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Lecture 3

Topology and quantum mechanics 



Symmetries in nature



There is a well established concept of order in the way that 
nature spontaneously breaks symmetries. 



More recently, physicists have gone beyond the paradigm of 
broken symmetries to find new states of matter with 

non-trivial topology  



In 1982, Von Klitzing discovered that the Hall 
conductivity in bad metals is exactly quantized in 2D
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In 1982, Von Klitzing discovered that the Hall 
conductivity in bad metals is exactly quantized in 2D

Subsequent measurements confirmed the quantization in steps of e2/h
with an accuracy of 10-9 !
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Why is the quantization so good?
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In galilean invariant systems (non-relativistic), the energy of a particle is 
proportional to the square of the momentum
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In the ground state, a single free electron 
is at rest (k=0) 



In galilean invariant systems (non-relativistic), the energy of a particle is 
proportional to the square of the momentum

Fermi Energy

Because of Pauli principle, two electrons cannot occupy the 
same quantum state.

If one adds many free electrons, the states below the Fermi 
level are occupied and the ones above it are empty.



In solids (periodic potential), the energy spectrum of electrons 
can be quite complicated

Fermi Energy (EF)

k
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Metal

If the Fermi level crosses the electronic bands, the highest 
occupied state can be easily excited by a bias voltage (metallic state)
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In solids (periodic potential), the energy spectrum of electrons 
can be quite complicated

k

Metal

k

Band Gap

EF

EF If the Fermi energy lives inside the 
band gap, the electrons cannot be easily 

excited with a bias voltage 
(insulating behavior)



SemimetalMetal Semi-  
conductor

Insulator

Band Structure: Conductors and Insulators

E

k

There is a new class of materials that does not fit in this 
classification: topological materials!
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Topology is a field of mathematics concerned with properties that 
remain invariant under continuous deformations.

E = [r�(x)]2 + r0�
2(x) + u�

4(x) +O(�6)

hSi 6= 0

H = J
X

ij

Si · Sj

@⇢

@t
+r · J = 0

dp
dt

= 0

dL
dt

= 0

dE
dt

= 0

~�(x) = hS(x)i

�

r0 = r(Tc � T )

@E

@�
= 0

�
2 = �

r0

2u

�(x) = h 
†(x) †(x)i

⇢ = h 
†(x) (x)i

 (x) !  (x)ei'

2'

�(x) ! �(x)e�i2'

� = 2(1� g)

� =
1

2⇡

ˆˆ
KdS

1

Topological index and invariants

# of handles
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maximum curvature

minimum curvature

radius of curvature
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Topological invariant
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Topological invariant
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Hairy ball theorem

You can’t comb a hairy ball without 
creating a cowlick. 

Every zero of the tangential vector field has an index. The sum of the 
indexes is equal to the Euler topological number 

Therefore a sphere has a least one zero!
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Hairy ball theorem

You can’t comb a hairy ball without 
creating a cowlick. 

Every zero of the tangential vector field has an index. The sum of the 
indexes is equal to the Euler topological number. 

One can comb a torus without any 
zeros in it. 
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In crystals, the wavefunctions of the electrons are periodic. 

The de Broglie wavelength of the electrons must be larger than the 
lattice constant of the crystal.

In a square lattice in 2D, the momentum 
of the electrons is bounded inside a 
square of size 1/(lattice constant)!   



The momentum space of a periodic 
crystal (Brillouin zone) is homeomorphic to a torus

In crystals, the wavefunctions of the electrons are periodic. 



Bloch bands

Bloch wavefunction
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Bloch wavefunctions describe the wavefunction of 
the electrons in a periodic crystal.
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Bloch bands

The Berry connection of the Bloch band kets,   

behaves as a vector field in the Brillouin zone (torus). 

Loopholes or hedgehogs of the vector field are 
topological obstructions with a topological index 

and add up to a non-zero Euler topological 
number in the hairy torus!
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Bloch bands

Chern number (integer)

Berry curvature

The Chern number is a topological invariant of Bloch bands
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Bloch bands

Bloch bands

Berry curvature
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Cowlicks in the Berry curvature change the 
topological class of the hairy torus 

(Brillouin zone)! 



Why is the Hall conductivity quantized?
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merized ground state for arbitrary values of M
and X (except M =0). The underlying reason is
that the phonon fluctuations induce an effective
electron-electron interaction of such a type that
a CDW ground state is always produced. (That
interaction is ineffective in the case n = 1 for
small coupling because of the Pauli excl.usion
principle ).This is accompanied by pairing of the
spin-up and spin-down electrons. However, this
conclusion is by no means inescapable. Prelim-
inary numerical studies' show that other forms
of the electron-phonon coupling (which induce
longer-range attraction) give a ground state with
superconducting correlations. This has also
been suggested from calculations based on per-
turbation theory. ' The MC method used in this
paper offers the possibility of numerically study-
ing comp1. icated one-dimensional electron-phonon
models (the inclusion of electron-electron inter-
action is straightforward) and thus investigating
the rich variety of ground-state phases for such
systems, without restriction to a perturbative
regime.
One of us (J.H. ) is indebted to D. Scalapino for

raising his interest in this problem and for nu-
merous stimu1. ating discussions. We acknowledge
helpful conversations with S. Kivelson, W. P. Su,

R. Sugar, N. Andrei, S. Shenker, K. Maki,
M. Stone, and particularly J. R. Schrieffer. One
of us (E.F.) thanks the Institute for Theoretical
Physics for its kind hospitality during the summer
of 1981. This work was supported by the National
Science Foundation under Grants No. PHY77-
27084 and No. DMR81-17182.
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(Received 30 April 1982)
The Hall conductance of a two-dimensional electron gas has been studied in a uniform

magnetic field and a periodic substrate potential U. The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U/S~ .
PACS numbers: 72.15.Gd, 72.20. Mg, 73.90.+b

The experimental discovery by von Klitzing,
Dorda, and Pepper' of the quantization of the Hall
conductance of a two-dimensional electron gas in
a strong magnetic field has led to a number of
theoretical studies of the problem. ' ' lt has been
concluded that a noninteracting electron gas has
a Hall conductance which is a multiple of e'/h if
the Fermi energy lies in a gap between Landau
levels, or even if there are tails of localized
states from the adjacent Landau levels at the Fer-
mi energy. However, it can be concluded from

Laughlin's' argument that the Hall conductance is
quantized whenever the Fermi energy lies in an
energy gap, even if the gap lies within a Landau
level. For example, it is known that if the elec-
trons are subject to a weak sinusoidal perturba-
tion as well as to the uniform magnetic field, with
p=p/q magnetic-flux quanta per unit cell of the
perturbing potential, each Landau level is split
into P subbands of equal weight. ' One might ex-
pect each of these subbands to give a Hall con-
ductance equal to e'/ph, and that is what the clas-
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Quantum hall conductivity is quantized by the Chern number!



In 2D, electrons move in cyclotron orbits in the presence 
of a magnetic field 

Due to quantum interference, only a discrete number of 
wavelengths are allowed (Landau energy levels)

Topological matter
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Quantum Hall conductivity is quantized by the Chern number



Bulk-Boundary Correspondence

Hall conductivity is quantized by the number of 
1D channels at the edge! 

occupied states

empty states
Graphene is a 2D form of carbon that is of current

interest !Novoselov et al., 2005; Zhang et al., 2005; Geim
and Novoselov, 2007; Castro Neto et al., 2009". What
makes graphene interesting electronically is the fact that
the conduction band and valence band touch each other
at two distinct points in the Brillouin zone. Near those
points the electronic dispersion resembles the linear dis-
persion of massless relativistic particles, described by the
Dirac equation !DiVincenzo and Mele, 1984; Semenoff,
1984". The simplest description of graphene employs a
two band model for the pz orbitals on the two equivalent
atoms in the unit cell of graphene’s honeycomb lattice.
The Bloch Hamiltonian is then a 2!2 matrix,

H!k" = h!k" · "! , !3"

where "! = !"x ,"y ,"z" are Pauli matrices and h!k"
= „hx!k" ,hy!k" ,0…. The combination of inversion !P" and
time-reversal !T" symmetry requires hz!k"=0 because P
takes hz!k" to −hz!−k", while T takes hz!k" to +hz!−k".
The Dirac points occur because the two components
h!k" can have point zeros in two dimensions. In
graphene they occur at two points, K and K!=−K,
whose locations at the Brillouin-zone corners are fixed
by graphene’s rotational symmetry. For small q#k−K,
h!q"=#vFq, where vF is a velocity, so H!q"=#vFq ·"! has
the form of a 2D massless Dirac Hamiltonian.

The degeneracy at the Dirac point is protected by P
and T symmetry. By breaking these symmetries the de-
generacy can be lifted. For instance, P symmetry is vio-
lated if the two atoms in the unit cell are inequivalent.
This allows hz!k" to be nonzero. If hz!k" is small, then
near K $Eq. !3"% becomes a massive Dirac Hamiltonian,

H!q" = #vFq · "! + m"z, !4"

where m=hz!K". The dispersion E!q"= ±&'#vFq'2+m2

has an energy gap 2'm'. Note that T symmetry requires
the Dirac point at K! to have a mass m!=hz!K!" with the
same magnitude and sign, m!=m. This state describes an
ordinary insulator.

Haldane !1988" imagined lifting the degeneracy by
breaking T symmetry with a magnetic field that is zero
on the average but has the full symmetry on the lattice.
This perturbation allows nonzero hz!k" and introduces a
mass to the Dirac points. However, P symmetry requires
the masses at K and K! to have opposite signs, m!=−m.
Haldane showed that this gapped state is not an insula-
tor but rather a quantum Hall state with "xy=e2 /h.

