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Lecture 2

Implications of quantum mechanics



Since 1944, electromechanical and digital computers have been used in a 
variety of scientific applications. 
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1. INTR O DUC TIO N 

O n  the  p ro g ra m  it s a ys  this  is  a  ke yn o te  s p e e c h --a n d  I d o n ' t  kn o w 
wha t a  ke yn o te  s pe e ch  is . I do  no t in te n d  in  a ny wa y to  s ugge s t wh a t s h o u ld  
be  in  this  me e ting  a s  a  ke yn o te  o f the  s ubje c ts  o r a n yth in g  like  tha t.  I ha ve  
m y own th ings  to  s a y a nd  to  ta lk a b o u t a nd  the re 's  no  imp lica tion  tha t 
a n yb o d y ne e ds  to  ta lk a b o u t the  s a me  th ing  o r a nyth ing  like  it. S o  wh a t I 
wa n t to  ta lk a b o u t is  wha t Mike  De rto u z o s  s ugge s te d  th a t n o b o d y wou ld  
ta lk a bou t.  I wa n t to  ta lk a b o u t the  p ro b le m  o f s imula ting  phys ic s  with  
c o m p u te rs  a nd  I m e a n  tha t in  a  s pe cific  wa y which  I a m going to  e xp la in . 
Th e  re a s on  fo r do ing  this  is  s ome th ing  tha t I le a rne d  a b o u t fro m  E d  
Fre dkin ,  a n d  my e n tire  in te re s t in  the  s ub je c t ha s  b e e n  ins p ire d  b y h im. It 
ha s  to  do  with  le a rn ing  s ome th ing  a b o u t the  pos s ibilitie s  o f c o m p u te rs ,  a n d  
a ls o  s ome th ing  a b o u t pos s ibilitie s  in  phys ics . If we  s uppos e  tha t we  kn o w a ll 
the  phys ica l la ws  pe rfe c tly,  o f cou rs e  we  d o n ' t  ha ve  to  p a y a n y a tte n tio n  to  
compu te rs .  It's  in te re s ting  a n ywa y to  e n te rta in  one s e lf with  the  id e a  th a t 
we 've  go t s ome th ing  to  le a rn  a b o u t phys ica l la ws ; a nd  if I ta ke  a  re la xe d  
vie w h e re  (a fte r a ll I'm  h e re  a n d  n o t a t home ) I'll a d m it tha t we  d o n ' t  
u n d e rs ta n d  e ve ryth ing . 

Th e  firs t que s tion  is , Wh a t kind  o f c o m p u te r a re  we  going to  us e  to  
s imula te  phys ics ?  C o m p u te r th e o ry ha s  b e e n  de ve lope d  to  a  p o in t wh e re  it 
re a lize s  tha t it doe s n 't m a ke  a n y d iffe re nce ; whe n  yo u  ge t to  a  u n iv e rs a l 
com pu te r,  it d o e s n 't m a tte r h o w it's  m a n u fa c tu re d ,  h o w it's  a c tua lly ma de . 
Th e re fo re  m y que s tion  is , Ca n  phys ics  b e  s imula te d  b y a  un ive rs a l c o m- 
pu te r?  I wou ld  like  to  ha ve  the  e le me nts  o f this  c o m p u te r locally in te rcon- 
n e c te d ,  a nd  the re fo re  s o rt o f th ink a b o u t ce llu la r a u to m a ta  a s  a n  e xa m p le  
(b u t I d o n ' t  wa n t to  fo rce  it). But I d o  wa n t s ome th ing  invo lve d  with  the  
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In 1981, Feynman gave a lecture where he proposed that natural 
processes should be simulated by other natural processes, rather than by 

classical computers, since nature is quantum mechanical.  

He called computers based on natural processes quantum computers. 



Quantum Computers

The elementary unit of information in a quantum computer is the qubit, 
which exists as a simultaneous superposition of a 0 and a I states. 



Quantum Computers
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A quantum computer with N qubits exists simultaneously as a linear 
superposition of 2N states!  

2N states
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In performing logical operations with those independent 2N states, 
quantum computers are capable of massive parallelization that 

grows exponentially with the number of qubits!

A quantum computer with N qubits exists simultaneously as a linear 
superposition of 2N states!  
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The promise of quantum computers is that certain computational tasks might be 
executed exponentially faster on a quantum processor than on a classical processor1. A 
fundamental challenge is to build a high-!delity processor capable of running quantum 
algorithms in an exponentially large computational space. Here we report the use of a 
processor with programmable superconducting qubits2–7 to create quantum states on 
53 qubits, corresponding to a computational state-space of dimension 253 (about 1016). 
Measurements from repeated experiments sample the resulting probability 
distribution, which we verify using classical simulations. Our Sycamore processor takes 
about 200 seconds to sample one instance of a quantum circuit a million times—our 
benchmarks currently indicate that the equivalent task for a state-of-the-art classical 
supercomputer would take approximately 10,000 years. This dramatic increase in 
speed compared to all known classical algorithms is an experimental realization of 
quantum supremacy8–14 for this speci!c computational task, heralding a much-
anticipated computing paradigm.

In the early 1980s, Richard Feynman proposed that a quantum computer 
would be an effective tool with which to solve problems in physics 
and chemistry, given that it is exponentially costly to simulate large 
quantum systems with classical computers1. Realizing Feynman’s vision 
poses substantial experimental and theoretical challenges. First, can 
a quantum system be engineered to perform a computation in a large 
enough computational (Hilbert) space and with a low enough error 
rate to provide a quantum speedup? Second, can we formulate a prob-
lem that is hard for a classical computer but easy for a quantum com-
puter? By computing such a benchmark task on our superconducting 
qubit processor, we tackle both questions. Our experiment achieves 
quantum supremacy, a milestone on the path to full-scale quantum 
computing8–14.

In reaching this milestone, we show that quantum speedup is achiev-
able in a real-world system and is not precluded by any hidden physical 
laws. Quantum supremacy also heralds the era of noisy intermediate-
scale quantum (NISQ) technologies15. The benchmark task we demon-
strate has an immediate application in generating certifiable random 
numbers (S. Aaronson, manuscript in preparation); other initial uses 
for this new computational capability may include optimization16,17, 
machine learning18–21, materials science and chemistry22–24. However, 
realizing the full promise of quantum computing (using Shor’s algorithm 
for factoring, for example) still requires technical leaps to engineer 
fault-tolerant logical qubits25–29.

To achieve quantum supremacy, we made a number of techni-
cal advances which also pave the way towards error correction. We 
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developed fast, high-fidelity gates that can be executed simultaneously 
across a two-dimensional qubit array. We calibrated and benchmarked 
the processor at both the component and system level using a powerful 
new tool: cross-entropy benchmarking11. Finally, we used component-
level fidelities to accurately predict the performance of the whole sys-
tem, further showing that quantum information behaves as expected 
when scaling to large systems.

A suitable computational task
To demonstrate quantum supremacy, we compare our quantum proces-
sor against state-of-the-art classical computers in the task of sampling 
the output of a pseudo-random quantum circuit11,13,14. Random circuits 
are a suitable choice for benchmarking because they do not possess 
structure and therefore allow for limited guarantees of computational 
hardness10–12. We design the circuits to entangle a set of quantum bits 
(qubits) by repeated application of single-qubit and two-qubit logi-
cal operations. Sampling the quantum circuit’s output produces a set 
of bitstrings, for example {0000101, 1011100, …}. Owing to quantum 
interference, the probability distribution of the bitstrings resembles 
a speckled intensity pattern produced by light interference in laser 
scatter, such that some bitstrings are much more likely to occur than 
others. Classically computing this probability distribution becomes 
exponentially more difficult as the number of qubits (width) and number 
of gate cycles (depth) grow.

