice that the CNOT gate permutes the basis vectors. Permuting the basis 
vectors in an ordered orthonormal basis gives another ordered orthonormal 
basis, and we know that associated with any of these bases is an orthogo-
nal matrix. Consequently, the matrix corresponding to the CNOT gate is 
orthogonal. In fact, all of the reversible gates that we introduced in the last 
chapter permute basis vectors. They all correspond to orthogonal matrices. 
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The table tells us what happens to the basis vectors. We then extend to lin-
ear combinations of the basis vectors in the obvious way.

CNOT r s t u r s u t00 01 10 11 00 01 10 11+ + +( ) = + + +

It just flips the probability amplitudes of 10  and 11 .
We keep using the diagram we used previously for the CNOT gate, but we 

must be careful about how we interpret it. For classical bits, the bit entering 
the top wire on the left, leaves the top wire on the right unchanged. This 

CNOT

Input Output

x y x x y⊕

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

CNOT

Input Output

x Y x x y⊕

0 0 0 0

0 1 0 1

1 0 1 1

1 1 1 0

CNOT

Input Output

00 00

01 01

10 11

11 10

We extend this to qubits in the natural way—replacing 0 by 0 , and 1 by 
1 . The table becomes:

This can be written more succinctly using our compact notation for tensor 
products.
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Quantum bit-flip correction protocol

One type of qubit error is when bits are flipped,
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a|0i+ b|1i �! a|1i+ b|0i
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There are different ways in which qubits can be corrupted.



Although Alice would like to send three copies of her qubit

to prevent errors, this is not possible because of the non-cloning theorem.

  Instead, she sends three qubits, one logical and two physical qubits, 
and entangle them through a CNOT gate,
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Alice
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Alice would like to send three copies of her qubit. This, of course, is not 
possible. The no cloning theorem tells us that she cannot make copies. But 
she can perform what is essentially a classical fan-out and replace 0  with 
000  and 1  with 111 . This is done with two CNOT gates. This is shown 

in the circuit below.
She starts with three qubits, the one she wants to encode and two ancilla 

bits that are both 0 , so the initial state is a b a b0 1 0 0 0 0 0 1 0 0+( ) = + .
a b a b0 1 0 0 0 0 0 1 0 0+( ) = + . The first CNOT gate changes it to a b0 0 0 1 1 0+ . The sec-

ond gives us the required state a b0 0 0 1 1 1+ .

a b0 1

a b000 1110

0

Alice then sends the three qubits to Bob. But the channel is noisy, and 
there is the possibility of a qubit being flipped. Bob might receive the cor-
rect qubits a b000 111+ , or he might receive one of the following incor-
rect versions, a b100 011+ , a b010 101+  or a b001 110+ , which 
correspond to the error occurring in the first, second, and third qubit, 
respectively. He wants both to detect the error and to correct it. But notice 
that he cannot make any measurements on this entangled state. If he does, 
the state immediately becomes unentangled and he just gets three qubits 
that are some combination of 0 s and 1 s—the values of a  and b  are lost, 
with no way of recovering them.

It is amazing that Bob can determine which bit is flipped, correct it, and 
yet never make a measurement on the three qubits that Alice sent him! But 
he can. He uses the parity check idea that we used for classical bits.

He adds an additional two qubits in which to perform the parity checks. 
The circuit is given below. It uses four CNOT gates. The two on the fourth 
wire are used to do the b b0 1⊕  parity calculation; the two on the fifth wire 
do the b b0 2⊕  calculation. The standard first reaction on seeing this circuit 
is to assume that we end up with five qubits that are hopelessly entangled. 
But I’ve drawn the picture that shows that the bottom two qubits are not 
entangled with the top three. Can that really be the case?

Quantum bit-flip correction protocol



Because the communication channel is noisy, Bob may either receive  
the right qubit or a corrupted one,

Quantum bit-flip correction protocol

Alice
1p
2
(|0i+ |1i) |0i = 1p

2
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a|000i+ b|111i
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Bob
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2
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2
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1

Now Bob has to both figure out if his qubit was corrupted or not and 
fix it (if necessary) without reading the qubit!

1p
2
(|0i+ |1i) |0i = 1p

2
(|00i+ |10i)

a|000i+ b|111i
a|100i+ b|011i
a|010i+ b|101i
a|001i+ b|110i

a|100i+ b|011i
9
>>>>=

>>>>;

1

Corrupted



Quantum bit-flip correction protocol
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0

0

Received qubitsReceived qubits

Parity qubits

Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

To check if any bits need to be corrected, Bob will add two more 
physical qubits to the received ones and perform 2 CNOT 

operations for each extra qubit:



Quantum bit-flip correction protocol
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If Bob receives                                   then the first two CNOT 
operations with the fourth qubit give
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>>>>>>>>>>>>>>>>;

1
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If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

In either case, the fourth qubit is not entangled with the first three.
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

A similar result occurs in the fifth qubit, which is:
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

1p
2
(|0i+ |1i) |0i = 1p

2
(|00i+ |10i)

a|000i+ b|111i
a|100i+ b|011i
a|010i+ b|101i
a|001i+ b|110i

a|100i+ b|011i
9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

|0i

1
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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a|000i+ b|111i
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

and is not entangled with the first three either. 
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

Bob can now measure the last two qubits, without interfering with
the first three sent by Alice and make parity checks. 
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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2
(|0i+ |1i) |0i = 1p

2
(|00i+ |10i)

a|000i+ b|111i

1

Bob

1p
2
(|0i+ |1i) |0i = 1p

2
(|00i+ |10i)

a|000i+ b|111i
a|100i+ b|011i
a|010i+ b|101i
a|001i+ b|110i

a|100i+ b|011i
9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

|00i

|10i

|01i

|11i

1

If the result is         then all c bits and d bits are the same.   
    Nothing to correct!                              
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

Bob can now measure the last two qubits, without interfering with
the first three sent by Alice. 
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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2
(|0i+ |1i) |0i = 1p
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a|000i+ b|111i

1

Bob
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a|000i+ b|111i
a|100i+ b|011i
a|010i+ b|101i
a|001i+ b|110i

a|100i+ b|011i
9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

|00i

|10i

|01i

|11i

1

If the result is         then the c1 and d1 bits are the different ones.  
    They need to be flipped with an X quantum gate!                              
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Let us suppose that Bob receives a c c c b d d d0 1 2 0 1 2+  The key observation 
is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
ity checks, both strings give the same results.

To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.

Bob can now measure the last two qubits, without interfering with
the first three sent by Alice. 
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is that if there is an error, then there will be an error in both c c c0 1 2 and  
d d d0 1 2 , and it will occur in exactly the same place. When we apply the par-
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To illustrate what is going on, let’s look at Bob’s circuit, ignoring the fifth 
wire for the moment. The input for the first four qubits is

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+( ) = + .

The two CNOT gates attached to the fourth wire perform the parity check 
on the first two digits. But c c d d0 1 0 1⊕ = ⊕ , so the four qubits at the right of 
the circuit will be in one of two states. They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 20 0 0+ = +( )

if c c d d0 1 0 1 0⊕ = ⊕ = .

They will be in state

a c c c b d d d a c c c b d d d0 1 2 0 1 2 0 1 2 0 1 21 1 1+ = +( )

if c c d d0 1 0 1 1⊕ = ⊕ = .

In both cases, the fourth qubit is not entangled with the top three.
A similar argument applies to the fifth qubit. It is not entangled with the 

others. It is 0  if c c d d0 2 0 2 0⊕ = ⊕ = , and is 1  if c c d d0 1 0 1 0⊕ = ⊕ = .
Since the bottom two qubits are not entangled with the top three, Bob 

can make measurements on the bottom two qubits, and it will leave the top 
three unchanged. This is what he does:

If he gets 00, then there is nothing to correct, so he does nothing.
If he gets 01, he flips the third qubit using by installing an X gate on the 

third wire.
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If the result is         then the c2 and d2 bits are the different ones.  
  If Bob measures        then the  c0 and d0 bits need to be flipped!                          
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(i@/�m) = 0 .
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Quantum gates

All logical operations in a quantum computer can be performed with 
five gates acting in one bit plus the CNOT gate, which acts on two.  

120 Chapter 7

For example, we take 
1

0
1

1
2 2

+  as the top qubit and 0  for the 

bottom one.

The input is 
1

0
1

1 0
1
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2 2 2 2
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
 ⊗ = + . This is sent by the 

CNOT gate to 
1

00
1

11
2 2

+ .

This state, as we recognize from the EPR experiment, is an entangled 
state. Consequently, we cannot assign individual states to the top and bot-
tom wires on the right side. We draw the diagram in the following way.
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2

1
2

1

00 + 111
2

1
2

is still true for qubits if the top qubit is either 0  or 1 , but it is not true for 
other qubits.

The wires represent our electrons or photons. These are separate objects 
and can be far apart. We will often talk about the top qubit and the bot-
tom qubit and think of them as being far apart. But, remember, if they are 
entangled, a measurement on one will affect the state of the other.

This example illustrates how we will often use this gate. We can input 
two unentangled qubits and use the gate to entangle them.

Quantum Gates

Notice that the CNOT gate permutes the basis vectors. Permuting the basis 
vectors in an ordered orthonormal basis gives another ordered orthonormal 
basis, and we know that associated with any of these bases is an orthogo-
nal matrix. Consequently, the matrix corresponding to the CNOT gate is 
orthogonal. In fact, all of the reversible gates that we introduced in the last 
chapter permute basis vectors. They all correspond to orthogonal matrices. 
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To correct all possible kinds of errors it may be necessary to 
entangle each logical qubit with dozens of physical qubits! 

That could make quantum computing very hard!

To be useful, quantum computers need to protect qubits from 
the environment.    



Could topology be used for fault-tolerant quantum computation? 



Quantum particles can be classified as bosons or fermions 
depending on their having integer of half-integer spin. 



Identical particles are indistinguishable from each other.  
Therefore, one cannot tell which individual particle 

lives in a given quantum state!

Quantum particles can be classified as bosons or fermions 
depending on their having integer of half-integer spin. 