This nonzero Hall conductivity can be understood in
terms of Eq. !2". For a two level Hamiltonian of the
form of Eq. !3" it is well known that the Berry flux
!Berry, 1984" is related to the solid angle subtended by
the unit vector ĥ!k"=h!k" / 'h!k"', so that Eq. !2" takes
the form

n =
1

4$
( d2k!!kx

ĥ ! !ky
ĥ" · ĥ . !5"

This simply counts the number of times ĥ!k" wraps
around the unit sphere as a function of k. When the

masses m=m!=0, ĥ!k" is confined to the equator hz=0,
with a unit !and opposite" winding around each of the
Dirac points where 'h'=0. For small but finite m, 'h'
"0 everywhere, and ĥ!K" visits the north or south pole,
depending on the sign of m. It follows that each Dirac
point contributes ±e2 /2h to "xy. In the insulating state
with m=m! the two cancel, so "xy=0. In the quantum
Hall state they add.

It is essential that there were an even number of Dirac
points since otherwise the Hall conductivity would be
quantized to a half integer. This is in fact guaranteed by
the fermion doubling theorem !Nielssen and Ninomiya,
1983", which states that for a T invariant system Dirac
points must come in pairs. We return to this issue in Sec.
IV, where the surface of a topological insulator provides
a loophole for this theorem.

3. Edge states and the bulk-boundary correspondence

A fundamental consequence of the topological classi-
fication of gapped band structures is the existence of
gapless conducting states at interfaces where the topo-
logical invariant changes. Such edge states are well
known at the interface between the integer quantum
Hall state and vacuum !Halperin, 1982". They may be
understood in terms of the skipping motion electrons
execute as their cyclotron orbits bounce off the edge
$Fig. 2!a"%. Importantly, the electronic states responsible
for this motion are chiral in the sense that they propa-
gate in one direction only along the edge. These states
are insensitive to disorder because there are no states
available for backscattering—a fact that underlies the
perfectly quantized electronic transport in the quantum
Hall effect.

The existence of such “one way” edge states is deeply
related to the topology of the bulk quantum Hall state.
Imagine an interface where a crystal slowly interpolates
as a function of distance y between a quantum Hall state
!n=1" and a trivial insulator !n=0". Somewhere along
the way the energy gap has to vanish because otherwise
it is impossible for the topological invariant to change.
There will therefore be low energy electronic states
bound to the region where the energy gap passes
through zero. This interplay between topology and gap-

E

k

EF

0/a−π

Conduction Band

Valence Band

Quantum Hall
State n=1

Insulator n=0

(a) (b)

/a−π

FIG. 2. !Color online" The interface between a quantum Hall
state and an insulator has chiral edge mode. !a" The skipping
cyclotron orbits. !b" The electronic structure of a semi-infinite
strip described by the Haldane model. A single edge state con-
nects the valence band to the conduction band.
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Can topology be used for quantum computation? 



In quantum mechanics, whenever two identical particles are swapped, 
the total wave function picks up a phase. 

where                   for bosons and         for fermions.
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In 2D, it is mathematically possible to have particles with fractional 
statistics (anyons)!
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>««À�>V�ÊÌ�ÊµÕ>�ÌÕ�ÊV��«ÕÌ>Ì���°Ê
-��iÊÀiÃi>ÀV�iÀÃ]Ê��ÜiÛiÀ]ÊÃÌ���ÊÃii�Ê���

�"7Ê/"*"�"��
��Ê+1� /1�Ê
"�*1/� �Ê7",�-

	,���� �
�ÕÃÌÊÌÜ�ÊL>Ã�VÊ��ÛiÃÊ��Ê>Ê«�>�ip>ÊV��V�Ü�ÃiÊÃÜ>«Ê>�`Ê>ÊV�Õ�ÌiÀV��V�Ü�ÃiÊÃÜ>«p}i�iÀ>ÌiÊ>��ÊÌ�iÊ«�ÃÃ�L�iÊLÀ>�̀��}ÃÊ�vÊÌ�iÊÜ�À�̀Ê���iÃÊ
ÌÀ>�iVÌ�À�iÃÊÌ�À�Õ}�ÊÃ«>ViÌ��i®Ê�vÊ>ÊÃiÌÊ�vÊ>�Þ��Ã°

�Ê��}�VÊ}>ÌiÊ���Ü�Ê>ÃÊ>Ê
 "/Ê}>ÌiÊ�ÃÊ«À�`ÕVi`ÊLÞÊÌ��ÃÊV��«��V>Ìi`Ê
LÀ>�̀��}Ê�vÊÃ�ÝÊ>�Þ��Ã°Ê�Ê
 "/Ê}>ÌiÊÌ>�iÃÊÌÜ�Ê��«ÕÌÊµÕL�ÌÃÊ>�`Ê
«À�`ÕViÃÊÌÜ�Ê�ÕÌ«ÕÌÊµÕL�ÌÃ°Ê/��ÃiÊµÕL�ÌÃÊ>ÀiÊÀi«ÀiÃi�Ìi`ÊLÞÊÌÀ�«�iÌÃÊ
}Àii�Ê>�`ÊL�Õi®Ê�vÊÃ��V>��i`Ê��L��>VV�Ê>�Þ��Ã°Ê/�iÊ«>ÀÌ�VÕ�>ÀÊÃÌÞ�iÊ�vÊ

LÀ>�̀��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��ỀiÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�̀��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
>VVÕÀ>ÌiÊÌ�Ê>L�ÕÌÊ£äqÎ°

	1���� �Ê�Ê�"��
Ê��/
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"�*1/� �
��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�̀��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃỀ�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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In that case it matters if the particles are swapped in the clockwise or 
counterclockwise direction!

Clockwise 

ÈäÊ - 
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>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
i�iVÌÀ��ÃÊ>ÌÊÌ�i�ÀÊ��ÌiÀv>Vi°Ê/�iÊi�iV�
ÌÀ��ÃÊ��ÛiÊvÀii�ÞÊ��ÊÌ�iÊÌÜ�Ề ��i�Ã���ÃÊ
�vÊÌ�iÊ��ÌiÀv>ViÊLÕÌÊ>ÀiÊV��ÃÌÀ>��i`ÊvÀ��Ê
��Û��}Ê��ÊÌ�iÊÌ��À`Ê`��i�Ã���]ÊÜ��V�Ê
Ü�Õ�`ÊÌ>�iÊÌ�i�Ê�vvÊÌ�iÊ��ÌiÀv>Vi°Ê*�ÞÃ�
�V�ÃÌÃÊ�>ÛiÊ��Ìi�Ãi�ÞÊÃÌÕ`�i`ÊÃÕV�ÊÃÞÃ�
Ìi�ÃÊ�vÊi�iVÌÀ��Ã]ÊV>��i`ÊÌÜ��`��i��

Ã���>�Êi�iVÌÀ��Ê}>ÃiÃ]Ê«>ÀÌ�VÕ�>À�ÞÊÜ�i�Ê
Ì�iÊÃÞÃÌi�ÃÊ>ÀiÊ���iÀÃi`Ê��Ê��}�ÊÌÀ>�Ã�
ÛiÀÃiÊ�>}�iÌ�VÊwÊi�`ÃÊ>ÌÊiÝÌÀi�i�ÞÊ��ÜÊ
Ìi�«iÀ>ÌÕÀiÃ]ÊLiV>ÕÃiÊ�vÊÌ�iÊÕ�ÕÃÕ>�Ê
µÕ>�ÌÕ�Ê«À�«iÀÌ�iÃÊiÝ��L�Ìi`ÊÕ�`iÀÊ
Ì�iÃiÊV��`�Ì���Ã°Ê
��ÀÊiÝ>�«�i]Ê��ÊÌ�iÊvÀ>VÌ���>�ÊµÕ>��

ÌÕ�Ê�>��ÊivviVÌ]ÊiÝV�Ì>Ì���ÃÊ��ÊÌ�iÊi�iV�
ÌÀ��Ê}>ÃÊLi�>ÛiÊ���iÊ«>ÀÌ�V�iÃÊ�>Û��}Ê>Ê
vÀ>VÌ���Ê�vÊÌ�iÊV�>À}iÊ�vÊÌ�iÊi�iVÌÀ��°Ê
"Ì�iÀÊ iÝV�Ì>Ì���ÃÊ V>ÀÀÞÊÕ��ÌÃÊ�vÊ Ì�iÊ

�>}�iÌ�VÊ v�ÕÝÊ>À�Õ�`ÊÜ�Ì�Ê Ì�i�Ê>ÃÊ
Ì��Õ}�ÊÌ�iÊyÊÕÝÊÜiÀiÊ>�Ê��Ìi}À>�Ê«>ÀÌÊ�vÊ
Ì�iÊ«>ÀÌ�V�i°Ê��ÊÓääxÊ6�>`���ÀÊ�°Ê���`�
�>�]Ê�iÀ�>�`�Ê°Ê
>����Ê>�`Ê7i�Ê
<��ÕÊ�vÊ-Ì��ÞÊ	À���Ê1��ÛiÀÃ�ÌÞÊV�>��i`Ê
Ì�Ê�>ÛiÊ`�ÀiVÌÊiÝ«iÀ��i�Ì>�ÊV��wÊÀ�>�
Ì���ÊÌ�>ÌÊµÕ>Ã�«>ÀÌ�V�iÃÊ�VVÕÀÀ��}Ê��ÊÌ�iÊ
vÀ>VÌ���>�ÊµÕ>�ÌÕ�Ê�>��ÊÃÌ>ÌiÊ>ÀiÊ>�Þ�
��Ã]Ê>ÊVÀÕV�>�ÊwÊÀÃÌÊÃÌi«Ê��ÊÌ�iÊÌ�«���}�V>�Ê
>««À�>V�Ê Ì�Ê µÕ>�ÌÕ�Ê V��«ÕÌ>Ì���°Ê
-��iÊÀiÃi>ÀV�iÀÃ]Ê��ÜiÛiÀ]ÊÃÌ���ÊÃii�Ê���

�"7Ê/"*"�"��
��Ê+1� /1�Ê
"�*1/� �Ê7",�-

	,���� �
�ÕÃÌÊÌÜ�ÊL>Ã�VÊ��ÛiÃÊ��Ê>Ê«�>�ip>ÊV��V�Ü�ÃiÊÃÜ>«Ê>�`Ê>ÊV�Õ�ÌiÀV��V�Ü�ÃiÊÃÜ>«p}i�iÀ>ÌiÊ>��ÊÌ�iÊ«�ÃÃ�L�iÊLÀ>�`��}ÃÊ�vÊÌ�iÊÜ�À�`Ê���iÃÊ
ÌÀ>�iVÌ�À�iÃÊÌ�À�Õ}�ÊÃ«>ViÌ��i®Ê�vÊ>ÊÃiÌÊ�vÊ>�Þ��Ã°

�Ê��}�VÊ}>ÌiÊ���Ü�Ê>ÃÊ>Ê
 "/Ê}>ÌiÊ�ÃÊ«À�`ÕVi`ÊLÞÊÌ��ÃÊV��«��V>Ìi`Ê
LÀ>�`��}Ê�vÊÃ�ÝÊ>�Þ��Ã°Ê�Ê
 "/Ê}>ÌiÊÌ>�iÃÊÌÜ�Ê��«ÕÌÊµÕL�ÌÃÊ>�`Ê
«À�`ÕViÃÊÌÜ�Ê�ÕÌ«ÕÌÊµÕL�ÌÃ°Ê/��ÃiÊµÕL�ÌÃÊ>ÀiÊÀi«ÀiÃi�Ìi`ÊLÞÊÌÀ�«�iÌÃÊ
}Àii�Ê>�`ÊL�Õi®Ê�vÊÃ��V>��i`Ê��L��>VV�Ê>�Þ��Ã°Ê/�iÊ«>ÀÌ�VÕ�>ÀÊÃÌÞ�iÊ�vÊ

LÀ>�`��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��Ê`iÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�`��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
>VVÕÀ>ÌiÊÌ�Ê>L�ÕÌÊ£äqÎ°

	1���� �Ê�Ê�"��
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"�*1/� �
��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�`��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃÊ`�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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1

Counterclockwise 
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>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
i�iVÌÀ��ÃÊ>ÌÊÌ�i�ÀÊ��ÌiÀv>Vi°Ê/�iÊi�iV�
ÌÀ��ÃÊ��ÛiÊvÀii�ÞÊ��ÊÌ�iÊÌÜ�Ề ��i�Ã���ÃÊ
�vÊÌ�iÊ��ÌiÀv>ViÊLÕÌÊ>ÀiÊV��ÃÌÀ>��i`ÊvÀ��Ê
��Û��}Ê��ÊÌ�iÊÌ��À`Ê`��i�Ã���]ÊÜ��V�Ê
Ü�Õ�`ÊÌ>�iÊÌ�i�Ê�vvÊÌ�iÊ��ÌiÀv>Vi°Ê*�ÞÃ�
�V�ÃÌÃÊ�>ÛiÊ��Ìi�Ãi�ÞÊÃÌÕ`�i`ÊÃÕV�ÊÃÞÃ�
Ìi�ÃÊ�vÊi�iVÌÀ��Ã]ÊV>��i`ÊÌÜ��`��i��

Ã���>�Êi�iVÌÀ��Ê}>ÃiÃ]Ê«>ÀÌ�VÕ�>À�ÞÊÜ�i�Ê
Ì�iÊÃÞÃÌi�ÃÊ>ÀiÊ���iÀÃi`Ê��Ê��}�ÊÌÀ>�Ã�
ÛiÀÃiÊ�>}�iÌ�VÊwÊi�`ÃÊ>ÌÊiÝÌÀi�i�ÞÊ��ÜÊ
Ìi�«iÀ>ÌÕÀiÃ]ÊLiV>ÕÃiÊ�vÊÌ�iÊÕ�ÕÃÕ>�Ê
µÕ>�ÌÕ�Ê«À�«iÀÌ�iÃÊiÝ��L�Ìi`ÊÕ�`iÀÊ
Ì�iÃiÊV��`�Ì���Ã°Ê
��ÀÊiÝ>�«�i]Ê��ÊÌ�iÊvÀ>VÌ���>�ÊµÕ>��

ÌÕ�Ê�>��ÊivviVÌ]ÊiÝV�Ì>Ì���ÃÊ��ÊÌ�iÊi�iV�
ÌÀ��Ê}>ÃÊLi�>ÛiÊ���iÊ«>ÀÌ�V�iÃÊ�>Û��}Ê>Ê
vÀ>VÌ���Ê�vÊÌ�iÊV�>À}iÊ�vÊÌ�iÊi�iVÌÀ��°Ê
"Ì�iÀÊ iÝV�Ì>Ì���ÃÊ V>ÀÀÞÊÕ��ÌÃÊ�vÊ Ì�iÊ

�>}�iÌ�VÊ v�ÕÝÊ>À�Õ�`ÊÜ�Ì�Ê Ì�i�Ê>ÃÊ
Ì��Õ}�ÊÌ�iÊyÊÕÝÊÜiÀiÊ>�Ê��Ìi}À>�Ê«>ÀÌÊ�vÊ
Ì�iÊ«>ÀÌ�V�i°Ê��ÊÓääxÊ6�>`���ÀÊ�°Ê���`�
�>�]Ê�iÀ�>�`�Ê°Ê
>����Ê>�`Ê7i�Ê
<��ÕÊ�vÊ-Ì��ÞÊ	À���Ê1��ÛiÀÃ�ÌÞÊV�>��i`Ê
Ì�Ê�>ÛiÊ`�ÀiVÌÊiÝ«iÀ��i�Ì>�ÊV��wÊÀ�>�
Ì���ÊÌ�>ÌÊµÕ>Ã�«>ÀÌ�V�iÃÊ�VVÕÀÀ��}Ê��ÊÌ�iÊ
vÀ>VÌ���>�ÊµÕ>�ÌÕ�Ê�>��ÊÃÌ>ÌiÊ>ÀiÊ>�Þ�
��Ã]Ê>ÊVÀÕV�>�ÊwÊÀÃÌÊÃÌi«Ê��ÊÌ�iÊÌ�«���}�V>�Ê
>««À�>V�Ê Ì�Ê µÕ>�ÌÕ�Ê V��«ÕÌ>Ì���°Ê
-��iÊÀiÃi>ÀV�iÀÃ]Ê��ÜiÛiÀ]ÊÃÌ���ÊÃii�Ê���
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	,���� �
�ÕÃÌÊÌÜ�ÊL>Ã�VÊ��ÛiÃÊ��Ê>Ê«�>�ip>ÊV��V�Ü�ÃiÊÃÜ>«Ê>�`Ê>ÊV�Õ�ÌiÀV��V�Ü�ÃiÊÃÜ>«p}i�iÀ>ÌiÊ>��ÊÌ�iÊ«�ÃÃ�L�iÊLÀ>�`��}ÃÊ�vÊÌ�iÊÜ�À�`Ê���iÃÊ
ÌÀ>�iVÌ�À�iÃÊÌ�À�Õ}�ÊÃ«>ViÌ��i®Ê�vÊ>ÊÃiÌÊ�vÊ>�Þ��Ã°

�Ê��}�VÊ}>ÌiÊ���Ü�Ê>ÃÊ>Ê
 "/Ê}>ÌiÊ�ÃÊ«À�`ÕVi`ÊLÞÊÌ��ÃÊV��«��V>Ìi`Ê
LÀ>�`��}Ê�vÊÃ�ÝÊ>�Þ��Ã°Ê�Ê
 "/Ê}>ÌiÊÌ>�iÃÊÌÜ�Ê��«ÕÌÊµÕL�ÌÃÊ>�`Ê
«À�`ÕViÃÊÌÜ�Ê�ÕÌ«ÕÌÊµÕL�ÌÃ°Ê/��ÃiÊµÕL�ÌÃÊ>ÀiÊÀi«ÀiÃi�Ìi`ÊLÞÊÌÀ�«�iÌÃÊ
}Àii�Ê>�`ÊL�Õi®Ê�vÊÃ��V>��i`Ê��L��>VV�Ê>�Þ��Ã°Ê/�iÊ«>ÀÌ�VÕ�>ÀÊÃÌÞ�iÊ�vÊ