We verify that the quantum processor is working properly using a 
method called cross-entropy benchmarking11,12,14, which compares how 
often each bitstring is observed experimentally with its corresponding 
ideal probability computed via simulation on a classical computer. For 
a given circuit, we collect the measured bitstrings {xi} and compute the 
linear cross-entropy benchmarking fidelity11,13,14 (see also Supplementary 
Information), which is the mean of the simulated probabilities of the 
bitstrings we measured:

F P x= 2 " ( )# − 1 (1)n
i iXEB

where n is the number of qubits, P(xi) is the probability of bitstring xi 
computed for the ideal quantum circuit, and the average is over the 
observed bitstrings. Intuitively, FXEB is correlated with how often we 
sample high-probability bitstrings. When there are no errors in the 
quantum circuit, the distribution of probabilities is exponential (see 
Supplementary Information), and sampling from this distribution will 
produce F = 1XEB . On the other hand, sampling from the uniform  
distribution will give "P(xi)#i = 1/2n and produce F = 0XEB . Values of FXEB 
between 0 and 1 correspond to the probability that no error has occurred 
while running the circuit. The probabilities P(xi) must be obtained from 
classically simulating the quantum circuit, and thus computing FXEB is 
intractable in the regime of quantum supremacy. However, with certain 
circuit simplifications, we can obtain quantitative fidelity estimates of 
a fully operating processor running wide and deep quantum circuits.

Our goal is to achieve a high enough FXEB for a circuit with sufficient 
width and depth such that the classical computing cost is prohibitively 
large. This is a difficult task because our logic gates are imperfect and 
the quantum states we intend to create are sensitive to errors. A single 
bit or phase flip over the course of the algorithm will completely shuffle 
the speckle pattern and result in close to zero fidelity11 (see also Sup-
plementary Information). Therefore, in order to claim quantum suprem-
acy we need a quantum processor that executes the program with 
sufficiently low error rates.

Building a high-fidelity processor
We designed a quantum processor named ‘Sycamore’ which consists 
of a two-dimensional array of 54 transmon qubits, where each qubit is 
tunably coupled to four nearest neighbours, in a rectangular lattice. The 

connectivity was chosen to be forward-compatible with error correc-
tion using the surface code26. A key systems engineering advance of this 
device is achieving high-fidelity single- and two-qubit operations, not 
just in isolation but also while performing a realistic computation with 
simultaneous gate operations on many qubits. We discuss the highlights 
below; see also the Supplementary Information.

In a superconducting circuit, conduction electrons condense into a 
macroscopic quantum state, such that currents and voltages behave 
quantum mechanically2,30. Our processor uses transmon qubits6, which 
can be thought of as nonlinear superconducting resonators at 5–7 GHz. 
The qubit is encoded as the two lowest quantum eigenstates of the 
resonant circuit. Each transmon has two controls: a microwave drive 
to excite the qubit, and a magnetic flux control to tune the frequency. 
Each qubit is connected to a linear resonator used to read out the qubit 
state5. As shown in Fig. 1, each qubit is also connected to its neighbouring 
qubits using a new adjustable coupler31,32. Our coupler design allows us 
to quickly tune the qubit–qubit coupling from completely off to 40 MHz. 
One qubit did not function properly, so the device uses 53 qubits and 
86 couplers.

The processor is fabricated using aluminium for metallization and 
Josephson junctions, and indium for bump-bonds between two silicon 
wafers. The chip is wire-bonded to a superconducting circuit board 
and cooled to below 20 mK in a dilution refrigerator to reduce ambient 
thermal energy to well below the qubit energy. The processor is con-
nected through filters and attenuators to room-temperature electronics, 

Qubit Adjustable coupler

a

b

10 mm

Fig. 1 | The Sycamore processor. a, Layout of processor, showing a rectangular 
array of 54 qubits (grey), each connected to its four nearest neighbours with 
couplers (blue). The inoperable qubit is outlined. b, Photograph of the  
Sycamore chip.
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Google sycamore quantum computer operates with N=53 qubits!  



What makes a good quantum computer?



Decoherence time

The time evolution in an isolated quantum system is unitary.
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Small perturbations from the environment in individual qubits can 
make them evolve in time differently. 

That could make the phase difference 
between the simultaneous 2N states of the 

quantum computer change in time, eventually 
destroying quantum information!



Quantum computers could be a game changer in the field 
of cryptography!



Data encryption

For thousands of years humans have tried to encrypt secret information.



Hello  
Alice! Encrypt

Secret key
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Bob

Hello  
Alice! DecryptAlice

Until 1970’s, all secret communications where secured with 
symmetric-key encryption, where both the sender and the receiver 

share the same secret key to encrypt and decrypt the message.

The problem is when someone 
intercepts that secret key!

Data encryption



In 1976, it was theoretically shown by Diffy and Hellman that one 
could safely encrypt messages with both public and a private keys 

(Public-key encryption).

Public-key encryption



Alice wants to receive an encrypted message from Bob.
 

Alice shares a public key with Bob (and the rest of the world), which 
Bob uses to encrypt the message. But only Alice’s private key can

decrypt the message. 

Public-key encryption Hello  
Alice! Encrypt

Alice’s  
public key
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Bob

Hello  
Alice! DecryptAlice

Alice’s  
private key



The idea is that one needs a simple one-to-one mathematical connection 
between the public and the private keys. 

Alice’s private key should be able to easily generate a unique
public key. Conversely,  it should be extremely difficult to infer the 

private key from the public one!

Hello  
Alice! Encrypt

Alice’s  
public key
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Bob

Hello  
Alice! DecryptAlice

Alice’s  
private key

Public-key encryption



In 1979, three mathematicians from MIT (Rivest, Shamir and Adleman) 
developed the first algorithm to implement public-key encryption.  

Public-key encryption



 p x q  =  K

Public-key cryptography is based on the product of prime numbers! 

Public key Private key 

Public-key encryption



 p x q  =  187,621,975,719,284,736,453,892,173,893,871,712,991,…
| {z }

1

400 digits

For a 400 digit product (K) there are                   possibilities 
for p and q (and only one solution).   

Public-key encryption
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Data encryption

 p x q  =  187,621,975,719,284,736,453,892,173,893,871,712,991,…
| {z }

1

400 digits

For a 400 digit product (K) there are                   possibilities 
for p and q (and only one solution).   

A computer that can check 1012 combinations per second would take 
10170  times the age of the universe (1018 s) to break encryption!   
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Data encryption

 p x q  =  187,621,975,719,284,736,453,892,173,893,871,712,991,…
| {z }

1

400 digits

The problem of factorization of large numbers into the product of 
two prime numbers is NP (non-polynomial), as the complexity grows 

exponentially with the number of digits!



What about quantum computers?



Shor algorithm

In 1994, Peter Shor demonstrated (theoretically) that a quantum computer 
can factorize an integer in polynomial time.  

Quantum computers could break any public keys! 



Quantum cryptography

In a world with quantum computers, information can be securely 
transmitted with quantum encryption!



Alice

Suppose bob can send a qubit      or       from either a vertical or a 
horizontal apparatus.  Alice can read the same qubit with either 

type of apparatus as well. 

or or
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Bob

Quantum cryptography



Bob Alice

When Bob and Alice use the same apparatus,  Alice will read the same 
qubits sent by Bob (sharp measurement). 

When they use different apparatuses,  Alice will read the 
correct qubits (1 or 0) only half the time (no information transmitted)!

or or
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Quantum cryptography



Alice and Bob would like to agree on a secure 
key that would prevent Eve to eavesdrop!

Quantum cryptography



No-cloning theorem

It is impossible to create an independent and identical copy of an 
arbitrary unknown quantum state! 
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Two identical unknown quantum states must be entangled!  



No-cloning theorem
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Suppose there is a cloning operator 

If we define

then

Therefore this operator does not exist!



No-cloning theorem

AliceBob

Eve
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or

Eve cannot measure a qubit without 
destroying it. 