A system with two identical bosons is described by an entangled 
state that is symmetric under the exchange of the two particles,  
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Quantum particles can be classified as bosons or fermions 
depending on their having integer of half-integer spin. 



Two identical fermions are described by an entangled 
state that is anti-symmetric under the exchange of the two particles,  

Two identical fermions cannot occupy the same quantum state! 
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Without loss of generality, whenever two identical particles are 
swapped, the total wave function picks up a phase. 

where                   for bosons and         for fermions.
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In 2D, it is mathematically possible to have particles with fractional 
statistics (anyons)!
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LÀ>�̀��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��ỀiÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�̀��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
>VVÕÀ>ÌiÊÌ�Ê>L�ÕÌÊ£äqÎ°

	1���� �Ê�Ê�"��
Ê��/
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"�*1/� �
��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�̀��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃỀ�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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xy

⇢(T )
T!0�! ⇢0

r1

r2

⇢(T )
T!0�! 1

| 1, 2i ! e�i✓| 2, 1i

ei✓ = +1

�1

✓ =

1

In that case it matters if the particles are swapped in the clockwise or 
counterclockwise direction!

Clockwise 

ÈäÊ - 
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 / �� �
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 � Ê � *, �� ÊÓääÈ

>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
i�iVÌÀ��ÃÊ>ÌÊÌ�i�ÀÊ��ÌiÀv>Vi°Ê/�iÊi�iV�
ÌÀ��ÃÊ��ÛiÊvÀii�ÞÊ��ÊÌ�iÊÌÜ�Ề ��i�Ã���ÃÊ
�vÊÌ�iÊ��ÌiÀv>ViÊLÕÌÊ>ÀiÊV��ÃÌÀ>��i`ÊvÀ��Ê
��Û��}Ê��ÊÌ�iÊÌ��À`Ê`��i�Ã���]ÊÜ��V�Ê
Ü�Õ�`ÊÌ>�iÊÌ�i�Ê�vvÊÌ�iÊ��ÌiÀv>Vi°Ê*�ÞÃ�
�V�ÃÌÃÊ�>ÛiÊ��Ìi�Ãi�ÞÊÃÌÕ`�i`ÊÃÕV�ÊÃÞÃ�
Ìi�ÃÊ�vÊi�iVÌÀ��Ã]ÊV>��i`ÊÌÜ��`��i��

Ã���>�Êi�iVÌÀ��Ê}>ÃiÃ]Ê«>ÀÌ�VÕ�>À�ÞÊÜ�i�Ê
Ì�iÊÃÞÃÌi�ÃÊ>ÀiÊ���iÀÃi`Ê��Ê��}�ÊÌÀ>�Ã�
ÛiÀÃiÊ�>}�iÌ�VÊwÊi�`ÃÊ>ÌÊiÝÌÀi�i�ÞÊ��ÜÊ
Ìi�«iÀ>ÌÕÀiÃ]ÊLiV>ÕÃiÊ�vÊÌ�iÊÕ�ÕÃÕ>�Ê
µÕ>�ÌÕ�Ê«À�«iÀÌ�iÃÊiÝ��L�Ìi`ÊÕ�`iÀÊ
Ì�iÃiÊV��`�Ì���Ã°Ê
��ÀÊiÝ>�«�i]Ê��ÊÌ�iÊvÀ>VÌ���>�ÊµÕ>��

ÌÕ�Ê�>��ÊivviVÌ]ÊiÝV�Ì>Ì���ÃÊ��ÊÌ�iÊi�iV�
ÌÀ��Ê}>ÃÊLi�>ÛiÊ���iÊ«>ÀÌ�V�iÃÊ�>Û��}Ê>Ê
vÀ>VÌ���Ê�vÊÌ�iÊV�>À}iÊ�vÊÌ�iÊi�iVÌÀ��°Ê
"Ì�iÀÊ iÝV�Ì>Ì���ÃÊ V>ÀÀÞÊÕ��ÌÃÊ�vÊ Ì�iÊ

�>}�iÌ�VÊ v�ÕÝÊ>À�Õ�`ÊÜ�Ì�Ê Ì�i�Ê>ÃÊ
Ì��Õ}�ÊÌ�iÊyÊÕÝÊÜiÀiÊ>�Ê��Ìi}À>�Ê«>ÀÌÊ�vÊ
Ì�iÊ«>ÀÌ�V�i°Ê��ÊÓääxÊ6�>`���ÀÊ�°Ê���`�
�>�]Ê�iÀ�>�`�Ê
°Ê
>����Ê>�`Ê7i�Ê
<��ÕÊ�vÊ-Ì��ÞÊ	À���Ê1��ÛiÀÃ�ÌÞÊV�>��i`Ê
Ì�Ê�>ÛiÊ`�ÀiVÌÊiÝ«iÀ��i�Ì>�ÊV��wÊÀ�>�
Ì���ÊÌ�>ÌÊµÕ>Ã�«>ÀÌ�V�iÃÊ�VVÕÀÀ��}Ê��ÊÌ�iÊ
vÀ>VÌ���>�ÊµÕ>�ÌÕ�Ê�>��ÊÃÌ>ÌiÊ>ÀiÊ>�Þ�
��Ã]Ê>ÊVÀÕV�>�ÊwÊÀÃÌÊÃÌi«Ê��ÊÌ�iÊÌ�«���}�V>�Ê
>««À�>V�Ê Ì�Ê µÕ>�ÌÕ�Ê V��«ÕÌ>Ì���°Ê
-��iÊÀiÃi>ÀV�iÀÃ]Ê��ÜiÛiÀ]ÊÃÌ���ÊÃii�Ê���

�"7Ê/"*"�"��
��Ê+1� /1�Ê
"�*1/� �Ê7",�-

	,���� �
�ÕÃÌÊÌÜ�ÊL>Ã�VÊ��ÛiÃÊ��Ê>Ê«�>�ip>ÊV��V�Ü�ÃiÊÃÜ>«Ê>�`Ê>ÊV�Õ�ÌiÀV��V�Ü�ÃiÊÃÜ>«p}i�iÀ>ÌiÊ>��ÊÌ�iÊ«�ÃÃ�L�iÊLÀ>�`��}ÃÊ�vÊÌ�iÊÜ�À�`Ê���iÃÊ
­ÌÀ>�iVÌ�À�iÃÊÌ�À�Õ}�ÊÃ«>ViÌ��i®Ê�vÊ>ÊÃiÌÊ�vÊ>�Þ��Ã°

�Ê��}�VÊ}>ÌiÊ���Ü�Ê>ÃÊ>Ê
 "/Ê}>ÌiÊ�ÃÊ«À�`ÕVi`ÊLÞÊÌ��ÃÊV��«��V>Ìi`Ê
LÀ>�`��}Ê�vÊÃ�ÝÊ>�Þ��Ã°Ê�Ê
 "/Ê}>ÌiÊÌ>�iÃÊÌÜ�Ê��«ÕÌÊµÕL�ÌÃÊ>�`Ê
«À�`ÕViÃÊÌÜ�Ê�ÕÌ«ÕÌÊµÕL�ÌÃ°Ê/��ÃiÊµÕL�ÌÃÊ>ÀiÊÀi«ÀiÃi�Ìi`ÊLÞÊÌÀ�«�iÌÃÊ
­}Àii�Ê>�`ÊL�Õi®Ê�vÊÃ��V>��i`Ê��L��>VV�Ê>�Þ��Ã°Ê/�iÊ«>ÀÌ�VÕ�>ÀÊÃÌÞ�iÊ�vÊ

LÀ>�`��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��Ê`iÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�`��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
>VVÕÀ>ÌiÊÌ�Ê>L�ÕÌÊ£äqÎ°

	1���� �Ê�Ê�"��
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"�*1/� �
��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�`��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃÊ`�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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⇢(T )
T!0�! 1

| 1, 2i ! ei✓| 2, 1i

ei✓ = +1

�1

✓ =

1

Counterclockwise 

�xy = n
e2

h

⇢xx =
�xx

�2
xx + �2

xy

⇢(T )
T!0�! ⇢0

r1

r2

⇢(T )
T!0�! 1

| 1, 2i ! e�i✓| 2, 1i

ei✓ = +1

�1

✓ 6= n⇡, n 2 Z

1
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>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
i�iVÌÀ��ÃÊ>ÌÊÌ�i�ÀÊ��ÌiÀv>Vi°Ê/�iÊi�iV�
ÌÀ��ÃÊ��ÛiÊvÀii�ÞÊ��ÊÌ�iÊÌÜ�Ề ��i�Ã���ÃÊ
�vÊÌ�iÊ��ÌiÀv>ViÊLÕÌÊ>ÀiÊV��ÃÌÀ>��i`ÊvÀ��Ê
��Û��}Ê��ÊÌ�iÊÌ��À`Ê`��i�Ã���]ÊÜ��V�Ê
Ü�Õ�`ÊÌ>�iÊÌ�i�Ê�vvÊÌ�iÊ��ÌiÀv>Vi°Ê*�ÞÃ�
�V�ÃÌÃÊ�>ÛiÊ��Ìi�Ãi�ÞÊÃÌÕ`�i`ÊÃÕV�ÊÃÞÃ�
Ìi�ÃÊ�vÊi�iVÌÀ��Ã]ÊV>��i`ÊÌÜ��`��i��

Ã���>�Êi�iVÌÀ��Ê}>ÃiÃ]Ê«>ÀÌ�VÕ�>À�ÞÊÜ�i�Ê
Ì�iÊÃÞÃÌi�ÃÊ>ÀiÊ���iÀÃi`Ê��Ê��}�ÊÌÀ>�Ã�
ÛiÀÃiÊ�>}�iÌ�VÊwÊi�`ÃÊ>ÌÊiÝÌÀi�i�ÞÊ��ÜÊ
Ìi�«iÀ>ÌÕÀiÃ]ÊLiV>ÕÃiÊ�vÊÌ�iÊÕ�ÕÃÕ>�Ê
µÕ>�ÌÕ�Ê«À�«iÀÌ�iÃÊiÝ��L�Ìi`ÊÕ�`iÀÊ
Ì�iÃiÊV��`�Ì���Ã°Ê
��ÀÊiÝ>�«�i]Ê��ÊÌ�iÊvÀ>VÌ���>�ÊµÕ>��

ÌÕ�Ê�>��ÊivviVÌ]ÊiÝV�Ì>Ì���ÃÊ��ÊÌ�iÊi�iV�
ÌÀ��Ê}>ÃÊLi�>ÛiÊ���iÊ«>ÀÌ�V�iÃÊ�>Û��}Ê>Ê
vÀ>VÌ���Ê�vÊÌ�iÊV�>À}iÊ�vÊÌ�iÊi�iVÌÀ��°Ê
"Ì�iÀÊ iÝV�Ì>Ì���ÃÊ V>ÀÀÞÊÕ��ÌÃÊ�vÊ Ì�iÊ

�>}�iÌ�VÊ v�ÕÝÊ>À�Õ�`ÊÜ�Ì�Ê Ì�i�Ê>ÃÊ
Ì��Õ}�ÊÌ�iÊyÊÕÝÊÜiÀiÊ>�Ê��Ìi}À>�Ê«>ÀÌÊ�vÊ
Ì�iÊ«>ÀÌ�V�i°Ê��ÊÓääxÊ6�>`���ÀÊ�°Ê���`�
�>�]Ê�iÀ�>�`�Ê
°Ê
>����Ê>�`Ê7i�Ê
<��ÕÊ�vÊ-Ì��ÞÊ	À���Ê1��ÛiÀÃ�ÌÞÊV�>��i`Ê
Ì�Ê�>ÛiÊ`�ÀiVÌÊiÝ«iÀ��i�Ì>�ÊV��wÊÀ�>�
Ì���ÊÌ�>ÌÊµÕ>Ã�«>ÀÌ�V�iÃÊ�VVÕÀÀ��}Ê��ÊÌ�iÊ
vÀ>VÌ���>�ÊµÕ>�ÌÕ�Ê�>��ÊÃÌ>ÌiÊ>ÀiÊ>�Þ�
��Ã]Ê>ÊVÀÕV�>�ÊwÊÀÃÌÊÃÌi«Ê��ÊÌ�iÊÌ�«���}�V>�Ê
>««À�>V�Ê Ì�Ê µÕ>�ÌÕ�Ê V��«ÕÌ>Ì���°Ê
-��iÊÀiÃi>ÀV�iÀÃ]Ê��ÜiÛiÀ]ÊÃÌ���ÊÃii�Ê���

�"7Ê/"*"�"��
��Ê+1� /1�Ê
"�*1/� �Ê7",�-

	,���� �
�ÕÃÌÊÌÜ�ÊL>Ã�VÊ��ÛiÃÊ��Ê>Ê«�>�ip>ÊV��V�Ü�ÃiÊÃÜ>«Ê>�`Ê>ÊV�Õ�ÌiÀV��V�Ü�ÃiÊÃÜ>«p}i�iÀ>ÌiÊ>��ÊÌ�iÊ«�ÃÃ�L�iÊLÀ>�`��}ÃÊ�vÊÌ�iÊÜ�À�`Ê���iÃÊ
­ÌÀ>�iVÌ�À�iÃÊÌ�À�Õ}�ÊÃ«>ViÌ��i®Ê�vÊ>ÊÃiÌÊ�vÊ>�Þ��Ã°

�Ê��}�VÊ}>ÌiÊ���Ü�Ê>ÃÊ>Ê
 "/Ê}>ÌiÊ�ÃÊ«À�`ÕVi`ÊLÞÊÌ��ÃÊV��«��V>Ìi`Ê
LÀ>�`��}Ê�vÊÃ�ÝÊ>�Þ��Ã°Ê�Ê
 "/Ê}>ÌiÊÌ>�iÃÊÌÜ�Ê��«ÕÌÊµÕL�ÌÃÊ>�`Ê
«À�`ÕViÃÊÌÜ�Ê�ÕÌ«ÕÌÊµÕL�ÌÃ°Ê/��ÃiÊµÕL�ÌÃÊ>ÀiÊÀi«ÀiÃi�Ìi`ÊLÞÊÌÀ�«�iÌÃÊ
­}Àii�Ê>�`ÊL�Õi®Ê�vÊÃ��V>��i`Ê��L��>VV�Ê>�Þ��Ã°Ê/�iÊ«>ÀÌ�VÕ�>ÀÊÃÌÞ�iÊ�vÊ

LÀ>�`��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��Ê`iÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�`��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
>VVÕÀ>ÌiÊÌ�Ê>L�ÕÌÊ£äqÎ°
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��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�`��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃÊ`�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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The act of exchanging two anyons corresponds to two distinct braiding 
operations, depending on how they are swapped!



the knot. The first such enumeration was Taits’ “First Seven Orders of Knottiness”, which was

inspired by Lord Kelvin’s theory that atoms were small knotted vertices in aether, and that their

properties came from the topology of the knots. While that model was both quite inaccurate,

and gathered little attention, there is poetic justice in the way this idea motivated tools which

are now used in the study of particle physics. For more historical details, the reader can consult

[10], and more notably the references therein.

Figure 1: Various diagrams of the unknot, from [17].

Quantum computing

Classical computing can be summarized as encoding information in binary, modifying it using

(usually deterministic) rules, and outputting a binary answer.

In contrast, quantum computing stores information as tensor products of elements of CP1 =

{[z0 : z1)] : zi 2 C, and z0 6= 0 or z1 6= 0, [z0 : z1] ⇠ [�z0 : �z1] 8 � 2 C⇤}. The smallest unit

of information for a quantum computer is the qubit. It is assigned an element of CP1 called its

state, which is traditionally written using Dirac’s bra-ket notation for ease of manipulation by

gates encoded as projective unitary matrices. Finally, the output is given by projecting to an

orthonormal basis in a process called measurement.

Example. A qubit in the state [↵ : �] is written ↵|0i + �|1i. It measure to |ii with prob-

ability |(↵h0| + �h1|)|ii|2. An example of a unitary transformation is the Hadamard gate,

H = 1p
2

"
1 1

1 1

#
. It acts on a single qubit, such as H|0i = 1p

2
(|0i+ |1i).

Theoretically, a qubit is just a point on the projective line. Practically, a qubit is a transistor

which can encode a state ↵|0i+�|1i where |↵|2+ |�|2 = 1. A quantum circuit is then a sequence

of physical forces acting on a collection of qubits. Qubits whose states are non-trivial tensor

products are said to be entangled. They are obtained by multiplying two unentangled qubits by

some 4⇥ 4 matrices.

2

Non-trivial topology can also appear in the form of knots of world lines!

World line



ÜÜÜ°ÃV �>�°V��ÊÊ - 
 �
 / �� �
 Ê��
, �
 � Ê x�

�ÞÊ���}ÊV>�VÕ�>Ì���Ê��Ê>ÊV��Ûi�Ì���>�Ê
V��«ÕÌiÀ°Ê
µÕ>��ÞÊ`�vwÊVÕ�ÌÊ«À�L�i�ÃÊ�vÊ
��ÀiÊÀi>��Ü�À�`Ê��«�ÀÌ>�ViÊÜ�Õ�`Ê�>ÛiÊ
Ã����>ÀÊÃ��ÀÌVÕÌÃ°
��Ì��Õ}�Ê�ÌÊ>��ÊÃ�Õ�`ÃÊ���iÊÜ��`ÊÌ�i��

À�â��}ÊµÕ�ÌiÊÀi��Ûi`ÊvÀ��ÊÀi>��ÌÞ]ÊÀiVi�ÌÊ
iÝ«iÀ��i�ÌÃÊ��Ê>ÊwÊi�`Ê���Ü�Ê>ÃÊvÀ>V�
Ì���>�ÊµÕ>�ÌÕ�Ê�>��Ê«�ÞÃ�VÃÊ�>ÛiÊ«ÕÌÊ
Ì�iÊ>�Þ��ÊÃV�i�iÊ��Êv�À�iÀÊ v��Ì��}°Ê
�ÕÀÌ�iÀÊiÝ«iÀ��i�ÌÃÊ�>ÛiÊLii�Ê«À�«�Ãi`Ê
Ì�ÊV>ÀÀÞÊ�ÕÌÊÌ�iÊÀÕ`��i�ÌÃÊ�vÊ>ÊÌ�«���}�
�V>�ÊµÕ>�ÌÕ�ÊV��«ÕÌ>Ì���°

��Þ��Ã
AS�PREVIOUSLY�MENTIONED��>ÊÌ��
«���}�V>�Ê µÕ>�ÌÕ�Ê V��«ÕÌiÀÊ LÀ>�`ÃÊ
Ü�À�`Ê���iÃÊLÞÊÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ
«>ÀÌ�V�iÃ°Ê��ÜÊ«>ÀÌ�V�iÃÊLi�>ÛiÊÜ�i�Ê
ÃÜ>««i`Ê�ÃÊ��iÊ�vÊÌ�iÊ�>�ÞÊÜ>ÞÃÊÌ�>ÌÊ
µÕ>�ÌÕ�Ê«�ÞÃ�VÃÊ`�vviÀÃÊvÕ�`>�i�Ì>��ÞÊ
vÀ��ÊV�>ÃÃ�V>�Ê«�ÞÃ�VÃ°Ê��ÊV�>ÃÃ�V>�Ê«�ÞÃ�
�VÃ]Ê�vÊÞ�ÕÊ�>ÛiÊÌÜ�Êi�iVÌÀ��ÃÊ>ÌÊ��V>Ì���ÃÊ
�Ê>�`Ê	Ê>�`ÊÞ�ÕÊ��ÌiÀV�>�}iÊÌ�i�ÀÊ«�Ã��
Ì���Ã]ÊÌ�iÊwÊ�>�ÊÃÌ>ÌiÊ�ÃÊÌ�iÊÃ>�iÊ>ÃÊÌ�iÊ
���Ì�>�ÊÃÌ>Ìi°Ê	iV>ÕÃiÊÌ�iÊi�iVÌÀ��ÃÊ>ÀiÊ
��`�ÃÌ��}Õ�Ã�>L�i]ÊÃ�]ÊÌ��]Ê>ÀiÊÌ�iÊ���Ì�>�Ê
>�`ÊwÊ�>�ÊÃÌ>ÌiÃ°Ê+Õ>�ÌÕ�Ê�iV�>��VÃÊ�ÃÊ
��ÌÊÃ�ÊÃ��«�i°
/�iÊ`�vviÀi�ViÊ>À�ÃiÃÊLiV>ÕÃiÊµÕ>��

ÌÕ�Ê�iV�>��VÃÊ`iÃVÀ�LiÃÊÌ�iÊÃÌ>ÌiÊ�vÊ>Ê
«>ÀÌ�V�iÊÜ�Ì�Ê>ÊµÕ>�Ì�ÌÞÊV>��i`ÊÌ�iÊÜ>ÛiÊ
vÕ�VÌ���]Ê>ÊÜ>ÛiÊ��ÊÃ«>ViÊÌ�>ÌÊi�V>«ÃÕ�
�>ÌiÃÊ>��ÊÌ�iÊ«À�«iÀÌ�iÃÊ�vÊÌ�iÊ«>ÀÌ�V�ip
Ì�iÊ«À�L>L���ÌÞÊ�vÊwÊ�`��}Ê�ÌÊ>ÌÊÛ>À��ÕÃÊ
��V>Ì���Ã]ÊÌ�iÊ«À�L>L���ÌÞÊ�vÊ�i>ÃÕÀ��}Ê

�ÌÊ>ÌÊÛ>À��ÕÃÊÛi��V�Ì�iÃ]Ê>�`ÊÃ�Ê��°Ê��ÀÊ
iÝ>�«�i]Ê>Ê«>ÀÌ�V�iÊ�ÃÊ��ÃÌÊ���i�ÞÊÌ�ÊLiÊ
v�Õ�`Ê��Ê>ÊÀi}���ÊÜ�iÀiÊÌ�iÊÜ>ÛiÊvÕ�V�
Ì���Ê�>ÃÊ>Ê�>À}iÊ>�«��ÌÕ`i°
�Ê«>�ÀÊ�vÊi�iVÌÀ��ÃÊ�ÃÊ`iÃVÀ�Li`ÊLÞÊ>Ê

����ÌÊÜ>ÛiÊvÕ�VÌ���]Ê>�`ÊÜ�i�ÊÌ�iÊÌÜ�Ê
i�iVÌÀ��ÃÊ>ÀiÊiÝV�>�}i`]ÊÌ�iÊÀiÃÕ�Ì��}Ê
����ÌÊÜ>ÛiÊvÕ�VÌ���Ê�ÃÊ���ÕÃÊ��iÊÌ��iÃÊ
Ì�iÊ�À�}��>�°Ê/�>ÌÊV�>�}iÃÊ«i>�ÃÊ�vÊÌ�iÊ
Ü>ÛiÊ��Ì�ÊÌÀ�Õ}�Ã]Ê>�`ÊÛ�ViÊÛiÀÃ>]ÊLÕÌÊ�ÌÊ
�>ÃÊ��ÊivviVÌÊ��ÊÌ�iÊ>�«��ÌÕ`iÊ�vÊÌ�iÊ
�ÃV���>Ì���Ã°Ê��Êv>VÌ]Ê�ÌÊ`�iÃÊ��ÌÊV�>�}iÊ
>�ÞÊ�i>ÃÕÀ>L�iÊµÕ>�Ì�ÌÞÊ�vÊ Ì�iÊ ÌÜ�Ê
i�iVÌÀ��ÃÊV��Ã�`iÀi`ÊLÞÊÌ�i�Ãi�ÛiÃ°
7�>ÌÊ�ÌÊ`�iÃÊV�>�}iÊ�ÃÊ��ÜÊÌ�iÊi�iV�

ÌÀ��ÃÊ��}�ÌÊ��ÌiÀviÀiÊÜ�Ì�Ê�Ì�iÀÊi�iV�
ÌÀ��Ã°Ê��ÌiÀviÀi�ViÊ�VVÕÀÃÊÜ�i�ÊÌÜ�Ê
Ü>ÛiÃÊ>ÀiÊ>``i`ÊÌ�}iÌ�iÀ°Ê7�i�ÊÌÜ�Ê
Ü>ÛiÃÊ��ÌiÀviÀi]ÊÌ�iÊV��L��>Ì���Ê�>ÃÊ>Ê
��}�Ê>�«��ÌÕ`iÊÜ�iÀiÊ«i>�ÃÊ�vÊ��iÊ>��}�Ê
Ü�Ì�Ê«i>�ÃÊ�vÊÌ�iÊ�Ì�iÀÊ­ºV��ÃÌÀÕVÌ�ÛiÊ
��ÌiÀviÀi�Vi»®Ê>�`Ê�>ÃÊ>Ê��ÜÊ>�«��ÌÕ`iÊ
Ü�iÀiÊ«i>�ÃÊ>��}�ÊÜ�Ì�ÊÌÀ�Õ}�ÃÊ­º`i�
ÃÌÀÕVÌ�ÛiÊ ��ÌiÀviÀi�Vi»®°Ê�Õ�Ì�«�Þ��}Ê
��iÊ�vÊÌ�iÊÜ>ÛiÃÊLÞÊ>Ê«�>ÃiÊ�vÊ���ÕÃÊ
��iÊ��ÌiÀV�>�}iÃÊ�ÌÃÊ«i>�ÃÊ>�`ÊÌÀ�Õ}�ÃÊ
>�`ÊÌ�ÕÃÊV�>�}iÃÊV��ÃÌÀÕVÌ�ÛiÊ��ÌiÀviÀ�
i�Vi]Ê>ÊLÀ�}�ÌÊÃ«�Ì]ÊÌ�Ê`iÃÌÀÕVÌ�ÛiÊ��ÌiÀ�
viÀi�Vi]Ê>Ề >À�ÊÃ«�Ì°
�ÌÊ�ÃÊ��ÌÊ�ÕÃÌÊi�iVÌÀ��ÃÊÌ�>ÌÊ«�V�ÊÕ«Ê>Ê

v>VÌ�ÀÊ�vÊ���ÕÃÊ��iÊ��ÊÌ��ÃÊÜ>ÞÊLÕÌÊ>�Ã�Ê
«À�Ì��Ã]Ê�iÕÌÀ��ÃÊ>�`Ê��Ê}i�iÀ>�Ê>�ÞÊ
«>ÀÌ�V�iÊ�vÊ>ÊV�>ÃÃÊV>��i`ÊviÀ����Ã°Ê	��
Ã��Ã]ÊÌ�iÊ�Ì�iÀÊV��ivÊV�>ÃÃÊ�vÊ«>ÀÌ�V�iÃ]Ê
�>ÛiÊÜ>ÛiÊvÕ�VÌ���ÃÊÌ�>ÌÊ>ÀiÊÕ�V�>�}i`Ê

Ü�i�ÊÌÜ�Ê«>ÀÌ�V�iÃÊ>ÀiÊÃÜ>««i`°Ê9�ÕÊ
��}�ÌÊÃ>ÞÊÌ�>ÌÊÌ�i�ÀÊÜ>ÛiÊvÕ�VÌ���ÃÊ>ÀiÊ
�Õ�Ì�«��i`ÊLÞÊ>Êv>VÌ�ÀÊ�vÊ«�ÕÃÊ��i°
�ii«Ê�>Ì�i�>Ì�V>�ÊÀi>Ã��ÃÊÀiµÕ�ÀiÊ

Ì�>ÌÊµÕ>�ÌÕ�Ê«>ÀÌ�V�iÃÊ��ÊÌ�ÀiiÊ`��i��
Ã���ÃÊ�ÕÃÌÊLiÊi�Ì�iÀÊviÀ����ÃÊ�ÀÊL�Ã��Ã°Ê
��ÊÌÜ�Ê`��i�Ã���Ã]Ê>��Ì�iÀÊ«�ÃÃ�L���ÌÞÊ
>À�ÃiÃ\ÊÌ�iÊv>VÌ�ÀÊ��}�ÌÊLiÊ>ÊV��«�iÝÊ
«�>Ãi°Ê�ÊV��«�iÝÊ«�>ÃiÊV>�ÊLiÊÌ��Õ}�ÌÊ
�vÊ>ÃÊ>�Ê>�}�i°Ê<iÀ�Ề i}ÀiiÃÊV�ÀÀiÃ«��`ÃÊ
Ì�ÊÌ�iÊ�Õ�LiÀÊ��iÆÊ£näỀ i}ÀiiÃÊ�ÃÊ���ÕÃÊ
��i°Ê��}�iÃÊ ���LiÌÜii�Ê>ÀiÊV��«�iÝÊ
�Õ�LiÀÃ°Ê��ÀÊiÝ>�«�i]Ê�äÊ`i}ÀiiÃÊV�À�
ÀiÃ«��`ÃÊÌ�Ê�]ÊÌ�iÊÃµÕ>ÀiÊÀ��ÌÊ�vÊ���ÕÃÊ
��i°Ê�ÃÊÜ�Ì�Ê>Êv>VÌ�ÀÊ�vÊ���ÕÃÊ��i]Ê�Õ��
Ì�«�Þ��}Ê>ÊÜ>ÛiÊvÕ�VÌ���ÊLÞÊ>Ê«�>ÃiÊ�>ÃÊ
>LÃ��ÕÌi�ÞÊ��ÊivviVÌÊ��ÊÌ�iÊ�i>ÃÕÀi`Ê
«À�«iÀÌ�iÃÊ�vÊÌ�iÊ��`�Û�`Õ>�Ê«>ÀÌ�V�i]ÊLi�
V>ÕÃiÊ>��ÊÌ�>ÌÊ�>ÌÌiÀÃÊv�ÀÊÌ��ÃiÊ«À�«iÀ�
Ì�iÃÊ>ÀiÊÌ�iÊ>�«��ÌÕ`iÃÊ�vÊÌ�iÊ�ÃV���>�
Ì���ÃÊ�vÊ Ì�iÊÜ>Ûi°Ê iÛiÀÌ�i�iÃÃ]Ê Ì�iÊ
«�>ÃiÊV>�ÊV�>�}iÊ��ÜÊÌÜ�ÊV��«�iÝÊ
Ü>ÛiÃÊ��ÌiÀviÀi°
*>ÀÌ�V�iÃÊ Ì�>ÌÊ «�V�ÊÕ«Ê >Ê V��«�iÝÊ