LÀ>�`��}p�i>Û��}Ê��iÊÌÀ�«�iÌÊ��Ê«�>ViÊ>�`Ê��Û��}ÊÌÜ�Ê>�Þ��ÃÊ�vÊÌ�iÊ
�Ì�iÀÊÌÀ�«�iÌÊ>À�Õ�`Ê�ÌÃÊ>�Þ��ÃpÃ��«��wÊi`ÊÌ�iÊV>�VÕ�>Ì���ÃÊ��Û��Ûi`Ê
��Ê`iÃ�}���}ÊÌ�iÊ}>Ìi°Ê/��ÃÊLÀ>�`��}Ê«À�`ÕViÃÊ>Ê
 "/Ê}>ÌiÊÌ�>ÌÊ�ÃÊ
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��ÀÃÌ]Ê«>�ÀÃÊ�vÊ>�Þ��ÃÊ>ÀiÊVÀi>Ìi`Ê>�`Ê���i`ÊÕ«Ê��Ê>Ê
À�ÜÊÌ�ÊÀi«ÀiÃi�ÌÊÌ�iÊµÕL�ÌÃ]Ê�ÀÊµÕ>�ÌÕ�ÊL�ÌÃ]Ê�vÊÌ�iÊ
V��«ÕÌ>Ì���°Ê/�iÊ>�Þ��ÃÊ>ÀiÊ��Ûi`Ê>À�Õ�`ÊLÞÊ
ÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ>`�>Vi�ÌÊ>�Þ��ÃÊ��Ê>Ê
«>ÀÌ�VÕ�>ÀÊÃiµÕi�Vi°Ê/�iÃiÊ��ÛiÃÊV�ÀÀiÃ«��`ÊÌ�Ê
�«iÀ>Ì���ÃÊ«iÀv�À�i`Ê��ÊÌ�iÊµÕL�ÌÃ°Ê���>��Þ]Ê«>�ÀÃÊ�vÊ
>`�>Vi�ÌÊ>�Þ��ÃÊ>ÀiÊLÀ�Õ}�ÌÊÌ�}iÌ�iÀÊ>�`Ê�i>ÃÕÀi`Ê
Ì�Ê«À�`ÕViÊÌ�iÊ�ÕÌ«ÕÌÊ�vÊÌ�iÊV��«ÕÌ>Ì���°Ê/�iÊ�ÕÌ«ÕÌÊ
`i«i�`ÃÊ��ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ«>ÀÌ�VÕ�>ÀÊLÀ>�`��}Ê
«À�`ÕVi`ÊLÞÊÌ��ÃiÊ�>��«Õ�>Ì���Ã°Ê-�>��Ê
`�ÃÌÕÀL>�ViÃÊ�vÊÌ�iÊ>�Þ��ÃÊ`�Ê��ÌÊV�>�}iÊÌ�>ÌÊ
Ì�«���}Þ]ÊÜ��V�Ê�>�iÃÊÌ�iÊV��«ÕÌ>Ì���Ê��«iÀÛ��ÕÃÊ
Ì�Ê��À�>�ÊÃ�ÕÀViÃÊ�vÊiÀÀ�ÀÃ°
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The act of exchanging two anyons corresponds to two distinct braiding 
operations, depending on how they are swapped!



the knot. The first such enumeration was Taits’ “First Seven Orders of Knottiness”, which was

inspired by Lord Kelvin’s theory that atoms were small knotted vertices in aether, and that their

properties came from the topology of the knots. While that model was both quite inaccurate,

and gathered little attention, there is poetic justice in the way this idea motivated tools which

are now used in the study of particle physics. For more historical details, the reader can consult

[10], and more notably the references therein.

Figure 1: Various diagrams of the unknot, from [17].

Quantum computing

Classical computing can be summarized as encoding information in binary, modifying it using

(usually deterministic) rules, and outputting a binary answer.

In contrast, quantum computing stores information as tensor products of elements of CP1 =

{[z0 : z1)] : zi 2 C, and z0 6= 0 or z1 6= 0, [z0 : z1] ⇠ [�z0 : �z1] 8 � 2 C⇤}. The smallest unit

of information for a quantum computer is the qubit. It is assigned an element of CP1 called its

state, which is traditionally written using Dirac’s bra-ket notation for ease of manipulation by

gates encoded as projective unitary matrices. Finally, the output is given by projecting to an

orthonormal basis in a process called measurement.

Example. A qubit in the state [↵ : �] is written ↵|0i + �|1i. It measure to |ii with prob-

ability |(↵h0| + �h1|)|ii|2. An example of a unitary transformation is the Hadamard gate,

H = 1p
2

"
1 1

1 1

#
. It acts on a single qubit, such as H|0i = 1p

2
(|0i+ |1i).

Theoretically, a qubit is just a point on the projective line. Practically, a qubit is a transistor

which can encode a state ↵|0i+�|1i where |↵|2+ |�|2 = 1. A quantum circuit is then a sequence

of physical forces acting on a collection of qubits. Qubits whose states are non-trivial tensor

products are said to be entangled. They are obtained by multiplying two unentangled qubits by

some 4⇥ 4 matrices.

2

Non-trivial topology can also appear in the form of knots of world lines!

World line
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�ÞÊ���}ÊV>�VÕ�>Ì���Ê��Ê>ÊV��Ûi�Ì���>�Ê
V��«ÕÌiÀ°ÊµÕ>��ÞÊ`�vwÊVÕ�ÌÊ«À�L�i�ÃÊ�vÊ
��ÀiÊÀi>��Ü�À�`Ê��«�ÀÌ>�ViÊÜ�Õ�`Ê�>ÛiÊ
Ã����>ÀÊÃ��ÀÌVÕÌÃ°
��Ì��Õ}�Ê�ÌÊ>��ÊÃ�Õ�`ÃÊ���iÊÜ��`ÊÌ�i��

À�â��}ÊµÕ�ÌiÊÀi��Ûi`ÊvÀ��ÊÀi>��ÌÞ]ÊÀiVi�ÌÊ
iÝ«iÀ��i�ÌÃÊ��Ê>ÊwÊi�`Ê���Ü�Ê>ÃÊvÀ>V�
Ì���>�ÊµÕ>�ÌÕ�Ê�>��Ê«�ÞÃ�VÃÊ�>ÛiÊ«ÕÌÊ
Ì�iÊ>�Þ��ÊÃV�i�iÊ��Êv�À�iÀÊ v��Ì��}°Ê
�ÕÀÌ�iÀÊiÝ«iÀ��i�ÌÃÊ�>ÛiÊLii�Ê«À�«�Ãi`Ê
Ì�ÊV>ÀÀÞÊ�ÕÌÊÌ�iÊÀÕ`��i�ÌÃÊ�vÊ>ÊÌ�«���}�
�V>�ÊµÕ>�ÌÕ�ÊV��«ÕÌ>Ì���°

��Þ��Ã
AS�PREVIOUSLY�MENTIONED��>ÊÌ��
«���}�V>�Ê µÕ>�ÌÕ�Ê V��«ÕÌiÀÊ LÀ>�`ÃÊ
Ü�À�`Ê���iÃÊLÞÊÃÜ>««��}ÊÌ�iÊ«�Ã�Ì���ÃÊ�vÊ
«>ÀÌ�V�iÃ°Ê��ÜÊ«>ÀÌ�V�iÃÊLi�>ÛiÊÜ�i�Ê
ÃÜ>««i`Ê�ÃÊ��iÊ�vÊÌ�iÊ�>�ÞÊÜ>ÞÃÊÌ�>ÌÊ
µÕ>�ÌÕ�Ê«�ÞÃ�VÃÊ`�vviÀÃÊvÕ�`>�i�Ì>��ÞÊ
vÀ��ÊV�>ÃÃ�V>�Ê«�ÞÃ�VÃ°Ê��ÊV�>ÃÃ�V>�Ê«�ÞÃ�
�VÃ]Ê�vÊÞ�ÕÊ�>ÛiÊÌÜ�Êi�iVÌÀ��ÃÊ>ÌÊ��V>Ì���ÃÊ
�Ê>�`Ê	Ê>�`ÊÞ�ÕÊ��ÌiÀV�>�}iÊÌ�i�ÀÊ«�Ã��
Ì���Ã]ÊÌ�iÊwÊ�>�ÊÃÌ>ÌiÊ�ÃÊÌ�iÊÃ>�iÊ>ÃÊÌ�iÊ
���Ì�>�ÊÃÌ>Ìi°Ê	iV>ÕÃiÊÌ�iÊi�iVÌÀ��ÃÊ>ÀiÊ
��`�ÃÌ��}Õ�Ã�>L�i]ÊÃ�]ÊÌ��]Ê>ÀiÊÌ�iÊ���Ì�>�Ê
>�`ÊwÊ�>�ÊÃÌ>ÌiÃ°Ê+Õ>�ÌÕ�Ê�iV�>��VÃÊ�ÃÊ
��ÌÊÃ�ÊÃ��«�i°
/�iÊ`�vviÀi�ViÊ>À�ÃiÃÊLiV>ÕÃiÊµÕ>��

ÌÕ�Ê�iV�>��VÃÊ`iÃVÀ�LiÃÊÌ�iÊÃÌ>ÌiÊ�vÊ>Ê
«>ÀÌ�V�iÊÜ�Ì�Ê>ÊµÕ>�Ì�ÌÞÊV>��i`ÊÌ�iÊÜ>ÛiÊ
vÕ�VÌ���]Ê>ÊÜ>ÛiÊ��ÊÃ«>ViÊÌ�>ÌÊi�V>«ÃÕ�
�>ÌiÃÊ>��ÊÌ�iÊ«À�«iÀÌ�iÃÊ�vÊÌ�iÊ«>ÀÌ�V�ip
Ì�iÊ«À�L>L���ÌÞÊ�vÊwÊ�`��}Ê�ÌÊ>ÌÊÛ>À��ÕÃÊ
��V>Ì���Ã]ÊÌ�iÊ«À�L>L���ÌÞÊ�vÊ�i>ÃÕÀ��}Ê

�ÌÊ>ÌÊÛ>À��ÕÃÊÛi��V�Ì�iÃ]Ê>�`ÊÃ�Ê��°Ê��ÀÊ
iÝ>�«�i]Ê>Ê«>ÀÌ�V�iÊ�ÃÊ��ÃÌÊ���i�ÞÊÌ�ÊLiÊ
v�Õ�`Ê��Ê>ÊÀi}���ÊÜ�iÀiÊÌ�iÊÜ>ÛiÊvÕ�V�
Ì���Ê�>ÃÊ>Ê�>À}iÊ>�«��ÌÕ`i°
�Ê«>�ÀÊ�vÊi�iVÌÀ��ÃÊ�ÃÊ`iÃVÀ�Li`ÊLÞÊ>Ê