Since Eve does not want Alice to know that she 
is intercepting the qubits, she will generate new 

qubits and send them to Alice. 



BB84 Protocol (quantum key distribution)

Suppose Bob wants to send Alice a private key for quantum decryption 
with n bits.   

Hello  
Alice! Encrypt

Secret key

6EB69570 
08E03CE4Bob Hello  

Alice!Decrypt Alice

He wants to do it in a secure way, such that the key cannot be 
intercepted, not even by a quantum computer.  



Alice

Bob sends Alice 4n qubits generated randomly in either a V or H 
apparatus and keeps a record of which apparatus generated each qubit.   

or

Bob

Bob’s record are two strings with 4n bits {V,V,H,V,H,H…} and {0,1,1,1,0,0…}

BB84 Protocol (quantum key distribution)



Alice

Alice measures the 4n qubits from Bob randomly in either a V or H 
apparatus and also keeps a record of which apparatus measured each qubit.   

or or

Bob

Alice’s record are two different strings with also 4n bits, {V,H,H,V,V,H…}
and {0,0,1,1,1,0,…}

BB84 Protocol (quantum key distribution)



Alice and Bob are only interested in the 
bits where the apparatuses agree.  

After Alice publicly announces that the 
transmission is over,  they compare their 

strings of H’s and V’s  

in a public channel (classic), and discard the bits where they disagree.  

Bob Alice

Bob Alice

Classic public channel

Quantum channel

BB84 Protocol (quantum key distribution)
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If Eve is not eavesdropping, all n bits will agree. The channel is secure 
and hence the other n bits can be used as a private key! 

Alice and Bob now randomly pick n bits in the strings of 0’s and 1’s 
(length 2n) and compare them in the public channel.   

Bob Alice

Classic public channel

Quantum channel

BB84 Protocol (quantum key distribution)

Alice
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Randomly choose n bits  
and compare



AliceBob

Eve
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or

Suppose now that Eve is eavesdropping.  When Bob and Alice’s 
apparatuses agree, Eve’s apparatus will disagree half the time. 

When Eve’s apparatus disagrees with the one of Bob and Alice,  Alice 
will receive no information.  

BB84 Protocol (quantum key distribution)



AliceBob

Eve
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or

Alice will read the correct qubits with certainty only when Bob,  
Alice and Eve’s apparatuses agree. 

BB84 Protocol (quantum key distribution)

When Eve’s apparatus is different,  Alice will read the correct qubits
only half the time. 



They know that they were eavesdropped and need to find another 
way to communicate!  

Hence, when Bob and Alice compare n random 
bits of 0’s and 1’s in their strings of length 2n, 

 a quarter of the bits will not will match. 

BB84 Protocol (quantum key distribution)



What other unusual properties 
quantum mechanics has? 



Closed quantum mechanical systems are 
reversible because time evolution is unitary. 

Therefore the system should retain its memory of the initial conditions.



How do closed quantum systems thermalize?

However, in statistical mechanics, thermalization implies that the system 
explores every possible configuration before settling down in the most 

likely one at long times (the system forgets its initial state)! 



We explain the logarithmic growth of entanglement entropy in
time—a property which is taken as one of the key character-
istics of the MBL phase. For the local observables, the
entanglement spreading implies their equilibration to highly
nonthermal values at long times set by initial conditions.
Furthermore, we discuss the effect of dissipation on the
dynamics of MBL systems. Finally, Sec. II.E discusses new
efficient algorithms to obtain highly excited MBL eigenstates
that are possible due to the simple entanglement structure of
MBL eigenstates.
In Sec. III we discuss the new phenomena made possible

by the fact that MBL phases avoid thermalization and are
not described by statistical mechanics. This allows for
localization-protected quantum orders in eigenstates, e.g.,
infinite temperature breaking of discrete symmetry in one-
dimensional systems, which would be otherwise prohibited by
statistical mechanics. In a different direction, we discuss that
MBL is possible in systems with parameters that periodically
depend on time (periodically driven or Floquet systems),
hence preventing energy absorption and equilibration to the
infinite temperature states. This makes MBL an essential
ingredient that can provide the thermodynamic stability of
new driven phases, such as time crystals and anomalous
Floquet insulators. Such phases provide examples of new
states which are possible only out of equilibrium.
Section IV summarizes the present understanding of the

MBL delocalization transition. This is a novel kind of
dynamical phase transition between MBL and ergodic phases.
From the MBL phase, the transition can be visualized as a
proliferation of resonances as one increases interaction
strength or decreases disorder. On the other hand, when
approaching the transition from the ergodic phase, Griffiths
effects which create bottlenecks in the transport become
progressively important, especially in one dimension. We
discuss the basic setup and predictions of the existing
renormalization group approaches.
Section V summarizes recent experimental developments in

studies of MBL. To be in the MBL phase at nonvanishing
temperature, the systemmust be isolated from any external heat
bath. In disordered solids, unavoidable coupling to a bath of
delocalized phonons ultimately destroys the localized state of
the electrons, leading to slow transport by variable-range
hopping. However, systems of ultracold atoms are phonon
free and thus allow for a better control of residual couplings to
the environment. Thereby they offer a laboratory to observe and
systematically study many-body localization and thermaliza-
tion phenomena. More recently, trapped ions, superconducting
qubits, and spins of NV centers in diamond have also emerged
as promising systems where thermalization can be studied, and
new nonequilibrium phases of matter can be realized.
Finally, Sec. VI concludes this Colloquium by presenting a

broader perspective on the ongoing research efforts aimed to
understand the quantum nonergodic behaviors. We outline
some open questions and discuss future directions and
possible synergies between research on MBL systems and
other fields.

II. THE MANY-BODY LOCALIZED PHASE

A. Thermalization in quantum systems

We start by discussing thermalization in isolated quantum
systems. In particular, we review the eigenstate thermalization
hypothesis (ETH), which explains the microscopic mecha-
nism of thermalization in isolated quantum systems. We
further discuss its implications for the entanglement properties
of eigenstates. Since the main focus of this review is on MBL,
our discussion of thermalization is brief; a more complete
overview can be found in the original papers (Deutsch, 1991;
Srednicki, 1994, 1999) and reviews (Nandkishore and Huse,
2015; D’Alessio et al., 2016).
First let us recall that thermalization and more generally the

statistical mechanics description of classical systems are based
on the powerful ergodicity hypothesis, which states that over a
long period of time all microstates of the system are accessed
with equal probability. Directly translating this definition of
ergodicity to quantum systems is problematic, since quantum
mechanics operates in Hilbert space where dynamics is
unitary and one cannot track a trajectory in the phase space.
To see this, let us consider an isolated quantum many-body

system with a Hamiltonian Ĥ. While the discussion applies to
general local lattice Hamiltonians (and can be further extended
to continuum models), as a concrete example the reader may
keep in mind an interacting chain sketched in Fig. 1. The
generic initial nonequilibrium state jψð0Þi can be expanded
over the basis of many-body eigenstates jαi as jψð0Þi ¼P