«�>ÃiÊ��ÊLi��}ÊÃÜ>««i`Ê>ÀiÊV>��i`Ê>�Þ�
��ÃÊLiV>ÕÃiÊ>�ÞÊV��«�iÝÊ«�>ÃiÊ��}�ÌÊ
>««i>À]Ê��ÌÊ�ÕÃÌÊ>Ê«�>ÃiÊ�vÊ«�ÕÃÊ�ÀÊ���ÕÃÊ
��i°Ê*>ÀÌ�V�iÃÊ�vÊ>Ê}�Ûi�ÊÃ«iV�iÃ]Ê��Ü�
iÛiÀ]Ê>�Ü>ÞÃÊ«�V�ÊÕ«ÊÌ�iÊÃ>�iÊ«�>Ãi°


�iVÌÀ��ÃÊ��Ê��>Ì�>�`
A N YONS� E X IST � ON LY� ��Ê>ÊÌÜ��`��
�i�Ã���>�ÊÜ�À�`°Ê��ÜÊV>�ÊÜiÊ«À�`ÕViÊ
«>�ÀÃÊ�vÊÌ�i�Êv�ÀÊÌ�«���}�V>�ÊV��«ÕÌ��}Ê
Ü�i�ÊÜiÊ��ÛiÊ��ÊÌ�ÀiiÊ`��i�Ã���Ã¶Ê/�iÊ�
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/�«���}ÞÊ�vÊ>ÊV��Ãi`Ê���«Ê­>®Ê�ÃÊÕ�>�ÌiÀi`Ê�vÊÌ�iÊÃÌÀ��}Ê�ÃÊ«ÕÃ�i`Ê
>À�Õ�`ÊÌ�Êv�À�Ê>��Ì�iÀÊÃ�>«iÊ­L®ÊLÕÌÊ�ÃÊ`�vviÀi�ÌÊvÀ��ÊÌ�>ÌÊ�vÊ
>ÊV��Ãi`Ê���«ÊÜ�Ì�Ê>Ê���ÌÊÌ�i`Ê��Ê�ÌÊ­V®°Ê/�iÊ���ÌÊV>���ÌÊLiÊv�À�i`Ê�ÕÃÌÊ

LÞÊ��Û��}Ê>À�Õ�`ÊÌ�iÊÃÌÀ��}°Ê��ÃÌi>`Ê��iÊ�ÕÃÌÊVÕÌÊÌ�iÊÃÌÀ��}]ÊÌ�iÊÌ�iÊ
���ÌÊ>�`ÊÀi����ÊÌ�iÊi�`Ã°Ê
��ÃiµÕi�Ì�Þ]ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ���«Ê
�ÃÊ��Ãi�Ã�Ì�ÛiÊÌ�Ê«iÀÌÕÀL>Ì���ÃÊÌ�>ÌÊ���ÞÊ«ÕÃ�ÊÌ�iÊÃÌÀ��}Ê>À�Õ�`°
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One can separate world lines in different topological classes based 
on the number of knots.



In 1997, Alexei Kitaev suggested that building qubits 
with anyons would permit creating quantum 
computers that are immune to decoherence! 

Anyons cannot exist in isolation and must be entangled with other anyons!

 They are hard to observe because they are insensitive to local 
measurements, and can only be destroyed when merged with other anyons.  

On the other hand, their qubits are hard to decohere!
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>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
i�iVÌÀ��ÃÊ>ÌÊÌ�i�ÀÊ��ÌiÀv>Vi°Ê/�iÊi�iV�
ÌÀ��ÃÊ��ÛiÊvÀii�ÞÊ��ÊÌ�iÊÌÜ�Ề ��i�Ã���ÃÊ
�vÊÌ�iÊ��ÌiÀv>ViÊLÕÌÊ>ÀiÊV��ÃÌÀ>��i`ÊvÀ��Ê
��Û��}Ê��ÊÌ�iÊÌ��À`Ê`��i�Ã���]ÊÜ��V�Ê
Ü�Õ�`ÊÌ>�iÊÌ�i�Ê�vvÊÌ�iÊ��ÌiÀv>Vi°Ê*�ÞÃ�
�V�ÃÌÃÊ�>ÛiÊ��Ìi�Ãi�ÞÊÃÌÕ`�i`ÊÃÕV�ÊÃÞÃ�
Ìi�ÃÊ�vÊi�iVÌÀ��Ã]ÊV>��i`ÊÌÜ��`��i��

Ã���>�Êi�iVÌÀ��Ê}>ÃiÃ]Ê«>ÀÌ�VÕ�>À�ÞÊÜ�i�Ê
Ì�iÊÃÞÃÌi�ÃÊ>ÀiÊ���iÀÃi`Ê��Ê��}�ÊÌÀ>�Ã�
ÛiÀÃiÊ�>}�iÌ�VÊwÊi�`ÃÊ>ÌÊiÝÌÀi�i�ÞÊ��ÜÊ
Ìi�«iÀ>ÌÕÀiÃ]ÊLiV>ÕÃiÊ�vÊÌ�iÊÕ�ÕÃÕ>�Ê
µÕ>�ÌÕ�Ê«À�«iÀÌ�iÃÊiÝ��L�Ìi`ÊÕ�`iÀÊ
Ì�iÃiÊV��`�Ì���Ã°Ê
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The fundamental unit of information (qubit) in a topological quantum 
computer is a linear superposition of two anyons, which can be braided 

with other qubits!



Braid Topologies for Quantum Computation
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In topological quantum computation, quantum information is stored in states which are intrinsically
protected from decoherence, and quantum gates are carried out by dragging particlelike excitations
(quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories
define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on
the topology of the braids formed by these world lines. We show how to find braids that yield a universal
set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly
promising for experimental realization.

DOI: 10.1103/PhysRevLett.95.140503 PACS numbers: 03.67.Lx, 03.67.Pp, 73.43.2f

A quantum computer must be capable of manipulating
quantum information while simultaneously protecting it
from error and loss of quantum coherence due to coupling
to the environment. Topological quantum computation
(TQC) [1,2] offers a particularly elegant way to achieve
this using quasiparticles which obey non-Abelian statistics
[3,4]. These quasiparticles, which are expected to arise in a
variety of two-dimensional quantum many-body systems
[1,4–11], have the property that the usual phase factors of
!1 associated with the exchange of identical bosons or
fermions are replaced by noncommuting (non-Abelian)
matrices that depend only on the topology of the space-
time paths (braids) used to effect the exchange. The ma-
trices act on a degenerate Hilbert space whose dimension-
ality is exponentially large in the number of quasiparticles
and whose states have an intrinsic immunity to decoher-
ence because they cannot be distinguished by local mea-
surements, provided the quasiparticles are kept sufficiently
far apart.

In TQC this protected Hilbert space is used to store
quantum information, and quantum gates are carried out
by adiabatically braiding quasiparticles around each other
[1,2]. Because the resulting quantum gates depend purely
on the topology of the braids, errors occur only when
quasiparticles form ‘‘unintentional’’ braids. This can hap-
pen if a quasiparticle-quasihole pair is thermally created,
the pair separates, wanders around other quasiparticles,
and then recombines in a topologically nontrivial way.
However, such processes are exponentially unlikely at
low enough temperature. This built-in protection from
error and decoherence is an appealing feature of TQC
which may compensate for the extreme technical chal-
lenges that will have to be overcome to realize it.

It has been shown that several different kinds of non-
Abelian quasiparticles can be used for TQC [1,2,12–14].
Here we focus on what is arguably the simplest of these—
Fibonacci anyons [14]. These quasiparticles each possess a

‘‘q-deformed’’ spin quantum number (q-spin) of 1, the
properties of which are described by a mathematical struc-
ture known as a quantum group [15]. As with ordinary
spin, there are specific rules for combining q-spin. For
Fibonacci anyons these ‘‘fusion’’ rules state that when
two q-spin 1 objects are combined, the total q-spin can
be either 0 or 1; and when a q-spin 0 object is combined
with a q-spin s object, where s " 0 or 1, the total q-spin is
s [16]. Remarkably, as shown in [14], these fusion rules fix
the structure of the relevant quantum group, uniquely
determining the quantum operations produced by braiding
q-spins around one another up to an overall Abelian phase
which is irrelevant for TQC.

One reason for focusing on Fibonacci anyons is that they
are thought to exist in an experimentally observed frac-
tional quantum Hall state [17,18]. It may also be possible
to realize them in rotating Bose condensates [7] and quan-
tum spin systems [10,11]. Strictly speaking, the quantum
group realized in some of these systems, and considered for
TQC in [2], also includes q-spins of 1

2 and 3
2 ; however, due

to a symmetry of this quantum group [6], the braiding
properties of q-spin 1

2 quasiparticles are equivalent to those
with q-spin 1, and the braid topologies we find below can
be used in either case.

The fusion rules for Fibonacci anyons imply that the
Hilbert space of two quasiparticles is two dimensional—
with basis states j#$;$%0i and j#$;$%1i. Here the notation
#$;$%a represents two quasiparticles with total q-spin a.
When a third quasiparticle is added, the Hilbert space is
three dimensional, and is spanned by the states
j!#$;$%0;$"1i, j!#$;$%1;$"1i, and j!#$;$%1;$"0i. The gen-
eral result is that the dimensionality of an N-quasiparticle
state is the #N & 1%st Fibonacci number. To use this Hilbert
space for quantum computation, we follow Freedman et al.
[2], and encode qubits into triplets of quasiparticles with
total q-spin 1, taking the logical qubit states to be j0Li "
j!#$;$%0;$"1i and j1Li " j!#$;$%1;$"1i. The remaining
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we mean that the target quasiparticles remain fixed while
the control pair is moved around them as an immutable
group [see, for example, Figs. 3(b) and 4(c)]. If the q-spin
of the control pair is 0, the result of this operation is the
identity. However, if the q-spin of the control pair is 1, a

transition is induced. If we choose the control pair to
consist of the two quasiparticles whose total q-spin de-
termines the state of the control qubit, this construc-
tion automatically yields a controlled (conditional) opera-
tion. Second, we deliberately weave the control pair
through only two target quasiparticles at a time. Since
the only nontrivial case is when the control pair has
q-spin 1, and is thus equivalent to a single quasiparticle,
this reduces the problem of constructing two-qubit gates to
that of finding a finite number of specific three-
quasiparticle braids.