����ÌÊÜ>ÛiÊvÕ�VÌ���]Ê>�`ÊÜ�i�ÊÌ�iÊÌÜ�Ê
i�iVÌÀ��ÃÊ>ÀiÊiÝV�>�}i`]ÊÌ�iÊÀiÃÕ�Ì��}Ê
����ÌÊÜ>ÛiÊvÕ�VÌ���Ê�ÃÊ���ÕÃÊ��iÊÌ��iÃÊ
Ì�iÊ�À�}��>�°Ê/�>ÌÊV�>�}iÃÊ«i>�ÃÊ�vÊÌ�iÊ
Ü>ÛiÊ��Ì�ÊÌÀ�Õ}�Ã]Ê>�`ÊÛ�ViÊÛiÀÃ>]ÊLÕÌÊ�ÌÊ
�>ÃÊ��ÊivviVÌÊ��ÊÌ�iÊ>�«��ÌÕ`iÊ�vÊÌ�iÊ
�ÃV���>Ì���Ã°Ê��Êv>VÌ]Ê�ÌÊ`�iÃÊ��ÌÊV�>�}iÊ
>�ÞÊ�i>ÃÕÀ>L�iÊµÕ>�Ì�ÌÞÊ�vÊ Ì�iÊ ÌÜ�Ê
i�iVÌÀ��ÃÊV��Ã�`iÀi`ÊLÞÊÌ�i�Ãi�ÛiÃ°
7�>ÌÊ�ÌÊ`�iÃÊV�>�}iÊ�ÃÊ��ÜÊÌ�iÊi�iV�

ÌÀ��ÃÊ��}�ÌÊ��ÌiÀviÀiÊÜ�Ì�Ê�Ì�iÀÊi�iV�
ÌÀ��Ã°Ê��ÌiÀviÀi�ViÊ�VVÕÀÃÊÜ�i�ÊÌÜ�Ê
Ü>ÛiÃÊ>ÀiÊ>``i`ÊÌ�}iÌ�iÀ°Ê7�i�ÊÌÜ�Ê
Ü>ÛiÃÊ��ÌiÀviÀi]ÊÌ�iÊV��L��>Ì���Ê�>ÃÊ>Ê
��}�Ê>�«��ÌÕ`iÊÜ�iÀiÊ«i>�ÃÊ�vÊ��iÊ>��}�Ê
Ü�Ì�Ê«i>�ÃÊ�vÊÌ�iÊ�Ì�iÀÊºV��ÃÌÀÕVÌ�ÛiÊ
��ÌiÀviÀi�Vi»®Ê>�`Ê�>ÃÊ>Ê��ÜÊ>�«��ÌÕ`iÊ
Ü�iÀiÊ«i>�ÃÊ>��}�ÊÜ�Ì�ÊÌÀ�Õ}�ÃÊº`i�
ÃÌÀÕVÌ�ÛiÊ ��ÌiÀviÀi�Vi»®°Ê�Õ�Ì�«�Þ��}Ê
��iÊ�vÊÌ�iÊÜ>ÛiÃÊLÞÊ>Ê«�>ÃiÊ�vÊ���ÕÃÊ
��iÊ��ÌiÀV�>�}iÃÊ�ÌÃÊ«i>�ÃÊ>�`ÊÌÀ�Õ}�ÃÊ
>�`ÊÌ�ÕÃÊV�>�}iÃÊV��ÃÌÀÕVÌ�ÛiÊ��ÌiÀviÀ�
i�Vi]Ê>ÊLÀ�}�ÌÊÃ«�Ì]ÊÌ�Ê`iÃÌÀÕVÌ�ÛiÊ��ÌiÀ�
viÀi�Vi]Ê>Ề >À�ÊÃ«�Ì°
�ÌÊ�ÃÊ��ÌÊ�ÕÃÌÊi�iVÌÀ��ÃÊÌ�>ÌÊ«�V�ÊÕ«Ê>Ê

v>VÌ�ÀÊ�vÊ���ÕÃÊ��iÊ��ÊÌ��ÃÊÜ>ÞÊLÕÌÊ>�Ã�Ê
«À�Ì��Ã]Ê�iÕÌÀ��ÃÊ>�`Ê��Ê}i�iÀ>�Ê>�ÞÊ
«>ÀÌ�V�iÊ�vÊ>ÊV�>ÃÃÊV>��i`ÊviÀ����Ã°Ê	��
Ã��Ã]ÊÌ�iÊ�Ì�iÀÊV��ivÊV�>ÃÃÊ�vÊ«>ÀÌ�V�iÃ]Ê
�>ÛiÊÜ>ÛiÊvÕ�VÌ���ÃÊÌ�>ÌÊ>ÀiÊÕ�V�>�}i`Ê

Ü�i�ÊÌÜ�Ê«>ÀÌ�V�iÃÊ>ÀiÊÃÜ>««i`°Ê9�ÕÊ
��}�ÌÊÃ>ÞÊÌ�>ÌÊÌ�i�ÀÊÜ>ÛiÊvÕ�VÌ���ÃÊ>ÀiÊ
�Õ�Ì�«��i`ÊLÞÊ>Êv>VÌ�ÀÊ�vÊ«�ÕÃÊ��i°
�ii«Ê�>Ì�i�>Ì�V>�ÊÀi>Ã��ÃÊÀiµÕ�ÀiÊ

Ì�>ÌÊµÕ>�ÌÕ�Ê«>ÀÌ�V�iÃÊ��ÊÌ�ÀiiÊ`��i��
Ã���ÃÊ�ÕÃÌÊLiÊi�Ì�iÀÊviÀ����ÃÊ�ÀÊL�Ã��Ã°Ê
��ÊÌÜ�Ê`��i�Ã���Ã]Ê>��Ì�iÀÊ«�ÃÃ�L���ÌÞÊ
>À�ÃiÃ\ÊÌ�iÊv>VÌ�ÀÊ��}�ÌÊLiÊ>ÊV��«�iÝÊ
«�>Ãi°Ê�ÊV��«�iÝÊ«�>ÃiÊV>�ÊLiÊÌ��Õ}�ÌÊ
�vÊ>ÃÊ>�Ê>�}�i°Ê<iÀ�Ề i}ÀiiÃÊV�ÀÀiÃ«��`ÃÊ
Ì�ÊÌ�iÊ�Õ�LiÀÊ��iÆÊ£näỀ i}ÀiiÃÊ�ÃÊ���ÕÃÊ
��i°Ê��}�iÃÊ ���LiÌÜii�Ê>ÀiÊV��«�iÝÊ
�Õ�LiÀÃ°Ê��ÀÊiÝ>�«�i]Ê�äÊ`i}ÀiiÃÊV�À�
ÀiÃ«��`ÃÊÌ�Ê�]ÊÌ�iÊÃµÕ>ÀiÊÀ��ÌÊ�vÊ���ÕÃÊ
��i°Ê�ÃÊÜ�Ì�Ê>Êv>VÌ�ÀÊ�vÊ���ÕÃÊ��i]Ê�Õ��
Ì�«�Þ��}Ê>ÊÜ>ÛiÊvÕ�VÌ���ÊLÞÊ>Ê«�>ÃiÊ�>ÃÊ
>LÃ��ÕÌi�ÞÊ��ÊivviVÌÊ��ÊÌ�iÊ�i>ÃÕÀi`Ê
«À�«iÀÌ�iÃÊ�vÊÌ�iÊ��`�Û�`Õ>�Ê«>ÀÌ�V�i]ÊLi�
V>ÕÃiÊ>��ÊÌ�>ÌÊ�>ÌÌiÀÃÊv�ÀÊÌ��ÃiÊ«À�«iÀ�
Ì�iÃÊ>ÀiÊÌ�iÊ>�«��ÌÕ`iÃÊ�vÊÌ�iÊ�ÃV���>�
Ì���ÃÊ�vÊ Ì�iÊÜ>Ûi°Ê iÛiÀÌ�i�iÃÃ]Ê Ì�iÊ
«�>ÃiÊV>�ÊV�>�}iÊ��ÜÊÌÜ�ÊV��«�iÝÊ
Ü>ÛiÃÊ��ÌiÀviÀi°
*>ÀÌ�V�iÃÊ Ì�>ÌÊ «�V�ÊÕ«Ê >Ê V��«�iÝÊ

«�>ÃiÊ��ÊLi��}ÊÃÜ>««i`Ê>ÀiÊV>��i`Ê>�Þ�
��ÃÊLiV>ÕÃiÊ>�ÞÊV��«�iÝÊ«�>ÃiÊ��}�ÌÊ
>««i>À]Ê��ÌÊ�ÕÃÌÊ>Ê«�>ÃiÊ�vÊ«�ÕÃÊ�ÀÊ���ÕÃÊ
��i°Ê*>ÀÌ�V�iÃÊ�vÊ>Ê}�Ûi�ÊÃ«iV�iÃ]Ê��Ü�
iÛiÀ]Ê>�Ü>ÞÃÊ«�V�ÊÕ«ÊÌ�iÊÃ>�iÊ«�>Ãi°

�iVÌÀ��ÃÊ��Ê��>Ì�>�`
A N YONS� E X IST � ON LY� ��Ê>ÊÌÜ��`��
�i�Ã���>�ÊÜ�À�`°Ê��ÜÊV>�ÊÜiÊ«À�`ÕViÊ
«>�ÀÃÊ�vÊÌ�i�Êv�ÀÊÌ�«���}�V>�ÊV��«ÕÌ��}Ê
Ü�i�ÊÜiÊ��ÛiÊ��ÊÌ�ÀiiÊ`��i�Ã���Ã¶Ê/�iÊ�
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/�«���}ÞÊ�vÊ>ÊV��Ãi`Ê���«Ê>®Ê�ÃÊÕ�>�ÌiÀi`Ê�vÊÌ�iÊÃÌÀ��}Ê�ÃÊ«ÕÃ�i`Ê
>À�Õ�`ÊÌ�Êv�À�Ê>��Ì�iÀÊÃ�>«iÊL®ÊLÕÌÊ�ÃÊ`�vviÀi�ÌÊvÀ��ÊÌ�>ÌÊ�vÊ
>ÊV��Ãi`Ê���«ÊÜ�Ì�Ê>Ê���ÌÊÌ�i`Ê��Ê�ÌÊV®°Ê/�iÊ���ÌÊV>���ÌÊLiÊv�À�i`Ê�ÕÃÌÊ

LÞÊ��Û��}Ê>À�Õ�`ÊÌ�iÊÃÌÀ��}°Ê��ÃÌi>`Ê��iÊ�ÕÃÌÊVÕÌÊÌ�iÊÃÌÀ��}]ÊÌ�iÊÌ�iÊ
���ÌÊ>�`ÊÀi����ÊÌ�iÊi�`Ã°Ê
��ÃiµÕi�Ì�Þ]ÊÌ�iÊÌ�«���}ÞÊ�vÊÌ�iÊ���«Ê
�ÃÊ��Ãi�Ã�Ì�ÛiÊÌ�Ê«iÀÌÕÀL>Ì���ÃÊÌ�>ÌÊ���ÞÊ«ÕÃ�ÊÌ�iÊÃÌÀ��}Ê>À�Õ�`°
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One can separate world lines in different topological classes based 
on the number of knots.