αAαjαi. Over the course of the quantum evolution, each
coefficient Aα acquires a phase factor determined by the
corresponding eigenenergy Eα,

jψðtÞi ¼ e−iĤtjψð0Þi ¼
X

α

Aαe−iEαtjαi: ð1Þ

The probability of finding the system in a given eigenstate jαi,
pα ¼ jAαj2, is set by the choice of the initial state and does
not change over time. This is unlike classical systems, which
during their evolution explore different states in phase space.
Thus, we need to modify the notion of ergodicity in the
quantum case.
Intuitively, thermalization in an isolated system means that

starting from a physical initial state2 the system’s observables
reach values given by the microcanonical (and Gibbs)
ensembles at sufficiently long times. The infinite-time average
of a physical observable described by an operator Ô (which is
typically a linear combination of few-body operators) can be
found from Eq. (1):

hÔi∞ ¼ lim
T→∞

1

T

Z
T

0
hψðtÞjÔjψðtÞidt ¼

X

α

pαhαjÔjαi: ð2Þ

2By physical we mean, e.g., product states, extensive super-
position of many eigenstates, or any other states that can be
experimentally prepared. In contrast, an individual eigenstate of a
generic many-body system is inaccessible, as its preparation requires
time which is exponentially long in a system’s size.
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We explain the logarithmic growth of entanglement entropy in
time—a property which is taken as one of the key character-
istics of the MBL phase. For the local observables, the
entanglement spreading implies their equilibration to highly
nonthermal values at long times set by initial conditions.
Furthermore, we discuss the effect of dissipation on the
dynamics of MBL systems. Finally, Sec. II.E discusses new
efficient algorithms to obtain highly excited MBL eigenstates
that are possible due to the simple entanglement structure of
MBL eigenstates.
In Sec. III we discuss the new phenomena made possible

by the fact that MBL phases avoid thermalization and are
not described by statistical mechanics. This allows for
localization-protected quantum orders in eigenstates, e.g.,
infinite temperature breaking of discrete symmetry in one-
dimensional systems, which would be otherwise prohibited by
statistical mechanics. In a different direction, we discuss that
MBL is possible in systems with parameters that periodically
depend on time (periodically driven or Floquet systems),
hence preventing energy absorption and equilibration to the
infinite temperature states. This makes MBL an essential
ingredient that can provide the thermodynamic stability of
new driven phases, such as time crystals and anomalous
Floquet insulators. Such phases provide examples of new
states which are possible only out of equilibrium.
Section IV summarizes the present understanding of the

MBL delocalization transition. This is a novel kind of
dynamical phase transition between MBL and ergodic phases.
From the MBL phase, the transition can be visualized as a
proliferation of resonances as one increases interaction
strength or decreases disorder. On the other hand, when
approaching the transition from the ergodic phase, Griffiths
effects which create bottlenecks in the transport become
progressively important, especially in one dimension. We
discuss the basic setup and predictions of the existing
renormalization group approaches.
Section V summarizes recent experimental developments in

studies of MBL. To be in the MBL phase at nonvanishing
temperature, the systemmust be isolated from any external heat
bath. In disordered solids, unavoidable coupling to a bath of
delocalized phonons ultimately destroys the localized state of
the electrons, leading to slow transport by variable-range
hopping. However, systems of ultracold atoms are phonon
free and thus allow for a better control of residual couplings to
the environment. Thereby they offer a laboratory to observe and
systematically study many-body localization and thermaliza-
tion phenomena. More recently, trapped ions, superconducting
qubits, and spins of NV centers in diamond have also emerged
as promising systems where thermalization can be studied, and
new nonequilibrium phases of matter can be realized.
Finally, Sec. VI concludes this Colloquium by presenting a

broader perspective on the ongoing research efforts aimed to
understand the quantum nonergodic behaviors. We outline
some open questions and discuss future directions and
possible synergies between research on MBL systems and
other fields.

II. THE MANY-BODY LOCALIZED PHASE

A. Thermalization in quantum systems

We start by discussing thermalization in isolated quantum
systems. In particular, we review the eigenstate thermalization
hypothesis (ETH), which explains the microscopic mecha-
nism of thermalization in isolated quantum systems. We
further discuss its implications for the entanglement properties
of eigenstates. Since the main focus of this review is on MBL,
our discussion of thermalization is brief; a more complete
overview can be found in the original papers (Deutsch, 1991;
Srednicki, 1994, 1999) and reviews (Nandkishore and Huse,
2015; D’Alessio et al., 2016).
First let us recall that thermalization and more generally the

statistical mechanics description of classical systems are based
on the powerful ergodicity hypothesis, which states that over a
long period of time all microstates of the system are accessed
with equal probability. Directly translating this definition of
ergodicity to quantum systems is problematic, since quantum
mechanics operates in Hilbert space where dynamics is
unitary and one cannot track a trajectory in the phase space.
To see this, let us consider an isolated quantum many-body

system with a Hamiltonian Ĥ. While the discussion applies to
general local lattice Hamiltonians (and can be further extended
to continuum models), as a concrete example the reader may
keep in mind an interacting chain sketched in Fig. 1. The
generic initial nonequilibrium state jψð0Þi can be expanded
over the basis of many-body eigenstates jαi as jψð0Þi ¼P

αAαjαi. Over the course of the quantum evolution, each
coefficient Aα acquires a phase factor determined by the
corresponding eigenenergy Eα,

jψðtÞi ¼ e−iĤtjψð0Þi ¼
X

α

Aαe−iEαtjαi: ð1Þ

The probability of finding the system in a given eigenstate jαi,
pα ¼ jAαj2, is set by the choice of the initial state and does
not change over time. This is unlike classical systems, which
during their evolution explore different states in phase space.
Thus, we need to modify the notion of ergodicity in the
quantum case.
Intuitively, thermalization in an isolated system means that

starting from a physical initial state2 the system’s observables
reach values given by the microcanonical (and Gibbs)
ensembles at sufficiently long times. The infinite-time average
of a physical observable described by an operator Ô (which is
typically a linear combination of few-body operators) can be
found from Eq. (1):

hÔi∞ ¼ lim
T→∞

1

T

Z
T

0
hψðtÞjÔjψðtÞidt ¼

X

α

pαhαjÔjαi: ð2Þ

2By physical we mean, e.g., product states, extensive super-
position of many eigenstates, or any other states that can be
experimentally prepared. In contrast, an individual eigenstate of a
generic many-body system is inaccessible, as its preparation requires
time which is exponentially long in a system’s size.
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At sufficiently long times, in most closed quantum systems, the 
expectation value of an observable approaches the thermodynamic 

one in the micro canonical ensemble (thermalization)!   
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We explain the logarithmic growth of entanglement entropy in
time—a property which is taken as one of the key character-
istics of the MBL phase. For the local observables, the
entanglement spreading implies their equilibration to highly
nonthermal values at long times set by initial conditions.
Furthermore, we discuss the effect of dissipation on the
dynamics of MBL systems. Finally, Sec. II.E discusses new
efficient algorithms to obtain highly excited MBL eigenstates
that are possible due to the simple entanglement structure of
MBL eigenstates.
In Sec. III we discuss the new phenomena made possible

by the fact that MBL phases avoid thermalization and are
not described by statistical mechanics. This allows for
localization-protected quantum orders in eigenstates, e.g.,
infinite temperature breaking of discrete symmetry in one-
dimensional systems, which would be otherwise prohibited by
statistical mechanics. In a different direction, we discuss that
MBL is possible in systems with parameters that periodically
depend on time (periodically driven or Floquet systems),
hence preventing energy absorption and equilibration to the
infinite temperature states. This makes MBL an essential
ingredient that can provide the thermodynamic stability of
new driven phases, such as time crystals and anomalous
Floquet insulators. Such phases provide examples of new
states which are possible only out of equilibrium.
Section IV summarizes the present understanding of the

MBL delocalization transition. This is a novel kind of
dynamical phase transition between MBL and ergodic phases.
From the MBL phase, the transition can be visualized as a
proliferation of resonances as one increases interaction
strength or decreases disorder. On the other hand, when
approaching the transition from the ergodic phase, Griffiths
effects which create bottlenecks in the transport become
progressively important, especially in one dimension. We
discuss the basic setup and predictions of the existing
renormalization group approaches.
Section V summarizes recent experimental developments in

studies of MBL. To be in the MBL phase at nonvanishing
temperature, the systemmust be isolated from any external heat
bath. In disordered solids, unavoidable coupling to a bath of
delocalized phonons ultimately destroys the localized state of
the electrons, leading to slow transport by variable-range
hopping. However, systems of ultracold atoms are phonon
free and thus allow for a better control of residual couplings to
the environment. Thereby they offer a laboratory to observe and
systematically study many-body localization and thermaliza-
tion phenomena. More recently, trapped ions, superconducting
qubits, and spins of NV centers in diamond have also emerged
as promising systems where thermalization can be studied, and
new nonequilibrium phases of matter can be realized.
Finally, Sec. VI concludes this Colloquium by presenting a

broader perspective on the ongoing research efforts aimed to
understand the quantum nonergodic behaviors. We outline
some open questions and discuss future directions and
possible synergies between research on MBL systems and
other fields.