Figure 3(a) shows a three-quasiparticle braid in which
one quasiparticle is woven through the other two and
then returns to its original position. The resulting unitary
operation approximates that of simply braiding the two
static quasiparticles around each other twice to a distance
of ! ’ 2:3! 10"3. Similar weaves can be found which
approximate any even number, 2m, of windings of the
static quasiparticles. Figure 3(b) shows a two-qubit braid
in which the pattern from Fig. 3(a) is used to weave the
control pair through the target qubit. If the control qubit
is in the state j0Li, this weave does nothing, but if it is in the
state j1Li, the effect is equivalent to braiding two quasi-
particles within the target qubit. Thus, in the limit !! 0,
this effective braiding is all within a qubit and there are no
leakage errors. The resulting two-qubit gate is a controlled
rotation of the target qubit through an angle of 6m"=5,
which, together with single-qubit rotations, provides a
universal set of gates for quantum computation provided
m is not divisible by 5 [25]. Carrying out one iteration of
the Solovay-Kitaev construction [22,23] on this weave
using the procedure outlined in [26] reduces ! by a factor
of #20 at the expense of a factor of 5 increase in length.
Subsequent iterations can be used to achieve any desired
accuracy.

A similar construction can be used to carry out arbitrary
controlled-rotation gates. Figure 4(a) shows a braid in

FIG. 3 (color online). (a) A three-quasiparticle braid in which
one quasiparticle is woven around two static quasiparticles and
returns to its original position (left), and yields approximately
the same transition matrix as braiding the two stationary quasi-
particles around each other twice (right). The corresponding
matrix equation is also shown. To characterize the accuracy of
this approximation, we define the distance between two matri-
ces, U and V, to be ! $ kU" Vk, where kOk is the operator
norm of O equal to the square-root of the highest eigenvalue of
OyO. The distance between the matrices resulting from the
actual braiding (left) and the desired effective braiding (right)
is ! ’ 2:3! 10"3. (b) A two-qubit braid constructed by weaving
a pair of quasiparticles from the control qubit (top) through the
target qubit (bottom) using the weaving pattern from (a). The
result of this operation is to effectively braid the upper two
quasiparticles of the target qubit around each other twice if the
control qubit is in the state j1Li, and otherwise do nothing. This
is an entangling two-qubit gate which can be used for universal
quantum computation. Since all effective braiding takes place
within the target qubit, any leakage error is due to the approxi-
mate nature of the weave shown in (a). By systematically
improving this weave using the Solovay-Kitaev construction,
leakage error can be reduced to whatever level is required for a
given computation.

FIG. 4 (color online). (a) An injection weave for which the product of elementary braiding matrices, also shown, approximates the
identity to a distance of ! ’ 1:5! 10"3. This weave injects a quasiparticle (or any q-spin 1 object) into the target qubit without
changing any of the underlying q-spin quantum numbers. (b) A weaving pattern which approximates a NOT gate to a distance of
! ’ 8:5! 10"4. (c) A controlled-NOT gate constructed using the weaves shown in (a) and (b) to inject the control pair into the target
qubit, perform a NOT operation on the injected target qubit, and then eject the control pair from the target qubit back into the control
qubit. The distance between the gate produced by this braid acting on the computational two-qubit space and an exact controlled-NOT
gate is ! ’ 1:8! 10"3 and ! ’ 1:2! 10"3 when the total q-spin of the six quasiparticles is 0 and 1, respectively. Again, the weaves
shown in (a) and (b) can be made as accurate as necessary using the Solovay-Kitaev theorem, thereby improving the controlled-NOT
gate to any desired accuracy. By replacing the central NOT weave, arbitrary controlled-rotation gates can be constructed using this
procedure.
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In 2005, it was explicitly shown (theoretically) how to perform logical 
operations by braiding world lines of topological quantum particles!
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Do anyons exist?



One year later, Bob Laughlin showed the experiment can be explained by 
the existence of particles with fractional charge! 

In 1982, right after the discovery 
of the integer quantum Hall effect, 
Tsui and Stomer discovered the 

appearance of quantum Hall 
plateaus at some rational fractions 

of magnetic flux quanta per 
unit cell. 
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Are particles with fractionalized charge anyons?
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The statistics of quasiparticles entering the quantum Hall effect are deduced from the adia-
batic theoreme These excitations are found to obey fractional statistics, a result closely relat-
ed to their fractional charge.
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Extensive experimental studies have been carried
out' on semiconducting heterostructures in the
quantum limit ct)pr )) 1, where p)p= eBp/m is the
cyclotron frequency and v is the electronic scatter-
ing time. It is found that as the chemical potential

is varied, the Hall conductance (r~ = I„/E»
= 2/e /h shows plateaus at 2/= n/m, where n and m
are integers with m being odd. The ground state
and excitations of a two-dimensional electron gas in
a strong magnetic field 80 have been studied in
relation to these experiments and it has been found
that the free energy shows cusps at filling factors
v = n/m of the Landau levels. These cusps corre-
spond to the existence of an "incompressible quan-
tum fluid" for given n/m and an energy gap for ad-
ding quasiparticles which form an interpenetrating
fluid. This quasiparticle fluid in turn condenses to
make a new incompressible fluid at the next larger
value of n/m, etc.
The charge of the quasiparticles was discussed by

Laughlin2 by using an argument analogous to that
used in deducing the fractional charge of solitons in
one-dimensional conductors. He concluded for
2/= 1/m that quasiholes and quasiparticles have
charges + e"= + e/m. For example, a quasihole is
formed in the incompressible fluid by a two-
dimensional bubble of a size such that 1/m of an
electron is removed. Less clear, however, is the
statistics which the quasiparticles satisfy; Fermi,
Bose, and fractional statistics having all been pro-
posed. In this Letter, we give a direct method for
determining the charge and statistics of the quasi-
particles.
In the symmetric gauge A( r ) = 2 Bpx r we con-

sider the Laughlin ground state with filling factor
v =1/m,

= ff (z&—zk) exp( ——,X/~zt ~ ),

where zj =xj+iy, . A state having a quasihole local-
ized at zo is given by

(2)

dt

so that

+Zp=W X,.—In[z, —z (t)](I/ (6)

=iN '—,.ln z; —z

Since the one-electron density in the presence of

while a quasiparticle at zo is described by

g, (8/(); —p/a, ' )([/,
where 22rap8p= @p=he/e is the flux quantum and
N+ are normalizing factors.
To determine the quasiparticle charge e', we cal-

+zpculate the change of phase y of ([/ as zp adiabati-
cally moves around a circle of radius R enclosing
flux P. To determine e", y is set equal to the
change of phase,

(e /ee)fe d'( =2ee(e'/e)4/4e, (4)

that a quasiparticle of charge e' would gain in mov-
ing around this loop. As emphasized recently by
Berry6 and by Simon (see also Wilczek and Zees
and Schiff ), given a Hamiltonian H(zp) which
depends on a parameter zo, if zo slowly transverses
a loop, then in addition to the usual phase
fE(t') dt', where E(t') is the adiabatic energy, an
extra phase y occurs in (i/(t) which is independent
of how slowly the path is traversed. y(t) satisfies

dy(t)/dt =i ((I/(t) ~d([/(t)/dt)
From Eq. (2),
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In 1984, Arovas, Schrieffer and Wilczek showed (theoretically) that 
particles with fractional charge                in the FQH effect 

correspond to anyons with phase
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Fractional statistics in anyon collisions
H. Bartolomei1*, M. Kumar1*†, R. Bisognin1, A. Marguerite1‡, J.-M. Berroir1, E. Bocquillon1, B. Plaçais1,
A. Cavanna2, Q. Dong2, U. Gennser2, Y. Jin2, G. Fève1§

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are
neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall
effect at filling factor n = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional
statistics, with a phase f associated with the exchange of two particles equal to p/m. However,
despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive.
We experimentally demonstrate Abelian fractional statistics at filling factor n = ⅓ by measuring the
current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their
dependence on the anyon current impinging on the splitter and comparing with recent theoretical
models, we extract f = p/3, in agreement with predictions.

I
n three-dimensional space, elementary exci-
tations fall into two categories depending
on the phase f accumulated by the many-
body wave function while exchanging two
particles. This phase governs the statistics

of an ensemble of particles: Bosonic particles,
for which f = 0, tend to bunch together,
whereas fermions (f = p) antibunch and follow
Pauli’s exclusion principle. In two-dimensional
systems, other values of f can be realized (1, 2),
defining types of elementary excitations called
anyons (3) that obey fractional or anyonic
statistics with intermediate levels of bunching
or exclusion. The fractional quantumHall effect
(4, 5), obtained by applying a strong magnetic
field perpendicular to a two-dimensional elec-
tron gas, is one of the physical systems predicted
to host anyons. For a filling factor n of the first
Landau level belonging to the Laughlin series
(5)—that is, n = 1/m, wherem is an odd integer—
the exchange phase is predicted to be given
by f = p/m (6, 7) interpolating between the
bosonic and fermionic limits.
Direct experimental evidence of fractional

statistics has remained elusive. To date, most
efforts have focused on the implementation of
single-particle interferometers (8, 9), where
the output current is expected to be directly
sensitive to the exchange phase f. However,
despite many experimental attempts (10–15),
clear signatures are still lacking because the
observedmodulations of the current result not
only from the variation of the exchange phase
but also from Coulomb blockade and Aharonov-
Bohm interference (16). In the case of non-
Abelian anyons (17), where the exchange of

quasiparticles is described by topological uni-
tary transformations, recent heat conduction
measurements showedevidenceof anon-Abelian
state (18, 19), although these results give only
indirect evidence of the underlying quantum
statistics.
Here, wemeasured the fluctuations or noise

of the electrical current generated by the col-
lision of anyons on a beamsplitter (20), thereby
demonstrating that the elementary excitations
of the fractional quantum Hall effect at filling
factor n = ⅓ obey fractional statistics with f =
p/3. The measurement of the current noise
generated by a single scatterer of fractional
quasiparticles (21, 22) has already shown that
they carry a fractional charge e* = e/3. Shortly
after these seminal works, it was theoretically
predicted (20, 23–26) that in conductors com-
prising several scatterers, noisemeasurements
would exhibit two-particle interference effects
where exchange statistics play a central role,
and would thus be sensitive to the exchange
phase f. In this context, current-current cor-
relation measurements in collider geometries
are of particular interest, as they have been
extensively used to probe the quantum statis-
tics of particles colliding on a beamsplitter. In
a seminal two-particle collision experiment,
Hong et al. (27) demonstrated that photons
tend to bunch together in the same splitter
output, as expected from their bosonic statis-
tics. In contrast, collision experiments im-
plemented in quantumconductors (28–30) have
shown a suppression of the cross-correlations
between the output current fluctuations caused
by the antibunching of electrons, as expected
from their fermionic statistics. This behavior
can also be understood as a consequence of the
Pauli exclusion principle that forbids two fer-
mions from occupying the same quantum state
at the splitter output. This exclusion principle
can be generalized to fractional statistics
(31, 32) by introducing an exclusion quasi-
probability p (20) interpolating between the
fermionic and bosonic limits. In a classical
description of a two-particle collision (Fig. 1A)