In 1997, Alexei Kitaev suggested that building qubits 
with anyons would permit creating quantum 

computers that are immune to phase decoherence! 

Anyons cannot exist in isolation and must be entangled with other anyons!

 They are hard to observe because they are insensitive to local 
measurements, and can only be destroyed when merged with other anyons.  

On the other hand, their qubits are hard to decohere!
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>�ÃÜiÀÊ��iÃÊ��ÊÌ�iÊyÊ>Ì�>�`ÊÀi>��Ê�vÊµÕ>�
Ã�«>ÀÌ�V�iÃ°Ê/Ü�ÊÃ�>LÃÊ�vÊ}>���Õ�Ê>ÀÃi�
��`iÊÃi��V��`ÕVÌ�ÀÊV>�ÊLiÊV>ÀivÕ��ÞÊi��
}��iiÀi`ÊÌ�Ê>VV����`>ÌiÊ>Êº}>Ã»Ê�vÊ
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The fundamental unit of information (qubit) in a topological quantum 
computer is a linear superposition of two anyons, which can be braided 

with other qubits!



Braid Topologies for Quantum Computation
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In topological quantum computation, quantum information is stored in states which are intrinsically
protected from decoherence, and quantum gates are carried out by dragging particlelike excitations
(quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories
define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on
the topology of the braids formed by these world lines. We show how to find braids that yield a universal
set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly
promising for experimental realization.

DOI: 10.1103/PhysRevLett.95.140503 PACS numbers: 03.67.Lx, 03.67.Pp, 73.43.2f

A quantum computer must be capable of manipulating
quantum information while simultaneously protecting it
from error and loss of quantum coherence due to coupling
to the environment. Topological quantum computation
(TQC) [1,2] offers a particularly elegant way to achieve
this using quasiparticles which obey non-Abelian statistics
[3,4]. These quasiparticles, which are expected to arise in a
variety of two-dimensional quantum many-body systems
[1,4–11], have the property that the usual phase factors of
!1 associated with the exchange of identical bosons or
fermions are replaced by noncommuting (non-Abelian)
matrices that depend only on the topology of the space-
time paths (braids) used to effect the exchange. The ma-
trices act on a degenerate Hilbert space whose dimension-
ality is exponentially large in the number of quasiparticles
and whose states have an intrinsic immunity to decoher-
ence because they cannot be distinguished by local mea-
surements, provided the quasiparticles are kept sufficiently
far apart.

In TQC this protected Hilbert space is used to store
quantum information, and quantum gates are carried out
by adiabatically braiding quasiparticles around each other
[1,2]. Because the resulting quantum gates depend purely
on the topology of the braids, errors occur only when
quasiparticles form ‘‘unintentional’’ braids. This can hap-
pen if a quasiparticle-quasihole pair is thermally created,
the pair separates, wanders around other quasiparticles,
and then recombines in a topologically nontrivial way.
However, such processes are exponentially unlikely at
low enough temperature. This built-in protection from
error and decoherence is an appealing feature of TQC
which may compensate for the extreme technical chal-
lenges that will have to be overcome to realize it.

It has been shown that several different kinds of non-
Abelian quasiparticles can be used for TQC [1,2,12–14].
Here we focus on what is arguably the simplest of these—
Fibonacci anyons [14]. These quasiparticles each possess a

‘‘q-deformed’’ spin quantum number (q-spin) of 1, the
properties of which are described by a mathematical struc-
ture known as a quantum group [15]. As with ordinary
spin, there are specific rules for combining q-spin. For
Fibonacci anyons these ‘‘fusion’’ rules state that when
two q-spin 1 objects are combined, the total q-spin can
be either 0 or 1; and when a q-spin 0 object is combined
with a q-spin s object, where s " 0 or 1, the total q-spin is
s [16]. Remarkably, as shown in [14], these fusion rules fix
the structure of the relevant quantum group, uniquely
determining the quantum operations produced by braiding
q-spins around one another up to an overall Abelian phase
which is irrelevant for TQC.

One reason for focusing on Fibonacci anyons is that they
are thought to exist in an experimentally observed frac-
tional quantum Hall state [17,18]. It may also be possible
to realize them in rotating Bose condensates [7] and quan-
tum spin systems [10,11]. Strictly speaking, the quantum
group realized in some of these systems, and considered for
TQC in [2], also includes q-spins of 1

2 and 3
2 ; however, due

to a symmetry of this quantum group [6], the braiding
properties of q-spin 1

2 quasiparticles are equivalent to those
with q-spin 1, and the braid topologies we find below can
be used in either case.

The fusion rules for Fibonacci anyons imply that the
Hilbert space of two quasiparticles is two dimensional—
with basis states j#$;$%0i and j#$;$%1i. Here the notation
#$;$%a represents two quasiparticles with total q-spin a.
When a third quasiparticle is added, the Hilbert space is
three dimensional, and is spanned by the states
j!#$;$%0;$"1i, j!#$;$%1;$"1i, and j!#$;$%1;$"0i. The gen-
eral result is that the dimensionality of an N-quasiparticle
state is the #N & 1%st Fibonacci number. To use this Hilbert
space for quantum computation, we follow Freedman et al.
[2], and encode qubits into triplets of quasiparticles with
total q-spin 1, taking the logical qubit states to be j0Li "
j!#$;$%0;$"1i and j1Li " j!#$;$%1;$"1i. The remaining
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we mean that the target quasiparticles remain fixed while
the control pair is moved around them as an immutable
group [see, for example, Figs. 3(b) and 4(c)]. If the q-spin
of the control pair is 0, the result of this operation is the
identity. However, if the q-spin of the control pair is 1, a

transition is induced. If we choose the control pair to
consist of the two quasiparticles whose total q-spin de-
termines the state of the control qubit, this construc-
tion automatically yields a controlled (conditional) opera-
tion. Second, we deliberately weave the control pair
through only two target quasiparticles at a time. Since
the only nontrivial case is when the control pair has
q-spin 1, and is thus equivalent to a single quasiparticle,
this reduces the problem of constructing two-qubit gates to
that of finding a finite number of specific three-
quasiparticle braids.

Figure 3(a) shows a three-quasiparticle braid in which
one quasiparticle is woven through the other two and
then returns to its original position. The resulting unitary
operation approximates that of simply braiding the two
static quasiparticles around each other twice to a distance
of ! ’ 2:3! 10"3. Similar weaves can be found which
approximate any even number, 2m, of windings of the
static quasiparticles. Figure 3(b) shows a two-qubit braid
in which the pattern from Fig. 3(a) is used to weave the
control pair through the target qubit. If the control qubit
is in the state j0Li, this weave does nothing, but if it is in the
state j1Li, the effect is equivalent to braiding two quasi-
particles within the target qubit. Thus, in the limit !! 0,
this effective braiding is all within a qubit and there are no
leakage errors. The resulting two-qubit gate is a controlled
rotation of the target qubit through an angle of 6m"=5,
which, together with single-qubit rotations, provides a
universal set of gates for quantum computation provided
m is not divisible by 5 [25]. Carrying out one iteration of
the Solovay-Kitaev construction [22,23] on this weave
using the procedure outlined in [26] reduces ! by a factor
of #20 at the expense of a factor of 5 increase in length.
Subsequent iterations can be used to achieve any desired
accuracy.

A similar construction can be used to carry out arbitrary
controlled-rotation gates. Figure 4(a) shows a braid in

FIG. 3 (color online). (a) A three-quasiparticle braid in which
one quasiparticle is woven around two static quasiparticles and
returns to its original position (left), and yields approximately
the same transition matrix as braiding the two stationary quasi-
particles around each other twice (right). The corresponding
matrix equation is also shown. To characterize the accuracy of
this approximation, we define the distance between two matri-
ces, U and V, to be ! $ kU" Vk, where kOk is the operator
norm of O equal to the square-root of the highest eigenvalue of
OyO. The distance between the matrices resulting from the
actual braiding (left) and the desired effective braiding (right)
is ! ’ 2:3! 10"3. (b) A two-qubit braid constructed by weaving
a pair of quasiparticles from the control qubit (top) through the
target qubit (bottom) using the weaving pattern from (a). The
result of this operation is to effectively braid the upper two
quasiparticles of the target qubit around each other twice if the
control qubit is in the state j1Li, and otherwise do nothing. This
is an entangling two-qubit gate which can be used for universal
quantum computation. Since all effective braiding takes place
within the target qubit, any leakage error is due to the approxi-
mate nature of the weave shown in (a). By systematically
improving this weave using the Solovay-Kitaev construction,
leakage error can be reduced to whatever level is required for a
given computation.