II. THE MANY-BODY LOCALIZED PHASE

A. Thermalization in quantum systems

We start by discussing thermalization in isolated quantum
systems. In particular, we review the eigenstate thermalization
hypothesis (ETH), which explains the microscopic mecha-
nism of thermalization in isolated quantum systems. We
further discuss its implications for the entanglement properties
of eigenstates. Since the main focus of this review is on MBL,
our discussion of thermalization is brief; a more complete
overview can be found in the original papers (Deutsch, 1991;
Srednicki, 1994, 1999) and reviews (Nandkishore and Huse,
2015; D’Alessio et al., 2016).
First let us recall that thermalization and more generally the

statistical mechanics description of classical systems are based
on the powerful ergodicity hypothesis, which states that over a
long period of time all microstates of the system are accessed
with equal probability. Directly translating this definition of
ergodicity to quantum systems is problematic, since quantum
mechanics operates in Hilbert space where dynamics is
unitary and one cannot track a trajectory in the phase space.
To see this, let us consider an isolated quantum many-body

system with a Hamiltonian Ĥ. While the discussion applies to
general local lattice Hamiltonians (and can be further extended
to continuum models), as a concrete example the reader may
keep in mind an interacting chain sketched in Fig. 1. The
generic initial nonequilibrium state jψð0Þi can be expanded
over the basis of many-body eigenstates jαi as jψð0Þi ¼P

αAαjαi. Over the course of the quantum evolution, each
coefficient Aα acquires a phase factor determined by the
corresponding eigenenergy Eα,

jψðtÞi ¼ e−iĤtjψð0Þi ¼
X

α

Aαe−iEαtjαi: ð1Þ

The probability of finding the system in a given eigenstate jαi,
pα ¼ jAαj2, is set by the choice of the initial state and does
not change over time. This is unlike classical systems, which
during their evolution explore different states in phase space.
Thus, we need to modify the notion of ergodicity in the
quantum case.
Intuitively, thermalization in an isolated system means that

starting from a physical initial state2 the system’s observables
reach values given by the microcanonical (and Gibbs)
ensembles at sufficiently long times. The infinite-time average
of a physical observable described by an operator Ô (which is
typically a linear combination of few-body operators) can be
found from Eq. (1):

hÔi∞ ¼ lim
T→∞

1

T

Z
T

0
hψðtÞjÔjψðtÞidt ¼

X

α

pαhαjÔjαi: ð2Þ

2By physical we mean, e.g., product states, extensive super-
position of many eigenstates, or any other states that can be
experimentally prepared. In contrast, an individual eigenstate of a
generic many-body system is inaccessible, as its preparation requires
time which is exponentially long in a system’s size.
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We explain the logarithmic growth of entanglement entropy in
time—a property which is taken as one of the key character-
istics of the MBL phase. For the local observables, the
entanglement spreading implies their equilibration to highly
nonthermal values at long times set by initial conditions.
Furthermore, we discuss the effect of dissipation on the
dynamics of MBL systems. Finally, Sec. II.E discusses new
efficient algorithms to obtain highly excited MBL eigenstates
that are possible due to the simple entanglement structure of
MBL eigenstates.
In Sec. III we discuss the new phenomena made possible

by the fact that MBL phases avoid thermalization and are
not described by statistical mechanics. This allows for
localization-protected quantum orders in eigenstates, e.g.,
infinite temperature breaking of discrete symmetry in one-
dimensional systems, which would be otherwise prohibited by
statistical mechanics. In a different direction, we discuss that
MBL is possible in systems with parameters that periodically
depend on time (periodically driven or Floquet systems),
hence preventing energy absorption and equilibration to the
infinite temperature states. This makes MBL an essential
ingredient that can provide the thermodynamic stability of
new driven phases, such as time crystals and anomalous
Floquet insulators. Such phases provide examples of new
states which are possible only out of equilibrium.
Section IV summarizes the present understanding of the

MBL delocalization transition. This is a novel kind of
dynamical phase transition between MBL and ergodic phases.
From the MBL phase, the transition can be visualized as a
proliferation of resonances as one increases interaction
strength or decreases disorder. On the other hand, when
approaching the transition from the ergodic phase, Griffiths
effects which create bottlenecks in the transport become
progressively important, especially in one dimension. We
discuss the basic setup and predictions of the existing
renormalization group approaches.
Section V summarizes recent experimental developments in

studies of MBL. To be in the MBL phase at nonvanishing
temperature, the systemmust be isolated from any external heat
bath. In disordered solids, unavoidable coupling to a bath of
delocalized phonons ultimately destroys the localized state of
the electrons, leading to slow transport by variable-range
hopping. However, systems of ultracold atoms are phonon
free and thus allow for a better control of residual couplings to
the environment. Thereby they offer a laboratory to observe and
systematically study many-body localization and thermaliza-
tion phenomena. More recently, trapped ions, superconducting
qubits, and spins of NV centers in diamond have also emerged
as promising systems where thermalization can be studied, and
new nonequilibrium phases of matter can be realized.
Finally, Sec. VI concludes this Colloquium by presenting a

broader perspective on the ongoing research efforts aimed to
understand the quantum nonergodic behaviors. We outline
some open questions and discuss future directions and
possible synergies between research on MBL systems and
other fields.

II. THE MANY-BODY LOCALIZED PHASE

A. Thermalization in quantum systems

We start by discussing thermalization in isolated quantum
systems. In particular, we review the eigenstate thermalization
hypothesis (ETH), which explains the microscopic mecha-
nism of thermalization in isolated quantum systems. We
further discuss its implications for the entanglement properties
of eigenstates. Since the main focus of this review is on MBL,
our discussion of thermalization is brief; a more complete
overview can be found in the original papers (Deutsch, 1991;
Srednicki, 1994, 1999) and reviews (Nandkishore and Huse,
2015; D’Alessio et al., 2016).
First let us recall that thermalization and more generally the

statistical mechanics description of classical systems are based
on the powerful ergodicity hypothesis, which states that over a
long period of time all microstates of the system are accessed
with equal probability. Directly translating this definition of
ergodicity to quantum systems is problematic, since quantum
mechanics operates in Hilbert space where dynamics is
unitary and one cannot track a trajectory in the phase space.
To see this, let us consider an isolated quantum many-body

system with a Hamiltonian Ĥ. While the discussion applies to
general local lattice Hamiltonians (and can be further extended
to continuum models), as a concrete example the reader may
keep in mind an interacting chain sketched in Fig. 1. The
generic initial nonequilibrium state jψð0Þi can be expanded
over the basis of many-body eigenstates jαi as jψð0Þi ¼P

αAαjαi. Over the course of the quantum evolution, each
coefficient Aα acquires a phase factor determined by the
corresponding eigenenergy Eα,

jψðtÞi ¼ e−iĤtjψð0Þi ¼
X

α

Aαe−iEαtjαi: ð1Þ

The probability of finding the system in a given eigenstate jαi,
pα ¼ jAαj2, is set by the choice of the initial state and does
not change over time. This is unlike classical systems, which
during their evolution explore different states in phase space.
Thus, we need to modify the notion of ergodicity in the
quantum case.
Intuitively, thermalization in an isolated system means that

starting from a physical initial state2 the system’s observables
reach values given by the microcanonical (and Gibbs)
ensembles at sufficiently long times. The infinite-time average
of a physical observable described by an operator Ô (which is
typically a linear combination of few-body operators) can be
found from Eq. (1):

hÔi∞ ¼ lim
T→∞

1

T

Z
T

0
hψðtÞjÔjψðtÞidt ¼

X

α

pαhαjÔjαi: ð2Þ

2By physical we mean, e.g., product states, extensive super-
position of many eigenstates, or any other states that can be
experimentally prepared. In contrast, an individual eigenstate of a
generic many-body system is inaccessible, as its preparation requires
time which is exponentially long in a system’s size.
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If one performs a local measurement, the expectation value of the 
observable appears to be the thermodynamic one. 

