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Lecture 2

Implications of quantum mechanics
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Since 1944, electromechanical and digital computers have been used in a
variety of scientific applications.
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In 1981, Feynman gave a lecture where he proposed that natural
processes should be simulated by other natural processes, rather than by
classical computers, since nature is quantum mechanical.

He called computers based on natural processes quantum computers.



Quantum Computers

Bit Qubit

1 |1)

. ) = af0) + BI1)

% |0)

The elementary unit of information in a quantum computer is the qubit,
which exists as a simultaneous superposition of a 0 and a | states.



Quantum Computers

Bit Qubit

/r [¥) = a|0) + 5[1)

N bit: 01111001000011 (one state)

N qubit: [t1) - |2) ... [bN) —> \¢>N=\(a\0>+5!1>)]\f
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2N states

A quantum computer with N qubits exists simultaneously as a linear
superposition of 2N states!



Quantum Computers

In performing logical operations with those indepenc
quantum computers are capable of massive paralle

ent 2N states,
ization that
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A quantum computer with N qubits exists simultaneously as a linear

superposition of 2N states!
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Google sycamore quantum computer operates with N=53 qubits!



What makes a good quantum computer?




Decoherence time

The time evolution in an isolated quantum system is unitary.

Ulha(t)) = e ot/ apy)

Small perturbations from the environment in individual qubits can
make them evolve in time differently.

¥

That could make the phase difference - P
between the simultaneous 2N states of the i
quantum computer change in time, eventually
destroying quantum information!

#




Quantum

computers could be a game changer in the field
of cryptography!
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Data encryption

IA|B|(C[D|E|F

[alB]c[D[E[F]

For thousands of years humans have tried to encrypt secret information.




Data encryption Bob [ — ERCHE

Alice!

6EB69570
08E03CE4
1 ’
Secret key
. Hello
Alice el
Alice! € Decrypt

Until 1970, all secret communications where secured with
symmetric-key encryption, where both the sender and the receiver
share the same secret key to encrypt and decrypt the message.

The problem is when someone
intercepts that secret key!




Public-key encryption

In 1976, it was theoretically shown by Diffy and Hellman that one
could safely encrypt messages with both public and a private keys
(Public-key encryption).




Public-key encryption

Bob

Alice

Hello
Alicet  Encrypt '_h

l Alice’s
public key
6EB69570
O8EO3CE4

Hello t h
Alice! ecrypt <

Alice’s
private key

Alice wants to receive an encrypted message from Bob.

Alice shares a public key with Bob (and the rest of the world), which
Bob uses to encrypt the message. But only Alice’s private key can

decrypt the message.



Public-key encryption

Bob

Alice

Hello
Bliicel " Enerypt < h

l Alice’s
public key
6EB69570
O8EO3CE4

Hello «—D : h
Alice! ecrypt, <

Alice’s
private key

The idea is that one needs a simple one-to-one mathematical connection
between the public and the private keys.

Alice’s private key should be able to easily generate a unique
public key. Conversely, it should be extremely difficult to infer the
private key from the public one!



Public-key encryption

In 1979, three mathematicians from MIT (Rivest, Shamir and Adleman)
developed the first algorithm to implement public-key encryption.
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Public-key encryption

Private key Public key
>« /

Public-key cryptography is based on the product of prime numbers!
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Public-key encryption

pxq = 187,621,975,719,284,736,453,892,173,893,871,712,991,...

G 4
-~

400 digits

For a 400 digit product (K) there are VK ~ 10**° possibilities
for p and q (and only one solution).



Data encryption

pxq = 187,621,975,719,284,736,453,892,173,893,871,712,991,...

\ . 4

-~

400 digits

For a 400 digit product (K) there are VK ~ 10**° possibilities
for p and q (and only one solution).

A computer that can check 10'2 combinations per second would take
10170 times the age of the universe (10!8 s) to break encryption!




Data encryption

pxq = 187,621,975,719,284,736,453,892,173,893,871,712,991,...

\ . 4
-~

400 digits

The problem of factorization of large numbers into the product of
two prime numbers is NP (non-polynomial), as the complexity grows
exponentially with the number of digits!

P=NP"? pzNpP



What about quantum computers?




Shor algorithm

In 1994, Peter Shor demonstrated (theoretically) that a quantum computer
can factorize an integer in polynomial time.

Quantum computers could break any public keys!



Quantum cryptography

In a world with quantum computers, information can be securely
transmitted with quantum encryption!



Quantum cryptography

Bob Alice

Suppose bob can send a qubit |0) or [1) from either a vertical or a
horizontal apparatus. Alice can read the same qubit with either
type of apparatus as well.



Quantum cryptography

Bob Alice

When Bob and Alice use the same apparatus, Alice will read the same
qubits sent by Bob (sharp measurement).

When they use different apparatuses, Alice will read the
correct qubits (I or 0) only half the time (no information transmitted)!



Quantum cryptography

Alice and Bob would like to agree on a secure
key that would prevent Eve to eavesdrop!




No-cloning theorem

It is impossible to create an independent and identical copy of an
arbitrary unknown quantum state!

) = |9) )

Two identical unknown quantum states must be entangled!



No-cloning theorem

Suppose there is a cloning operator

Ucla) = |a)|a)
Uc|B) = 15)18)
If we define
) = o) +|B)

then

Ucly) = Uc(la) +18)) = |a)|a) + [B)IBYA)M )

Therefore this operator does not exist!



No-cloning theorem

Eve

Alice

Eve cannot measure a qubit without
destroying it.