FIG. 4 (color online). (a) An injection weave for which the product of elementary braiding matrices, also shown, approximates the
identity to a distance of ! ’ 1:5! 10"3. This weave injects a quasiparticle (or any q-spin 1 object) into the target qubit without
changing any of the underlying q-spin quantum numbers. (b) A weaving pattern which approximates a NOT gate to a distance of
! ’ 8:5! 10"4. (c) A controlled-NOT gate constructed using the weaves shown in (a) and (b) to inject the control pair into the target
qubit, perform a NOT operation on the injected target qubit, and then eject the control pair from the target qubit back into the control
qubit. The distance between the gate produced by this braid acting on the computational two-qubit space and an exact controlled-NOT
gate is ! ’ 1:8! 10"3 and ! ’ 1:2! 10"3 when the total q-spin of the six quasiparticles is 0 and 1, respectively. Again, the weaves
shown in (a) and (b) can be made as accurate as necessary using the Solovay-Kitaev theorem, thereby improving the controlled-NOT
gate to any desired accuracy. By replacing the central NOT weave, arbitrary controlled-rotation gates can be constructed using this
procedure.
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In 2005, it was explicitly shown (theoretically) how to perform logical 
operations by braiding world lines of topological quantum particles!
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Do anyons exist?



One year later, Bob Laughlin showed the experiment can be explained by 
the existence of particles with fractional charge! 

In 1982, right after the discovery 
of the integer quantum Hall effect, 
Tsui and Stomer discovered the 

appearance of quantum Hall 
plateaus at some rational fractions 

of magnetic flux quanta per 
unit cell. 
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Fractional quantum Hall effect!



Are particles with fractionalized charge anyons?
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The statistics of quasiparticles entering the quantum Hall effect are deduced from the adia-
batic theoreme These excitations are found to obey fractional statistics, a result closely relat-
ed to their fractional charge.

PACS numbers: 73.40.Lq, 05.30.—d, 72.20.My

Extensive experimental studies have been carried
out' on semiconducting heterostructures in the
quantum limit ct)pr )) 1, where p)p= eBp/m is the
cyclotron frequency and v is the electronic scatter-
ing time. It is found that as the chemical potential

is varied, the Hall conductance (r~ = I„/E»
= 2/e /h shows plateaus at 2/= n/m, where n and m
are integers with m being odd. The ground state
and excitations of a two-dimensional electron gas in
a strong magnetic field 80 have been studied in
relation to these experiments and it has been found
that the free energy shows cusps at filling factors
v = n/m of the Landau levels. These cusps corre-
spond to the existence of an "incompressible quan-
tum fluid" for given n/m and an energy gap for ad-
ding quasiparticles which form an interpenetrating
fluid. This quasiparticle fluid in turn condenses to
make a new incompressible fluid at the next larger
value of n/m, etc.
The charge of the quasiparticles was discussed by

Laughlin2 by using an argument analogous to that
used in deducing the fractional charge of solitons in
one-dimensional conductors. He concluded for
2/= 1/m that quasiholes and quasiparticles have
charges + e"= + e/m. For example, a quasihole is
formed in the incompressible fluid by a two-
dimensional bubble of a size such that 1/m of an
electron is removed. Less clear, however, is the
statistics which the quasiparticles satisfy; Fermi,
Bose, and fractional statistics having all been pro-
posed. In this Letter, we give a direct method for
determining the charge and statistics of the quasi-
particles.
In the symmetric gauge A( r ) = 2 Bpx r we con-

sider the Laughlin ground state with filling factor
v =1/m,

= ff (z&—zk) exp( ——,X/~zt ~ ),

where zj =xj+iy, . A state having a quasihole local-
ized at zo is given by

(2)

dt

so that

+Zp=W X,.—In[z, —z (t)](I/ (6)

=iN '—,.ln z; —z

Since the one-electron density in the presence of

while a quasiparticle at zo is described by

g, (8/(); —p/a, ' )([/,
where 22rap8p= @p=he/e is the flux quantum and
N+ are normalizing factors.
To determine the quasiparticle charge e', we cal-

+zpculate the change of phase y of ([/ as zp adiabati-
cally moves around a circle of radius R enclosing
flux P. To determine e", y is set equal to the
change of phase,

(e /ee)fe d'( =2ee(e'/e)4/4e, (4)

that a quasiparticle of charge e' would gain in mov-
ing around this loop. As emphasized recently by
Berry6 and by Simon (see also Wilczek and Zees
and Schiff ), given a Hamiltonian H(zp) which
depends on a parameter zo, if zo slowly transverses
a loop, then in addition to the usual phase
fE(t') dt', where E(t') is the adiabatic energy, an
extra phase y occurs in (i/(t) which is independent
of how slowly the path is traversed. y(t) satisfies

dy(t)/dt =i ((I/(t) ~d([/(t)/dt)
From Eq. (2),
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In 1984, Arovas, Schrieffer and Wilczek showed (theoretically) that 
particles with fractional charge                in the FQH effect 

correspond to anyons with phase
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Fractional statistics in anyon collisions
H. Bartolomei1*, M. Kumar1*†, R. Bisognin1, A. Marguerite1‡, J.-M. Berroir1, E. Bocquillon1, B. Plaçais1,
A. Cavanna2, Q. Dong2, U. Gennser2, Y. Jin2, G. Fève1§

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are
neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall
effect at filling factor n = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional
statistics, with a phase f associated with the exchange of two particles equal to p/m. However,
despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive.
We experimentally demonstrate Abelian fractional statistics at filling factor n = ⅓ by measuring the
current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their
dependence on the anyon current impinging on the splitter and comparing with recent theoretical
models, we extract f = p/3, in agreement with predictions.

I
n three-dimensional space, elementary exci-
tations fall into two categories depending
on the phase f accumulated by the many-
body wave function while exchanging two
particles. This phase governs the statistics

of an ensemble of particles: Bosonic particles,
for which f = 0, tend to bunch together,
whereas fermions (f = p) antibunch and follow
Pauli’s exclusion principle. In two-dimensional
systems, other values of f can be realized (1, 2),
defining types of elementary excitations called
anyons (3) that obey fractional or anyonic
statistics with intermediate levels of bunching
or exclusion. The fractional quantumHall effect
(4, 5), obtained by applying a strong magnetic
field perpendicular to a two-dimensional elec-
tron gas, is one of the physical systems predicted
to host anyons. For a filling factor n of the first
Landau level belonging to the Laughlin series
(5)—that is, n = 1/m, wherem is an odd integer—
the exchange phase is predicted to be given
by f = p/m (6, 7) interpolating between the
bosonic and fermionic limits.
Direct experimental evidence of fractional

statistics has remained elusive. To date, most
efforts have focused on the implementation of
single-particle interferometers (8, 9), where
the output current is expected to be directly
sensitive to the exchange phase f. However,
despite many experimental attempts (10–15),
clear signatures are still lacking because the
observedmodulations of the current result not
only from the variation of the exchange phase
but also from Coulomb blockade and Aharonov-
Bohm interference (16). In the case of non-
Abelian anyons (17), where the exchange of

quasiparticles is described by topological uni-
tary transformations, recent heat conduction
measurements showedevidenceof anon-Abelian
state (18, 19), although these results give only
indirect evidence of the underlying quantum
statistics.
Here, wemeasured the fluctuations or noise

of the electrical current generated by the col-
lision of anyons on a beamsplitter (20), thereby
demonstrating that the elementary excitations
of the fractional quantum Hall effect at filling
factor n = ⅓ obey fractional statistics with f =
p/3. The measurement of the current noise
generated by a single scatterer of fractional
quasiparticles (21, 22) has already shown that
they carry a fractional charge e* = e/3. Shortly
after these seminal works, it was theoretically
predicted (20, 23–26) that in conductors com-
prising several scatterers, noisemeasurements
would exhibit two-particle interference effects
where exchange statistics play a central role,
and would thus be sensitive to the exchange
phase f. In this context, current-current cor-
relation measurements in collider geometries
are of particular interest, as they have been
extensively used to probe the quantum statis-
tics of particles colliding on a beamsplitter. In
a seminal two-particle collision experiment,
Hong et al. (27) demonstrated that photons
tend to bunch together in the same splitter
output, as expected from their bosonic statis-
tics. In contrast, collision experiments im-
plemented in quantumconductors (28–30) have
shown a suppression of the cross-correlations
between the output current fluctuations caused
by the antibunching of electrons, as expected
from their fermionic statistics. This behavior
can also be understood as a consequence of the
Pauli exclusion principle that forbids two fer-
mions from occupying the same quantum state
at the splitter output. This exclusion principle
can be generalized to fractional statistics
(31, 32) by introducing an exclusion quasi-
probability p (20) interpolating between the
fermionic and bosonic limits. In a classical
description of a two-particle collision (Fig. 1A)