The information of the initial state is spread all over the system 
(scrambled) and appears lost!

Subsystem B behaves as a thermal bath for A, allowing it to thermalize 
and vice versa.  



In nature, the universe of possible dynamic configurations of an isolated 
system can be mapped into semiclassical orbits inside the phase space. 

Dynamical systems
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The coefBcient of viscosity is therefore the zero-6eld
value t)(0), with Stg') replacing the former SQ'):

t)(H) =t) (0)Ll+4(o,'r') '. (8.7)
The magnetic field suppresses the viscosity by fore-

shortening the mean free path in the direction of trans-
port. Apart from differences in the magnitude of r, the
term 4a&.sr' in (8.7) replaces cv,sr' in the analogous result
for the conduction problem. This is owing to charge
transport being reversed by turning through 180' while
transverse momentum transport is reversed by turning
through 90', or in one-half the time. The assumption of

a time of relaxation limits the validity of (8.7) to T)&0.
However, as shown by Sondheimer and Wilson for the
electrical conductivity, " such a formula is probably
more widely applicable than its derivation would
suggest.
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This paper presents a simple model for such processes as spin diffusion or conduction in the "impurity
band. "These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.

I. INTRODUCTION

A NUMBER of physical phenomena seem to involve
quantum-mechanical motion, without any par-

ticular thermal activation, among sites at which the
mobile entities (spins or electrons, for example) may be
localized. The clearest case is that of spin diffusion";
another might be the so-called impurity band conduc-
tion at low concentrations of impurities. In such
situations we suspect that transport occurs not by
motion of free carriers (or spin waves), scattered as
they move through a medium, but in some sense by
quantum-mechanical jumps of the mobile entities from
site to site. A second common feature of these phe-
nomena is randomness: random spacings of impurities,
random interactions with the "atmosphere" of other
impurities, random arrangements of electronic or
nuclear spins, etc.
Our eventual purpose in this work will be to lay the

foundation for a quantum-mechanical theory of trans-
port problems of this type. Therefore, we must start
with simple theoretical models rather than with the
complicated experimental situations on spin diffusion
or impurity conduction. In this paper, in fact, we
attempt only to construct, for such a system, the
simplest model we can think of which still has some
expectation of representing a real physical situation

' N. Bloembergen, Physica 15, 386 (1949).' A. M. Portis, Phys. Rev. 104, 584 {1956).

reasonably well, and to prove a theorem about the
model. The theorem is that at suKciently low densities,
transport does not take place; the exact wave functions
are localized in a small region of space. We also obtain
a fairly good estimate of the critical density at which the
theorem fails. An additional criterion is that the forces
be of suKciently short range—actually, falling off as
r —+ ~ faster than 1/r'—and we derive a rough estimate
of the rate of transport in the Vcr 1/r' case.
Such a theorem is of interest for a number of reasons:

first, because it may apply directly to spin diffusion
among donor electrons in Si, a situation in which I'"cher'
has shown experimentally that spin diffusion is neg-
ligible; second, and probably more important, as an
example of a real physical system with an infinite
number of degrees of freedom, having no obvious
oversimplification, in which the approach to equilibrium
is simply impossible; and third, as the irreducible
minimum from which a theory of this kind of transport,
if it exists, must start. In particular, it re-emphasizes
the caution with which we must treat ideas such as
"the thermodynamic system of spin interactions" when
there is no obvious contact with a real external heat
bath.
The simplified theoretical model we use is meant to

represent reasonably well one kind of experimental
situation: namely, spin diffusion under conditions of

' G. Feher (private communication).
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Such a term will get larger the more times we repeat
V;I,. We can represent the terms of our series by closed
diagrams through the various sites of the lattice,
starting and ending at 0 (see Fig. 1), and this type of
diagram involves a "ladder" which repeatedly runs
back and forth from j to k. Physically, we can think of
it as resulting from a pair of closely coupled atoms.
The technique of Watson' ' shows us that we may

eliminate all repeated indices in a self-consistent way
by including in the energy denominator for atom k the
perturbed energy V.(k) calculated from just such a
series of terms as (13). A complicating factor is that
V, (k) must be calculated from a series of diagrams
which do not include uey indices which have previously
appeared before in the particular term of V, (0) we are
calculating. That is, if we want the term

1 1 1
Vp3—V32—V21—Vip

e3 e2 81

where for brevity we introduce the usual "propagator"
notation

is E, V,(j)=-e;, —
then the propagator e2, for instance, is given by

es is Es——V—' '(2—)
1 1 1

=is—Es— Q Vs,—V,i— —Vss
7, l .lw0. 1 ej el ek

important correlation. Namely, suppose that one factor
of our term, V&i/e&""', is particularly large. The V,
of the previous factor, say Vi /ei'"i, will contain the
term:

Therefore this previous factor would contain the large
factor in its denominator, leading to a tendency to
cancel. On a quantitative basis, first think of all V's as
having the same order of magnitude. Then, since the
other terms of the denominator e~ will all be of order 8'
or less, it is easy to see that we simply decrease the total
unless

or
I Vi, il'/es& lV,

I Vsi/esl &lV/V (17)
W is the breadth of the distribution P(E).
We shall use the limitation (17) in our later com-

putations. We note that it is meaningless if V is small;
but the work of Sec. IV will show that small values of
V are never important. In any case the results do not
depend sensitively on the existence of this limitation.
Actually, (17) is only the most important of an ex-

tensive system of correlations, since similar con-
siderations hold for any group of factors starting from
atom k and ending at atom l, if there is a distinct
return path to atom k from l which has a finite factor.
The fact that isolated large factors are not important,

and again, each of the propagators in this series must be
appropriately modified not to include either 0, 1, or
any of the previous indices in the V,o '(2) series.
Thus we may now write

V.(0)= Q Voi
i&0 is—Es—V,o ' &(k)
j&i,O
kWi, j,O

~ ~ ~

lw ~ ~ ~ ', j,k,o

XVI,— V;, — V;o. (16)
is E; V "(j) —is E—; V,'(i)——

All of this, ';-'of course, involves a self-consistent type of
reasoning, since it is only if these series converge that
we can find V, (j) in this way, and therefore that we
can define the modified series. We say in defense that
clearly we can always make the sum converge for large
enough s, and also that the V,'s in the higher terms,
since they may have many forbidden indices, are more
convergent than those we derive from them.
The prohibition of repeated indices has two useful

consequences. The most obvious is to prevent extensive
correlations between successive factors V/e of a given
product. However, they also introduce a useful and
'For this purpose, one could equally well use the method of

E. Feenberg, Phys. Rev. 74, 206 (1948).

ioQ-

1$ +13
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l2

Qi4/r
r~

Fro. 1. Diagrams corresponding to terms in the perturbation
expansion of V.. (A) may be large and must be summed over;
(B) is a legitimate term.

In 1958, Philip Anderson realized that some metals become insulators 
when disordered. 

