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Lecture 3

Topology and quantum mechanics



Symmetries in nature




There is a well established concept of order in the way that
nature spontaneously breaks symmetries.




More recently, physicists have gone beyond the paradigm of
broken symmetries to find new states of matter with
non-trivial topology




The Nobel Prize in Physics 1985 was awarded to Klaus von Klitzing
"for the discovery of the quantized Hall effect".
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In 1982,Von Klitzing discovered that the Hall
conductivity in bad metals is exactly quantized in 2D
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In 1982,Von Klitzing discovered that the Hall
conductivity in bad metals is exactly quantized in 2D
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Subsequent measurements confirmed the quantization in steps of e?/h
with an accuracy of 107!

Why is the quantization so good!?



In galilean invariant systems (non-relativistic), the energy of a particle is
proportional to the square of the momentum

AE
E, |
In the ground state, a single free electron
is at rest (k=0)
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In galilean invariant systems (non-relativistic), the energy of a particle is
proportional to the square of the momentum
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Because of Pauli principle, two electrons cannot occupy the
same quantum state.

If one adds many free electrons, the states below the Fermi
level are occupied and the ones above it are empty.



In solids (periodic potential), the energy spectrum of electrons
can be quite complicated

Fermi Energy (EF)

If the Fermi level crosses the electronic bands, the highest
occupied state can be easily excited by a bias voltage (metallic state)
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In solids (periodic potential), the energy spectrum of electrons
can be quite complicated
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band gap, the electrons cannot be easily
excited with a bias voltage
(insulating behavior)




Band Structure: Conductors and Insulators
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There is a new class of materials that does not fit in this
classification: topological materials!



Topology is a field of mathematics concerned with properties that
remain invariant under continuous deformations.
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Gaussian curvature
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Topological invariant



Gaussian curvature (sphere)
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Hairy ball theorem

You can’t comb a hairy ball without
creating a cowlick.

Every zero of the tangential vector field has an index. The sum of the
indexes is equal to the Euler topological number

X =2(1-g)=2

Therefore a sphere has a least one zero!



Hairy ball theorem

You can’t comb a hairy ball without
creating a cowlick.

Every zero of the tangential vector field has an index. The sum of the
indexes is equal to the Euler topological number.

x=2(1-9)

One can comb a torus without any
zeros in It.

Xx=2(1-g)=0
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The de Broglie wavelength of the electrons must be larger than the
lattice constant of the crystal.

First Brillouin zone

+T
| Second Brillouin zone

In a square lattice in 2D, the momentum
of the electrons is bounded inside a
square of size |/(lattice constant)!




In crystals, the wavefunctions of the electrons are periodic.

The momentum space of a periodic
crystal (Brillouin zone) is homeomorphic to a torus

I

First Brillouin zone
+T fa
/ \zond Brillouin zone
B > Loy
- T ja +Tfa

4T fa




Bloch bands @ T )
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Bloch wavefunctions describe the wavefunction of
the electrons in a periodic crystal.




Bloch bands @ t )
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The Berry connection of the Bloch band kets, 2<%k! Wn k)

behaves as a vector field in the Brillouin zone (torus).

Loopholes or hedgehogs of the vector field are
topological obstructions with a topological index
and add up to a non-zero Euler topological
number in the hairy torus!




Bloch bands @ T (bi/ —
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Chern number (integer)

The Chern number is a topological invariant of Bloch bands
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(Brillouin zone)!
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Why is the Hall conductivity quantized!?
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VoLUME 49, NUMBER 6 PHYSICAL REVIEW LETTERS 9 AugusT 1982

Quantized Hall Conductance in a Two-Dimensional Periodic Potential

D. J. Thouless, M. Kohmoto,'®’ M. P. Nightingale, and M. den Nijs

Depavtment of Physics, Univevsity of Washington, Seattle, Washington 98195
(Received 30 April 1982)

The Hall conductance of a two-dimensional electron gas has been studied in a uniform
magnetic field and a periodic substrate potential &/, The Kubo formula is written in a
form that makes apparent the quantization when the Fermi energy lies in a gap. Explicit
expressions have been obtained for the Hall conductance for both large and small U/#w,.

Up = dS -V X Z<¢n k‘ ‘wn k>

62
Oxy — 7 E Un
h
n

two-dimensional electron gas
with Hall bar geometry

Quantum hall conductivity is quantized by the Chern number!



Topological matter

In 2D, electrons move in cyclotron orbits in the presence
of a magnetic field

bE®R @,)

. Jﬁ
Magnetic field (B) /6

L) < ;
— B >Lf<
&(1 Force = Bev i P

electron -V12
- 4/ 20

Due to quantum interference, only a discrete number of
wavelengths are allowed (Landau energy levels)



Integer quantum Hall effect

0 2 4 6 8 16 12 14
35 =T T T T .
Pyx sl 1.0 pky
kC¥sq 25[ I 3 108 h/e?
U:IZ:U 20 408
/0 rxr — 2 9 15[
10F {
05k » 102
0-0 i il u " 1 " 1 N L " 1 O_D
0 2 4 6 ] 10 12 14

Magnetic Field (T)




Quantum Hall conductivity is quantized by the Chern number
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Topologically distinct insulating phases



Bulk-Boundary Correspondence

electrons can move along edge (conducting)

electrons localized in orbits (insulating)
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Hall conductivity is quantized by the number of
| D channels at the edge!
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Can topology be used for quantum computation?