(33), p accounts for the effects of quantum
statistics on the probability K of finding two
quasiparticles in the same output arm of the
beamsplitter: K = T(1 – T)(1 – p), where T is
the single-particle backscattering probability
(Fig. 1A). The fermionic case is p = 1, leading
to perfect antibunching, K = 0. Contrary to
fermions, the bunching of bosons enhancesK,
meaning that 1 – p > 1 and p < 0.
To implement collision experiments in

quantum conductors, it is necessary to com-
bine a beamsplitter for quasiparticles, a way
to guide them ballistically, and two sources
to emit them. The two first ingredients can be
easily implemented in two-dimensional elec-
tron gases in the quantumHall regime. Quan-
tumpoint contacts (QPCs) canbe used as tunable
beamsplitters and, at highmagnetic field, charge
transport is guided along the chiral edge chan-
nels. By combining these elements, single-
particle (34) and two-particle (35) electronic
interferometers have been realized, and fer-
mionic antibunching resulting from the colli-
sion between two indistinguishable electrons
has been observed (30). Investigating the any-
onic case requires replacing the conventional
electron sources (such as biased ohmic con-
tacts) by sources of fractional anyonic quasi-
particles. As suggested in (20) and as sketched
in Fig. 1B, this implies using three QPCs. Two
input QPCs labeled QPC1 and QPC2 are biased
by dc voltagesV1 andV2 and tuned in theweak
backscattering regime togeneratedilutedbeams
of fractional quasiparticles. Indeed, it is known
that in the fractional quantumHall regime, the
partitioning of a dc electrical current I0 with a
small backscattering probability T ≪ 1 occurs
through the random transfer of quasiparticles
of fractional charge q = e* (24). As experimen-
tally observed, the proportionality of the current
noise (21, 22) with the input current I0, the
transmission T, and the fractional charge e*
shows that this random transfer follows a
Poissonian law. QPC1 and QPC2 can thus be
used as Poissonian sources of anyons, which
then collide on a third quantum point contact
labeled cQPC; cQPC is used as a beamsplitter
in the collision experiment. The fractional
statistics of the colliding quasiparticles can be
revealed by measuring the cross-correlations
between the electrical currents at the output of
the beamsplitter.
The sample (Fig. 1C) is a two-dimensional

electron gas (GaAs/AlGaAs). Themagnetic field
is set to B = 13 T, corresponding to a filling
factor n = ⅓ for a charge density ns = 1.09 ×
1015m–2. At this field and at very low electronic
temperature Tel = 30 mK, ballistic charge
transport occurs along the edges of the sample
without backscattering (33). As discussed above,
the two quasiparticle sources comprise two
quantum point contacts with transmissions T1
and T2 (T1, T2 ≪ 1). We apply the voltages V1

and V2 to ohmic contacts 1 and 2 in order to
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MESOSCOPIC PHYSICS

Fractional statistics in anyon collisions
H. Bartolomei1*, M. Kumar1*†, R. Bisognin1, A. Marguerite1‡, J.-M. Berroir1, E. Bocquillon1, B. Plaçais1,
A. Cavanna2, Q. Dong2, U. Gennser2, Y. Jin2, G. Fève1§

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are
neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall
effect at filling factor n = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional
statistics, with a phase f associated with the exchange of two particles equal to p/m. However,
despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive.
We experimentally demonstrate Abelian fractional statistics at filling factor n = ⅓ by measuring the
current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their
dependence on the anyon current impinging on the splitter and comparing with recent theoretical
models, we extract f = p/3, in agreement with predictions.

I
n three-dimensional space, elementary exci-
tations fall into two categories depending
on the phase f accumulated by the many-
body wave function while exchanging two
particles. This phase governs the statistics

of an ensemble of particles: Bosonic particles,
for which f = 0, tend to bunch together,
whereas fermions (f = p) antibunch and follow
Pauli’s exclusion principle. In two-dimensional
systems, other values of f can be realized (1, 2),
defining types of elementary excitations called
anyons (3) that obey fractional or anyonic
statistics with intermediate levels of bunching
or exclusion. The fractional quantumHall effect
(4, 5), obtained by applying a strong magnetic
field perpendicular to a two-dimensional elec-
tron gas, is one of the physical systems predicted
to host anyons. For a filling factor n of the first
Landau level belonging to the Laughlin series
(5)—that is, n = 1/m, wherem is an odd integer—
the exchange phase is predicted to be given
by f = p/m (6, 7) interpolating between the
bosonic and fermionic limits.
Direct experimental evidence of fractional

statistics has remained elusive. To date, most
efforts have focused on the implementation of
single-particle interferometers (8, 9), where
the output current is expected to be directly
sensitive to the exchange phase f. However,
despite many experimental attempts (10–15),
clear signatures are still lacking because the
observedmodulations of the current result not
only from the variation of the exchange phase
but also from Coulomb blockade and Aharonov-
Bohm interference (16). In the case of non-
Abelian anyons (17), where the exchange of

quasiparticles is described by topological uni-
tary transformations, recent heat conduction
measurements showedevidenceof anon-Abelian
state (18, 19), although these results give only
indirect evidence of the underlying quantum
statistics.
Here, wemeasured the fluctuations or noise

of the electrical current generated by the col-
lision of anyons on a beamsplitter (20), thereby
demonstrating that the elementary excitations
of the fractional quantum Hall effect at filling
factor n = ⅓ obey fractional statistics with f =
p/3. The measurement of the current noise
generated by a single scatterer of fractional
quasiparticles (21, 22) has already shown that
they carry a fractional charge e* = e/3. Shortly
after these seminal works, it was theoretically
predicted (20, 23–26) that in conductors com-
prising several scatterers, noisemeasurements
would exhibit two-particle interference effects
where exchange statistics play a central role,
and would thus be sensitive to the exchange
phase f. In this context, current-current cor-
relation measurements in collider geometries
are of particular interest, as they have been
extensively used to probe the quantum statis-
tics of particles colliding on a beamsplitter. In
a seminal two-particle collision experiment,
Hong et al. (27) demonstrated that photons
tend to bunch together in the same splitter
output, as expected from their bosonic statis-
tics. In contrast, collision experiments im-
plemented in quantumconductors (28–30) have
shown a suppression of the cross-correlations
between the output current fluctuations caused
by the antibunching of electrons, as expected
from their fermionic statistics. This behavior
can also be understood as a consequence of the
Pauli exclusion principle that forbids two fer-
mions from occupying the same quantum state
at the splitter output. This exclusion principle
can be generalized to fractional statistics
(31, 32) by introducing an exclusion quasi-
probability p (20) interpolating between the
fermionic and bosonic limits. In a classical
description of a two-particle collision (Fig. 1A)

(33), p accounts for the effects of quantum
statistics on the probability K of finding two
quasiparticles in the same output arm of the
beamsplitter: K = T(1 – T)(1 – p), where T is
the single-particle backscattering probability
(Fig. 1A). The fermionic case is p = 1, leading
to perfect antibunching, K = 0. Contrary to
fermions, the bunching of bosons enhancesK,
meaning that 1 – p > 1 and p < 0.
To implement collision experiments in

quantum conductors, it is necessary to com-
bine a beamsplitter for quasiparticles, a way
to guide them ballistically, and two sources
to emit them. The two first ingredients can be
easily implemented in two-dimensional elec-
tron gases in the quantumHall regime. Quan-
tumpoint contacts (QPCs) canbe used as tunable
beamsplitters and, at highmagnetic field, charge
transport is guided along the chiral edge chan-
nels. By combining these elements, single-
particle (34) and two-particle (35) electronic
interferometers have been realized, and fer-
mionic antibunching resulting from the colli-
sion between two indistinguishable electrons
has been observed (30). Investigating the any-
onic case requires replacing the conventional
electron sources (such as biased ohmic con-
tacts) by sources of fractional anyonic quasi-
particles. As suggested in (20) and as sketched
in Fig. 1B, this implies using three QPCs. Two
input QPCs labeled QPC1 and QPC2 are biased
by dc voltagesV1 andV2 and tuned in theweak
backscattering regime togeneratedilutedbeams
of fractional quasiparticles. Indeed, it is known
that in the fractional quantumHall regime, the
partitioning of a dc electrical current I0 with a
small backscattering probability T ≪ 1 occurs
through the random transfer of quasiparticles
of fractional charge q = e* (24). As experimen-
tally observed, the proportionality of the current
noise (21, 22) with the input current I0, the
transmission T, and the fractional charge e*
shows that this random transfer follows a
Poissonian law. QPC1 and QPC2 can thus be
used as Poissonian sources of anyons, which
then collide on a third quantum point contact
labeled cQPC; cQPC is used as a beamsplitter
in the collision experiment. The fractional
statistics of the colliding quasiparticles can be
revealed by measuring the cross-correlations
between the electrical currents at the output of
the beamsplitter.
The sample (Fig. 1C) is a two-dimensional

electron gas (GaAs/AlGaAs). Themagnetic field
is set to B = 13 T, corresponding to a filling
factor n = ⅓ for a charge density ns = 1.09 ×
1015m–2. At this field and at very low electronic
temperature Tel = 30 mK, ballistic charge
transport occurs along the edges of the sample
without backscattering (33). As discussed above,
the two quasiparticle sources comprise two
quantum point contacts with transmissions T1
and T2 (T1, T2 ≪ 1). We apply the voltages V1

and V2 to ohmic contacts 1 and 2 in order to
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Fig. 1. Sample and principle of the
experiment. (A) Exclusion quasiprobability
p: The probability K to have two anyons
exiting in the same output edge channel is
modified by the factor (1 – p). (B) Principle
of the experiment: The voltage V generates
the currents I0 toward QPC1 and
QPC2. These two QPCs, tuned in the
weak-backscattering regime T1, T2 ≪ 1,
act as random Poissonian sources of
anyons that collide on cQPC. (C) False-colored
scanning electron microscope (SEM)
image of the sample. The electron gas
is shown in blue and the gates in gold. Edge
currents are shown as red lines (red
dashed lines after partitioning).