Due to quantum mechanical interference, the electrons stop diffusing 
across the lattice and become localized wave-functions. 



in understanding single-particle localization. Some promi-
nent developments include the scaling theory of localization
(Abrahams et al., 1979), multifractality of the critical wave
functions at the metal-insulator transition (Evers and Mirlin,
2008), as well as understanding intricate effects of sym-
metries (e.g., time reversal) on localization [see, e.g.,
Abrahams (2010) for a review]. Since an Anderson insulator
is noninteracting, it is not clear if it is a true phase of matter,
and a key challenge envisioned in a pioneering work of
Anderson, which remained open for several decades, was to
understand the fate of localization in the presence of
interactions between particles. The new, interaction-induced
processes which may potentially destroy localization are
illustrated in Fig. 2(c).
The interplay of interaction and disorder was addressed in

early ground-breaking work: Fleishman and Anderson (1980)
provided qualitative arguments in favor of localization in the
presence of weak short-ranged interactions. Renormali-
zation group approaches have been used to generalize the
notion of the Anderson insulator to describe the quantum
ground states of interacting systems. In this context
Finkelstein (1983) extended the scaling theory of localization
to account for the interplay of interactions and disorder.
Giamarchi and Schulz (1988) developed a controlled renorm-
alization group approach to describe zero-temperature proper-
ties of disordered, interacting 1D quantum liquids.
More recently, the existence of the localized phase at

nonzero temperatures, as a dynamical phase of matter, was
put on a firm footing. The possibility of localization in an
interacting setting was established for a zero-dimensional case
of a quantum dot (Altshuler et al., 1997), and in higher-
dimensional systems with local interactions (Gornyi, Mirlin,

and Polyakov, 2005; Basko, Aleiner, and Altshuler, 2006).
Such a perfect interacting insulator at nonzero temperature is
said to be many-body localized (MBL). Many-body locali-
zation represents a robust dynamical phase of matter because
it is stable within a range of interaction and other Hamiltonian
parameters.
We emphasize that the question whether a given interacting

system is MBL is fundamentally different from the issue of the
Anderson localization of its ground state. In order to establish
MBL, one has to consider states with a finite density of
excitations above the ground state, or, equivalently, states with
a finite energy density, and show that they remain localized.
In contrast, zero-temperature localization requires only the
localization of a finite number of excitations in the whole
system, corresponding to a vanishing energy density as the
system size is taken to infinity.
From the fundamental theoretical perspective, MBL pro-

vides the only known robust mechanism to avoid thermal-
ization in a closed system. Other examples of systems that do
not thermalize are noninteracting systems and Yang-Baxter
integrable quantum models in one spatial dimension, where
any multiparticle interaction process can be reduced to two-
particle collisions (Sutherland, 2004). Unlike MBL, these are
not robust with respect to small perturbations: generally
adding even weak interactions or changing the form of the
Hamiltonian leads to thermalization [see D’Alessio et al.
(2016) and references therein]. Thus, such models do not
describe stable phases of matter.
Recently, the phenomenon of MBL was investigated

extensively, in both theory and experiment. This led to many
exciting developments and new research directions. Much of
this progress, on the theory side, was fueled by applying
quantum information concepts, such as quantum entangle-
ment, to describe the miscroscopic structure of MBL eigen-
states and dynamics in those systems. Theoretical advances
have largely been guided by the new experimental capabil-
ities, which shifted the focus from traditional condensed
matter setups (e.g., linear-response measurements of conduc-
tivity) to setups, which are naturally realized in isolated
synthetic quantum systems (quantum quench experiments,
Fig. 1 being one of the main examples). The goal of this
Colloquium is to review the recent progress and current status
of MBL in an accessible manner.
We start Sec. II with a brief review of thermalization in

quantum models. Afterward, we introduce the notion of a
many-body localized phase and survey its early studies. In
Sec. II.C we outline the phenomenological theory of the MBL
phase. The key insight of this theory is that MBL systems
exhibit a new kind of integrability: they are characterized by
the emergence of an extensive set of quasilocal integrals of
motion (LIOMs). The emergent integrability strongly con-
strains the system’s dynamics and thus provides an intuitive
explanation of why it fails to thermalize. We relate the
entanglement structure of MBL eigenstates to the emergent
integrability. Finally, we discuss the robustness of the emer-
gent integrability of the MBL phase, which distinguishes it
from other integrable systems.
The remainder of Sec. II is devoted to exploring properties

of the MBL phase. Section II.D discusses dynamical proper-
ties of the MBL phase that follow from a LIOM description.

(a)

(b)

(c)

FIG. 2. (a) In a clean crystal, eigenstates are Bloch waves, which
extend throughout the sample. (b) The essence of Anderson
localization of noninteracting particles is that for sufficiently
strong disorder there is a vanishing probability for a particle to
make a resonant transition from one site to another one spatially
separated from it. This leads to eigenstates which are localized in
some region of space, decaying exponentially away from it.
(c) Adding interactions to an Anderson localized system. To first
order, the effect of interaction is to induce hopping of pairs of
particles between the single-particle localized orbitals. One may
ask if the localized phase, with vanishing particle and thermal
conductivities, is robust to this process.
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Anderson localization

Localized states

Because the electrons are localized, they cannot explore the phase 
space and therefore may fail to thermalize even at very long times!



The system does not thermalize!  

Papić, and Abanin, 2013a). Let us consider an MBL system
with a local Hamiltonian Ĥ and specify a region A (e.g., a block
of adjacent spins in a one-dimensional spin chain, in which
case ∂A is just two end points of the block). We divide the
Hamiltonian into three parts: ĤA, which contains the terms
acting only on spins in A, ĤB acting only on spins in the
complement of A, and terms V̂AB which couple spins in A, B
along the boundary ∂A. Let us turn off the couplings along the
boundary of region A. Then the eigenstates are simply tensor
product states of eigenstates jαiA, jβiB of ĤA and ĤB:

jIiAB ¼ jαiA ⊗ jβiB: ð7Þ

These states have zero entanglement entropy for region A. Now
let us turn on the coupling V̂AB, which acts locally near the
boundary. Since the system is in the MBL phase, introducing a
local perturbation will only significantly affect degrees of
freedom situated within the localization length ξ from the
boundary.3 Thus, we expect that the new eigenstates can be
obtained from the states jIiAB by entangling spins in A and B
over a distance ∼ξ away from the boundary ∂A. The effect of
introducing a local perturbation on spins far away from the
boundary is expected to decay exponentially with the distance
leading to an area-law scaling of entanglement entropy Sent ∝
volð∂AÞ (see Fig. 4). The area-law entanglement scaling of
MBL eigenstates, suggested by this argument, was demon-
strated numerically by Bauer and Nayak (2013) and Serbyn,
Papić, and Abanin (2013a). As discussed in Sec. II.D, despite
the area-law entanglement of eigenstates, the dynamics of the
MBL phase after a global quench leads to a volume-law
saturation value of entanglement (Serbyn, Papić, and
Abanin, 2013a).

2. Quasilocal integrals of motion

The low entanglement of MBL eigenstates implies that they
can be connected to product states by a sequence of quasilocal
unitary transformations (Serbyn, Papić, and Abanin, 2013a)
except for the case when MBL eigenstates exhibit topological
order (see Sec. III.A). Such unitary transformations diago-
nalize the Hamiltonian in a given product state basis. Their
quasilocal nature can be used to map physical degrees of
freedom into quasilocal integrals of motion.