Since Eve does not want Alice to know that she
is intercepting the qubits, she will generate new
qubits and send them to Alice.
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BB84 Protocol (quantum key distribution)
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Secret key

Suppose Bob wants to send Alice a private key for quantum decryption
with n bits.

He wants to do it in a secure way, such that the key cannot be
intercepted, not even by a quantum computer.



BB84 Protocol (quantum key distribution)

Bob Alice

Bob sends Alice 4n qubits generated randomly in either aV or H
apparatus and keeps a record of which apparatus generated each qubit.

Bob’s record are two strings with 4n bits {V,V,H,VH,H...} and {0,1,1,1,0,0...}
L |




BB84 Protocol (quantum key distribution)

Bob Alice

Alice measures the 4n qubits from Bob randomly in either aV or H
apparatus and also keeps a record of which apparatus measured each qubit.

Alice’s record are two different strings with also 4n bits, {V,H,H,V,V,H...}
and {0,0,1,1,1,0,...}



BB84 Protocol (quantum key distribution) §

Alice and Bob are only interested in the
bits where the apparatuses agree.

Classic public channel

After Alice publicly announces that the ," \s‘
transmission is over, they compare their Bob Alice
strings of H’s and Vs \\/
Bob Alice
Quantum channel
{V7V7H7V7H7H7'“} {V7H7H7V7V7H7°"}
V4 RVARVER V4 VD JVEVES SRV 4

in a public channel (classic), and discard the bits where they disagree.



BB84 Protocol (quantum key distribution)

Alice VRIIRY

{V7V7H7V7H7H7'“} {070,1,1,1707...}

N———
Ry VRV e

'

[0,1,1,0,...)
N———— —

/ 2n

Randomly choose n bits
and compare

Classic public channel

- = g

Quantum channel

Alice and Bob now randomly pick n bits in the strings of O’s and |’s
(length 2n) and compare them in the public channel.

If Eve is not eavesdropping, all n bits will agree. The channel is secure
and hence the other n bits can be used as a private key!



BB84 Protocol (quantum key distribution)

Eve

Suppose now that Eve is eavesdropping. When Bob and Alice’s
apparatuses agree, Eve’s apparatus will disagree half the time.

When Eve’s apparatus disagrees with the one of Bob and Alice, Alice
will receive no information.



BB84 Protocol (quantum key distribution)

Eve

Alice will read the correct qubits with certainty only when Bob,
Alice and Eve’s apparatuses agree.

When Eve’s apparatus is different, Alice will read the correct qubits
only half the time.



BB84 Protocol (quantum key distribution)

Hence, when Bob and Alice compare n random
bits of 0’s and |’s in their strings of length 2n,
a quarter of the bits will not will match.

They know that they were eavesdropped and need to find another
way to communicate!



What other unusual properties
quantum mechanics has!?




Closed quantum mechanical systems are
reversible because time evolution is unitary.

Therefore the system should retain its memory of the initial conditions.



However, in statistical mechanics, thermalization implies that the system
explores every possible configuration before settling down in the most
likely one at long times (the system forgets its initial state)!

How do closed quantum systems thermalize?




Eigenstate thermalization hypotesis

Micro canonical?

At sufficiently long times, in most closed quantum systems, the
expectation value of an observable approaches the thermodynamic
one in the micro canonical ensemble (thermalization)!



Eigenstate thermalization hypotesis

w(t)) = e My (0)) =) A e |a)

a

In breaking a quantum system in two subsystems, A and B, the amount
of entanglement between them scales with the volume of the system.

The quantum system can explore all possible states (superposition).



Eigenstate thermalization hypotesis

If one performs a local measurement, the expectation value of the
observable appears to be the thermodynamic one.

The information of the initial state is spread all over the system
(scrambled) and appears lost!

Subsystem B behaves as a thermal bath for A, allowing it to thermalize
and vice versa.



Dynamical systems

Generalized momenta

Generalized coordinate

In nature, the universe of possible dynamic configurations of an isolated
system can be mapped into semiclassical orbits inside the phase space.
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Absence of Diffusion in Certain Random Lattices

P. W. ANDERSON
Bell Telephone Laboratories, Murray Hill, New Jersey

(Received October 10, 1957)

This paper presents a simple model for such processes as spin diffusion or conduction in the “impurity
band.” These processes involve transport in a lattice which is in some sense random, and in them diffusion
is expected to take place via quantum jumps between localized sites. In this simple model the essential
randomness is introduced by requiring the energy to vary randomly from site to site. It is shown that at low
enough densities no diffusion at all can take place, and the criteria for transport to occur are given.
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In 1958, Philip Anderson realized that some metals become insulators
when disordered.

Due to quantum mechanical interference, the electrons stop diffusing
across the lattice and become localized wave-functions.



Anderson localization \/\/WVW\/

The Nobel Prize in Physics 1977 was awarded jointly
to Philip Warren Anderson, Sir Nevill Francis Mott

and John Hasbrouck Van Vleck "for their
fundamental theoretical investigations of the
electronic structure of magnetic and disordered
systems."

Localized states

Because the electrons are localized, they cannot explore the phase
space and therefore may fail to thermalize even at very long times!



Entangled
Entangled oA

N4
—

B

The system does not thermalize!

A and B are very weakly entangled. The information of the initial
conditions in A stays in A and is detectable by a local measurement.



Nonlinear
Dynamics and
Quantum Chaos

An Introduction

On the other hand, there are classes of closed quantum systems that
thermalize extremely fast at the Plank scale (fast scramblers)!

Black-holes are the fastest scramblers
we know!




Temperature (K)

The are quantum materials that seem to behave as fast scramblers
(strange metals). Could this unusual phase of matter be the secret
behind high temperature superconductivity?
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