Fig. 2. Fano factor in anyon collision. SI3 I4
for T1 = T2 = 0.05 is shown as a
function of I+ and for various transmissions
T of the central QPC. The dashed lines
are linear fits of SI3 I4=2e!. Inset:
Slope a extracted from the linear
fits as a function of the central
QPC transmission T. The horizontal
error bars correspond to the standard
deviation of T. The vertical error bars
are given by the uncertainties of
the linear fits.The dashed line
is a fit to a = PT(1 – T) with
P = –2.1 ± 0.1.
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Experimental evidence that they exist! 



In 1928, Paul Dirac proposed a relativistic wave equation 
for spin 1/2 particles, such as electrons, neutrinos 

 and quarks,  
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In 1928, Paul Dirac proposed a relativistic wave equation 
for spin 1/2 particles, such as electrons, neutrinos 

 and quarks, 

Etore Majorana proposed in 1937 a variation of the Dirac 
wave equation for neutral particles with spin 1/2.    

1p
2
(|0i+ |1i) |0i = 1p

2
(|00i+ |10i)

a|000i+ b|111i
a|100i+ b|011i
a|010i+ b|101i
a|001i+ b|110i

a|100i+ b|011i
9
>>>>>>>>>>>>>>>>=

>>>>>>>>>>>>>>>>;

|00i

|10i

|01i

|11i

X =


0 1
1 0

�
, Y =


0 1
�1 0

�
Z =


1 0
0 �1

�

I =


1 0
0 1

�
, H =

1p
2


1 1
1 �1

�

=

2

664

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

3

775

(i@/�m) = 0 .

1



Etore Majorana proposed in 1937 a variation of the Dirac 
wave equation for neutral particles with spin 1/2.    

He showed that their wave functions are real, and that an electron 
can be fractionalized in two entangled Majorana fermions, which 

are charge neutral,
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The only way one can destroy a Majorana fermion is by bringing them 
close to each other and annihilate them.  

He showed that their wave functions are real, and that an electron 
can be fractionalized in two entangled Majorana fermions, which 

are charge neutral,
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Whether they recombine into an electron or nothing depends on 
how they are braided. Otherwise, they are topological excitations 

and cannot be destroyed by local perturbations!
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Fractionalized charges may also exist at the two ends of a superconducting 
wire or inside the core of a superconducting vortex!

Fractionalized charges



Possible experimental observation of signatures of Majorana fermions! 
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TOPOLOGICAL MATTER

Flux-induced topological superconductivity in
full-shell nanowires
S. Vaitiekėnas1, G. W. Winkler2, B. van Heck2, T. Karzig2, M.-T. Deng1, K. Flensberg1, L. I. Glazman3,
C. Nayak2, P. Krogstrup1, R. M. Lutchyn2*, C. M. Marcus1*

Hybrid semiconductor-superconductor nanowires have emerged as a promising platform for realizing
topological superconductivity (TSC). Here, we present a route to TSC using magnetic flux applied
to a full superconducting shell surrounding a semiconducting nanowire core. Tunneling into the core
reveals a hard induced gap near zero applied flux, corresponding to zero phase winding, and a gapped
region with a discrete zero-energy state around one applied flux quantum, corresponding to 2p phase
winding. Theoretical analysis indicates that the winding of the superconducting phase can induce a
transition to a topological phase supporting Majorana zero modes. Measured Coulomb blockade peak
spacing around one flux quantum shows a length dependence that is consistent with the existence
of Majorana modes at the ends of the nanowire.

M
ajorana zero modes (MZMs) at the
ends of one-dimensional topologi-
cal superconductors are expected to
exhibit nontrivial braiding statistics
(1–3), opening a path toward topo-

logically protected quantum computing (4, 5).
Among the proposals to realize MZMs, an ap-
proach (6, 7) based on semiconducting nano-
wires with strong spin-orbit coupling subject
to a Zeeman field and superconducting prox-
imity effect has received particular attention,
yielding compelling experimental signatures
(8–12). An alternative route to MZMs aims to
create vortices in spinless superconductors by
various means: coupling a vortex in a conven-
tional superconductor to a topological insu-
lator (13–17) or conventional semiconductor
(18, 19), using doped topological insulators
(20), using iron-based superconductors (21),
or using vortices in exotic quantum Hall ana-
logs of spinless superconductors (22).
Here, we show both experimental and theo-

retical results suggesting that a hybrid nano-
wire consisting of a full superconducting
(aluminum) shell surrounding a semicon-
ducting (indium arsenide) core can be driven
into a topological phase that supports MZMs
at the wire ends by a flux-induced winding of
the superconducting phase. This approach
contains elements of both proximitized-wire
schemes (6, 7) and vortex-based schemes (1, 13)
for creating MZMs. The topological phase sets
in at relatively low magnetic fields (~0.1 T), is
controlled discretely by moving from zero to

one phase twist around the superconducting
shell, and does not require a large g factor in
the semiconductor, which broadens the land-
scape of candidate materials.
Although it is known that well-chosen su-

perconducting phase differences can be used
to break time-reversal symmetry and local-
izeMZMs in semiconducting heterostructures
(23–28), the corresponding realizations typ-
ically require careful tuning of the fluxes. In
contrast, vortices in a full-shell wire provide
a naturally quantized means of controlling
the superconducting phase. In the destructive
Little-Parks regime (29, 30), the modulation
of critical current and temperature with flux
applied along the hybrid nanowire results in
a sequence of lobes with reentrant supercon-
ductivity (31, 32). Each lobe is associated with
a quantized number of twists of the super-
conducting phase (33), determined by the
external field so that the free energy of the
superconducting shell is minimized. The re-
sult is a series of topologically locked bound-
ary conditions for the proximity effect in the
semiconducting core, with a drastic effect on
the subgap density of states.
Our measurements reveal that tunneling

into the core in the zeroth superconducting
lobe, around zero flux, yields a hard proximity-
induced gap with no subgap features. In the
superconducting regions around one quan-
tum of applied flux, corresponding to phase
twists of ±2p in the shell, tunneling spectra
into the core show stable zero-bias peaks,
indicating a discrete subgap state fixed at
zero energy.
Theoretically, we find that a Rashba field

arising from the breaking of local radial
inversion symmetry at the semiconductor-
superconductor interface (34–36), along with
2p-phase twists in the boundary condition,

can induce a topological state supporting
MZMs. We calculate the topological phase
diagram of the system as a function of various
parameters, such as Rashba spin-orbit cou-
pling, radius of the semiconducting core,
and band bending at the superconductor-
semiconductor interface (34–36). Our analy-
sis shows that topological superconductivity
extends for a reasonably large portion of the
parameter space. Transport simulations of
the tunneling conductance in the presence
of MZMs qualitatively reproduce the ex-
perimental data in the entire voltage-bias
range.
We obtain further experimental evidence

that the zero-energy states are localized at
wire ends by investigating Coulomb blockade
conductance peaks in full-shell wire islands
of various lengths. In the zeroth lobe, Coulomb
blockade peaks show 2e spacing, indicating
Cooper-pair tunneling and an induced gap ex-
ceeding the island charging energy. In the first
lobe, peak spacings are roughly 1e-periodic,
with a slight even-odd alternation that van-
ishes exponentially with island length, con-
sistent with overlapping Majorana modes at
the two ends of the Coulomb island, as inves-
tigated previously (10, 37). The exponential
dependence on length and the incompatibility
with a power-law dependence strongly sug-
gest that MZMs reside at the ends of the hy-
brid islands.

Device description

InAs nanowires were grown by the vapor-
liquid-solid method using molecular beam
epitaxy. The nanowires had a hexagonal cross
section with maximum diameter D = 130 nm.
A 30-nm epitaxial Al layer was grown while
rotating the sample, yielding a fully enclos-
ing shell (Fig. 1A) (38). Devices were fabricated
using electron beam lithography. Standard al-
ternating current (ac) lock-in measurements
were carried out in a dilution refrigerator with
a base temperature of 20 mK. Magnetic field
was applied parallel to the nanowire using a
three-axis vector magnet. Two device geome-
tries, measured in three devices each, showed
similar results. Data from two representative
devices are reported in the main text: device 1
was used for four-probe measurements of the
shell (Fig. 1B) and tunneling spectroscopy
of the core (Fig. 2A); device 2 comprised six
Coulomb islands of different lengths fabri-
cated on a single nanowire, each with separate
ohmic contacts, two side gates to trim tunnel
barriers, and a plunger gate to change occu-
pancy (see the Coulomb blockade spectros-
copy section). Supporting data from three
additional tunneling devices, one of which has
a thinner shell, and two Coulomb-blockaded
devices are presented in figs. S5 to S7, S21,
and S22 (39). For more detailed description
of the wire growth, device fabrication, and
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It seems extremely difficult to observe Majorana fermions in nature
and nobody knows for sure (yet) if they exist. 

Quantum computing is a major open challenge! 