To make this intuition more precise, let us consider the
disordered Heisenberg model of Eq. (6). In the limit J⊥ → 0

the Hamiltonian Ĥ0 ¼
P

hiσ̂
z
i þ Jz

P
σ̂zi σ̂

z
iþ1 commutes with

the σ̂zi operator on every site, and therefore the eigenstates are
nonentangled product states, where each spin has a definite
z projection:

jfσgi ¼ jσ1σ2 % % % σNi; σi ¼ ↑;↓: ð8Þ

In total, we have 2L eigenstates, where L is the number of
spins, labeled by strings fσg.
Now, let us turn on a weak flip-flop (kinetic) term J⊥, such

that the system remains in the MBL phase but the Hamiltonian
is no longer diagonal in the jfσgi basis. The argument for the
area-law entanglement implies that the new eigenstates can be
obtained from the product states Eq. (8) by a quasilocal
unitary transformation. We say that Û is quasilocal if it can be
factored into a sequence of 2-site, 3-site, 4-site, …, unitary
operators as Û ¼

Q
i % % % Û

ð3Þ
i;iþ1;iþ2Û

ð2Þ
i;iþ1 (see Fig. 5 for a

schematic illustration). In this expansion, the long-range
unitary operators have progressively decreasing rotation
angles, so that k1 − ÛðnÞ

i;iþ1;…;iþnk2F < e−n=ξ, where k · kF is
the Frobenius operator norm. In contrast, if the Hamiltonian
describes a thermalizing phase, the operator Û that diago-
nalizes it is highly nonlocal since it rotates the product states
into states with volume-law entanglement.
The unitary operator Û transforms the integrals of motion

σ̂zi of Ĥ0 into the integrals of motion τ̂zi ¼ Ûσ̂zi Û
† of Ĥ.

Because Û is quasilocal in an MBL system, the τ̂zi are typically
close to the microscopic spin operators σ̂zi at least at strong
disorder. Specifically, τ̂zi can be expanded as

τ̂zi ¼ Zσ̂zi þ
X∞

n¼1

VðnÞ
i ÔðnÞ

i ; ð9Þ

where ÔðnÞ
i contains up to (2nþ 1)-body operators with

contributions from sites at distance n from i (i.e., sites
i − n;…; i;…; iþ n could contribute) and is normalized
to kÔðnÞ

i kF ¼ 1. Each τ̂zi ¼ Ûσ̂zi Û
† has a finite overlap Z

with the microscopic spin operator σ̂zi . Moreover, the

Entangled
Entangled

FIG. 4. Illustration of the area-law entanglement entropy in one
and two spatial dimensions where only the shaded boundary
regions that include ∝ volð∂AÞ degrees of freedom contribute to
the entanglement. In contrast, for systems with volume-law
entanglement, extensively many degrees of freedom ∝ volðAÞ
are entangled with the exterior region.

(a) (b)

(c)

FIG. 5. (a) Rotation of the product states into the exact many-
body eigenstates can be achieved by a sequence of quasilocal
unitary transformations. (b), (c) The same quasilocal unitary
transformation can be used to obtain the quasilocal operators τ̂z

and ˆ̃ni which commute with the Hamiltonian.

3We will provide a more precise definition of the many-body
localization length later.
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in understanding single-particle localization. Some promi-
nent developments include the scaling theory of localization
(Abrahams et al., 1979), multifractality of the critical wave
functions at the metal-insulator transition (Evers and Mirlin,
2008), as well as understanding intricate effects of sym-
metries (e.g., time reversal) on localization [see, e.g.,
Abrahams (2010) for a review]. Since an Anderson insulator
is noninteracting, it is not clear if it is a true phase of matter,
and a key challenge envisioned in a pioneering work of
Anderson, which remained open for several decades, was to
understand the fate of localization in the presence of
interactions between particles. The new, interaction-induced
processes which may potentially destroy localization are
illustrated in Fig. 2(c).
The interplay of interaction and disorder was addressed in

early ground-breaking work: Fleishman and Anderson (1980)
provided qualitative arguments in favor of localization in the
presence of weak short-ranged interactions. Renormali-
zation group approaches have been used to generalize the
notion of the Anderson insulator to describe the quantum
ground states of interacting systems. In this context
Finkelstein (1983) extended the scaling theory of localization
to account for the interplay of interactions and disorder.
Giamarchi and Schulz (1988) developed a controlled renorm-
alization group approach to describe zero-temperature proper-
ties of disordered, interacting 1D quantum liquids.
More recently, the existence of the localized phase at

nonzero temperatures, as a dynamical phase of matter, was
put on a firm footing. The possibility of localization in an
interacting setting was established for a zero-dimensional case
of a quantum dot (Altshuler et al., 1997), and in higher-
dimensional systems with local interactions (Gornyi, Mirlin,

and Polyakov, 2005; Basko, Aleiner, and Altshuler, 2006).
Such a perfect interacting insulator at nonzero temperature is
said to be many-body localized (MBL). Many-body locali-
zation represents a robust dynamical phase of matter because
it is stable within a range of interaction and other Hamiltonian
parameters.
We emphasize that the question whether a given interacting

system is MBL is fundamentally different from the issue of the
Anderson localization of its ground state. In order to establish
MBL, one has to consider states with a finite density of
excitations above the ground state, or, equivalently, states with
a finite energy density, and show that they remain localized.
In contrast, zero-temperature localization requires only the
localization of a finite number of excitations in the whole
system, corresponding to a vanishing energy density as the
system size is taken to infinity.
From the fundamental theoretical perspective, MBL pro-

vides the only known robust mechanism to avoid thermal-
ization in a closed system. Other examples of systems that do
not thermalize are noninteracting systems and Yang-Baxter
integrable quantum models in one spatial dimension, where
any multiparticle interaction process can be reduced to two-
particle collisions (Sutherland, 2004). Unlike MBL, these are
not robust with respect to small perturbations: generally
adding even weak interactions or changing the form of the
Hamiltonian leads to thermalization [see D’Alessio et al.
(2016) and references therein]. Thus, such models do not
describe stable phases of matter.
Recently, the phenomenon of MBL was investigated

extensively, in both theory and experiment. This led to many
exciting developments and new research directions. Much of
this progress, on the theory side, was fueled by applying
quantum information concepts, such as quantum entangle-
ment, to describe the miscroscopic structure of MBL eigen-
states and dynamics in those systems. Theoretical advances
have largely been guided by the new experimental capabil-
ities, which shifted the focus from traditional condensed
matter setups (e.g., linear-response measurements of conduc-
tivity) to setups, which are naturally realized in isolated
synthetic quantum systems (quantum quench experiments,
Fig. 1 being one of the main examples). The goal of this
Colloquium is to review the recent progress and current status
of MBL in an accessible manner.
We start Sec. II with a brief review of thermalization in

quantum models. Afterward, we introduce the notion of a
many-body localized phase and survey its early studies. In
Sec. II.C we outline the phenomenological theory of the MBL
phase. The key insight of this theory is that MBL systems
exhibit a new kind of integrability: they are characterized by
the emergence of an extensive set of quasilocal integrals of
motion (LIOMs). The emergent integrability strongly con-
strains the system’s dynamics and thus provides an intuitive
explanation of why it fails to thermalize. We relate the
entanglement structure of MBL eigenstates to the emergent
integrability. Finally, we discuss the robustness of the emer-
gent integrability of the MBL phase, which distinguishes it
from other integrable systems.
The remainder of Sec. II is devoted to exploring properties

of the MBL phase. Section II.D discusses dynamical proper-
ties of the MBL phase that follow from a LIOM description.

(a)

(b)

(c)

FIG. 2. (a) In a clean crystal, eigenstates are Bloch waves, which
extend throughout the sample. (b) The essence of Anderson
localization of noninteracting particles is that for sufficiently
strong disorder there is a vanishing probability for a particle to
make a resonant transition from one site to another one spatially
separated from it. This leads to eigenstates which are localized in
some region of space, decaying exponentially away from it.
(c) Adding interactions to an Anderson localized system. To first
order, the effect of interaction is to induce hopping of pairs of
particles between the single-particle localized orbitals. One may
ask if the localized phase, with vanishing particle and thermal
conductivities, is robust to this process.
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A and B are very weakly entangled. The information of the initial 
conditions in A stays in A and is detectable by a local measurement.  



On the other hand, there are classes of closed quantum systems that 
thermalize extremely fast at the Plank scale (fast scramblers)!

Black-holes are the fastest scramblers 
we know!



The are quantum materials that seem to behave as fast scramblers 
(strange metals). Could this unusual phase of matter be the secret 

behind high temperature superconductivity?