(33), p accounts for the effects of quantum
statistics on the probability K of finding two
quasiparticles in the same output arm of the
beamsplitter: K = T(1 – T)(1 – p), where T is
the single-particle backscattering probability
(Fig. 1A). The fermionic case is p = 1, leading
to perfect antibunching, K = 0. Contrary to
fermions, the bunching of bosons enhancesK,
meaning that 1 – p > 1 and p < 0.
To implement collision experiments in

quantum conductors, it is necessary to com-
bine a beamsplitter for quasiparticles, a way
to guide them ballistically, and two sources
to emit them. The two first ingredients can be
easily implemented in two-dimensional elec-
tron gases in the quantumHall regime. Quan-
tumpoint contacts (QPCs) canbe used as tunable
beamsplitters and, at highmagnetic field, charge
transport is guided along the chiral edge chan-
nels. By combining these elements, single-
particle (34) and two-particle (35) electronic
interferometers have been realized, and fer-
mionic antibunching resulting from the colli-
sion between two indistinguishable electrons
has been observed (30). Investigating the any-
onic case requires replacing the conventional
electron sources (such as biased ohmic con-
tacts) by sources of fractional anyonic quasi-
particles. As suggested in (20) and as sketched
in Fig. 1B, this implies using three QPCs. Two
input QPCs labeled QPC1 and QPC2 are biased
by dc voltagesV1 andV2 and tuned in theweak
backscattering regime togeneratedilutedbeams
of fractional quasiparticles. Indeed, it is known
that in the fractional quantumHall regime, the
partitioning of a dc electrical current I0 with a
small backscattering probability T ≪ 1 occurs
through the random transfer of quasiparticles
of fractional charge q = e* (24). As experimen-
tally observed, the proportionality of the current
noise (21, 22) with the input current I0, the
transmission T, and the fractional charge e*
shows that this random transfer follows a
Poissonian law. QPC1 and QPC2 can thus be
used as Poissonian sources of anyons, which
then collide on a third quantum point contact
labeled cQPC; cQPC is used as a beamsplitter
in the collision experiment. The fractional
statistics of the colliding quasiparticles can be
revealed by measuring the cross-correlations
between the electrical currents at the output of
the beamsplitter.
The sample (Fig. 1C) is a two-dimensional

electron gas (GaAs/AlGaAs). Themagnetic field
is set to B = 13 T, corresponding to a filling
factor n = ⅓ for a charge density ns = 1.09 ×
1015m–2. At this field and at very low electronic
temperature Tel = 30 mK, ballistic charge
transport occurs along the edges of the sample
without backscattering (33). As discussed above,
the two quasiparticle sources comprise two
quantum point contacts with transmissions T1
and T2 (T1, T2 ≪ 1). We apply the voltages V1

and V2 to ohmic contacts 1 and 2 in order to
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MESOSCOPIC PHYSICS

Fractional statistics in anyon collisions
H. Bartolomei1*, M. Kumar1*†, R. Bisognin1, A. Marguerite1‡, J.-M. Berroir1, E. Bocquillon1, B. Plaçais1,
A. Cavanna2, Q. Dong2, U. Gennser2, Y. Jin2, G. Fève1§

Two-dimensional systems can host exotic particles called anyons whose quantum statistics are
neither bosonic nor fermionic. For example, the elementary excitations of the fractional quantum Hall
effect at filling factor n = 1/m (where m is an odd integer) have been predicted to obey Abelian fractional
statistics, with a phase f associated with the exchange of two particles equal to p/m. However,
despite numerous experimental attempts, clear signatures of fractional statistics have remained elusive.
We experimentally demonstrate Abelian fractional statistics at filling factor n = ⅓ by measuring the
current correlations resulting from the collision between anyons at a beamsplitter. By analyzing their
dependence on the anyon current impinging on the splitter and comparing with recent theoretical
models, we extract f = p/3, in agreement with predictions.

I
n three-dimensional space, elementary exci-
tations fall into two categories depending
on the phase f accumulated by the many-
body wave function while exchanging two
particles. This phase governs the statistics

of an ensemble of particles: Bosonic particles,
for which f = 0, tend to bunch together,
whereas fermions (f = p) antibunch and follow
Pauli’s exclusion principle. In two-dimensional
systems, other values of f can be realized (1, 2),
defining types of elementary excitations called
anyons (3) that obey fractional or anyonic
statistics with intermediate levels of bunching
or exclusion. The fractional quantumHall effect
(4, 5), obtained by applying a strong magnetic
field perpendicular to a two-dimensional elec-
tron gas, is one of the physical systems predicted
to host anyons. For a filling factor n of the first
Landau level belonging to the Laughlin series
(5)—that is, n = 1/m, wherem is an odd integer—
the exchange phase is predicted to be given
by f = p/m (6, 7) interpolating between the
bosonic and fermionic limits.
Direct experimental evidence of fractional

statistics has remained elusive. To date, most
efforts have focused on the implementation of
single-particle interferometers (8, 9), where
the output current is expected to be directly
sensitive to the exchange phase f. However,
despite many experimental attempts (10–15),
clear signatures are still lacking because the
observedmodulations of the current result not
only from the variation of the exchange phase
but also from Coulomb blockade and Aharonov-
Bohm interference (16). In the case of non-
Abelian anyons (17), where the exchange of

quasiparticles is described by topological uni-
tary transformations, recent heat conduction
measurements showedevidenceof anon-Abelian
state (18, 19), although these results give only
indirect evidence of the underlying quantum
statistics.
Here, wemeasured the fluctuations or noise

of the electrical current generated by the col-
lision of anyons on a beamsplitter (20), thereby
demonstrating that the elementary excitations
of the fractional quantum Hall effect at filling
factor n = ⅓ obey fractional statistics with f =
p/3. The measurement of the current noise
generated by a single scatterer of fractional
quasiparticles (21, 22) has already shown that
they carry a fractional charge e* = e/3. Shortly
after these seminal works, it was theoretically
predicted (20, 23–26) that in conductors com-
prising several scatterers, noisemeasurements
would exhibit two-particle interference effects
where exchange statistics play a central role,
and would thus be sensitive to the exchange
phase f. In this context, current-current cor-
relation measurements in collider geometries
are of particular interest, as they have been
extensively used to probe the quantum statis-
tics of particles colliding on a beamsplitter. In
a seminal two-particle collision experiment,
Hong et al. (27) demonstrated that photons
tend to bunch together in the same splitter
output, as expected from their bosonic statis-
tics. In contrast, collision experiments im-
plemented in quantumconductors (28–30) have
shown a suppression of the cross-correlations
between the output current fluctuations caused
by the antibunching of electrons, as expected
from their fermionic statistics. This behavior
can also be understood as a consequence of the
Pauli exclusion principle that forbids two fer-
mions from occupying the same quantum state
at the splitter output. This exclusion principle
can be generalized to fractional statistics
(31, 32) by introducing an exclusion quasi-
probability p (20) interpolating between the
fermionic and bosonic limits. In a classical
description of a two-particle collision (Fig. 1A)

(33), p accounts for the effects of quantum
statistics on the probability K of finding two
quasiparticles in the same output arm of the
beamsplitter: K = T(1 – T)(1 – p), where T is
the single-particle backscattering probability
(Fig. 1A). The fermionic case is p = 1, leading
to perfect antibunching, K = 0. Contrary to
fermions, the bunching of bosons enhancesK,
meaning that 1 – p > 1 and p < 0.
To implement collision experiments in

quantum conductors, it is necessary to com-
bine a beamsplitter for quasiparticles, a way
to guide them ballistically, and two sources
to emit them. The two first ingredients can be
easily implemented in two-dimensional elec-
tron gases in the quantumHall regime. Quan-
tumpoint contacts (QPCs) canbe used as tunable
beamsplitters and, at highmagnetic field, charge
transport is guided along the chiral edge chan-
nels. By combining these elements, single-
particle (34) and two-particle (35) electronic
interferometers have been realized, and fer-
mionic antibunching resulting from the colli-
sion between two indistinguishable electrons
has been observed (30). Investigating the any-
onic case requires replacing the conventional
electron sources (such as biased ohmic con-
tacts) by sources of fractional anyonic quasi-
particles. As suggested in (20) and as sketched
in Fig. 1B, this implies using three QPCs. Two
input QPCs labeled QPC1 and QPC2 are biased
by dc voltagesV1 andV2 and tuned in theweak
backscattering regime togeneratedilutedbeams
of fractional quasiparticles. Indeed, it is known
that in the fractional quantumHall regime, the
partitioning of a dc electrical current I0 with a
small backscattering probability T ≪ 1 occurs
through the random transfer of quasiparticles
of fractional charge q = e* (24). As experimen-
tally observed, the proportionality of the current
noise (21, 22) with the input current I0, the
transmission T, and the fractional charge e*
shows that this random transfer follows a
Poissonian law. QPC1 and QPC2 can thus be
used as Poissonian sources of anyons, which
then collide on a third quantum point contact
labeled cQPC; cQPC is used as a beamsplitter
in the collision experiment. The fractional
statistics of the colliding quasiparticles can be
revealed by measuring the cross-correlations
between the electrical currents at the output of
the beamsplitter.
The sample (Fig. 1C) is a two-dimensional

electron gas (GaAs/AlGaAs). Themagnetic field
is set to B = 13 T, corresponding to a filling
factor n = ⅓ for a charge density ns = 1.09 ×
1015m–2. At this field and at very low electronic
temperature Tel = 30 mK, ballistic charge
transport occurs along the edges of the sample
without backscattering (33). As discussed above,
the two quasiparticle sources comprise two
quantum point contacts with transmissions T1
and T2 (T1, T2 ≪ 1). We apply the voltages V1

and V2 to ohmic contacts 1 and 2 in order to
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Fig. 1. Sample and principle of the
experiment. (A) Exclusion quasiprobability
p: The probability K to have two anyons
exiting in the same output edge channel is
modified by the factor (1 – p). (B) Principle
of the experiment: The voltage V generates
the currents I0 toward QPC1 and
QPC2. These two QPCs, tuned in the
weak-backscattering regime T1, T2 ≪ 1,
act as random Poissonian sources of
anyons that collide on cQPC. (C) False-colored
scanning electron microscope (SEM)
image of the sample. The electron gas
is shown in blue and the gates in gold. Edge
currents are shown as red lines (red
dashed lines after partitioning).

Fig. 2. Fano factor in anyon collision. SI3 I4
for T1 = T2 = 0.05 is shown as a
function of I+ and for various transmissions
T of the central QPC. The dashed lines
are linear fits of SI3 I4=2e!. Inset:
Slope a extracted from the linear
fits as a function of the central
QPC transmission T. The horizontal
error bars correspond to the standard
deviation of T. The vertical error bars
are given by the uncertainties of
the linear fits.The dashed line
is a fit to a = PT(1 – T) with
P = –2.1 ± 0.1.
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Experimental evidence that they exist! 



Fractionalized charges may also exist at the two ends of a superconducting 
wire or inside the core of a superconducting vortex!

Fractionalized charges



Some concepts appear to be pure mathematical abstractions until 
they lead the way to understanding new fundamental discoveries. 

Try to learn the language, even if you would like to become an 
experimentalist!