In quantum mechanics, whenever two identical particles are swapped,
the total wave function picks up a phase.
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where e = +1 for bosonsand —1 for fermions.
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In 2D, it is mathematically possible to have particles with fractional
statistics (anyons)!

Counterclockwise
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In that case it matters if the particles are swapped in the clockwise or
counterclockwise direction!



The act of exchanging two anyons corresponds to two distinct braiding
operations, depending on how they are swapped!

CLOCKWISE SWAP RESULTING BRAID COUNTERCLOCKWISE SWAP RESULTING BRAID
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World line

Non-trivial topology can also appear in the form of knots of world lines!



One can separate world lines in different topological classes based
on the number of knots.



In 1997, Alexei Kitaev suggested that building qubits
with anyons would permit creating quantum
computers that are immune to phase decoherence!

Anyons cannot exist in isolation and must be entangled with other anyons!

They are hard to observe because they are insensitive to local
measurements, and can only be destroyed when merged with other anyons.

On the other hand, their qubits are hard to decohere!




Qubit

The fundamental unit of information (qubit) in a topological quantum
computer is a linear superposition of two anyons, which can be braided
with other qubits!



week endin
PRL 95, 140503 (2005) PHYSICAL REVIEW LETTERS 30 SEPTEMBER 2005

Braid Topologies for Quantum Computation

N. E. Bonesteel, L. Hormozi, and G. Zikos
Department of Physics and National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida 32310, USA

S.H. Simon

Bell Laboratories, Lucent Technologies, Murray Hill, New Jersey 07974, USA
(Received 23 May 2005; published 29 September 2005)

In topological quantum computation, quantum information is stored in states which are intrinsically
protected from decoherence, and quantum gates are carried out by dragging particlelike excitations
(quasiparticles) around one another in two space dimensions. The resulting quasiparticle trajectories
define world lines in three-dimensional space-time, and the corresponding quantum gates depend only on
the topology of the braids formed by these world lines. We show how to find braids that yield a universal
set of quantum gates for qubits encoded using a specific kind of quasiparticle which is particularly
promising for experimental realization.
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In 2005, it was explicitly shown (theoretically) how to perform logical
operations by braiding world lines of topological quantum particles!



Do anyons exist?




In 1982, right after the discovery
of the integer quantum Hall effect,
Tsui and Stomer discovered the
appearance of quantum Hall
plateaus at some rational fractions
of magnetic flux quanta per
unit cell.

Fluxquanta V= — =

One year later, Bob Laughlin showed the experiment can be explained by
the existence of particles with fractional charge!

Fractional quantum Hall effect!



The Nobel Prize in Physics 1998 was awarded jointly
to Robert B. Laughlin, Horst L. Stormer and Daniel
C. Tsui "for their discovery of a new form of
quantum fluid with fractionally charged excitations."

_J

10

Magnetic field (T)

Are particles with fractionalized charge anyons!?




VOLUME 53, NUMBER 7 PHYSICAL REVIEW LETTERS 13 AUGUST 1984

Fractional Statistics and the Quantum Hall Effect

Daniel Arovas
Department of Physics, University of California, Santa Barbara, California 93106

and

J. R. Schrieffer and Frank Wilczek

Department of Physics and Institute for Theoretical Physics, University of California, Santa Barbara, California 93106
(Received 18 May 1984)

The statistics of quasiparticles entering the quantum Hall effect are deduced from the adia-
batic theorem. These excitations are found to obey fractional statistics, a result closely relat-
ed to their fractional charge.

In 1984, Arovas, Schrieffer and Wilczek showed (theoretically) that
particles with fractional charge € = €/q in the FQH effect
correspond to anyons with phase

“ T 0 = m
q
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RESEARCH

MESOSCOPIC PHYSICS
Fractional statistics in anyon collisions

H. Bartolomei'*, M. Kumar'*+, R. Bisognin', A. Marguerite'f, J.-M. Berroir', E. Bocquillon®, B. Placais!,
A. Cavanna?, Q. Dong?, U. Gennser?, Y. Jin?, G. Feve'§

Bartolomei et al., Science 368, 173-177 (2020) 10 April 2020
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Experimental evidence that they exist!



Fractionalized charges
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Fractionalized charges may also exist at the two ends of a superconducting
wire or inside the core of a superconducting vortex!



Some concepts appear to be pure mathematical abstractions until
they lead the way to understanding new fundamental discoveries.

Try to learn the language, even if you would like to become an
experimentalist!




