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Abstract

The muon is a spin-1
2

charged particle characterized by an intrinsic magnetic
moment with a gyromagnetic ratio, g, that is very close to 2. Its variance from 2,

referred to as the magnetic moment anomaly aµ =
g − 2

2
, has been determined over

the last decades to ever higher precisions in both experiment and theory. The most
recent experiment (E821) was performed at Brookhaven National Laboratory and
achieved a precision of 0.54 ppm, while the current theoretical evaluation stands
at a precision of 0.39 ppm. However, the experimental value is higher than the
predicted value by more than 3 standard deviations which suggests the possibility
of new physics. A new experiment (E989) is being constructed at Fermi National
Laboratory to investigate the discrepancy by reducing the experimental error to
0.14 ppm. At the same time, theory groups are working to reduce the error in aµ
to match the projected experimental precision. A confirmation of the difference
between experiment and theory will have an impact on new physics models in
the TeV scale. The goal of this review is to describe the E821 measurement of
aµ, the improvements implemented in E989, the current theoretical status in the
computation of aµ, and the new physics implications.
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The closer you look the more there is to see.
Friedrich Jegerlehner, The Anomalous Magnetic Moment of the Muon [1].

1 Introduction

The study of elementary particles and their interactions led to a representative
mathematical formulation known as the Standard Model (SM) of particle physics.
When subjected to experimental tests, the SM successfully describes three of
the four fundamental forces: electromagnetic, weak, and strong interactions. On
the other hand, the SM is not believed to be complete since it fails to explain a
number of problems that are still facing today’s physics community. First, the
SM does not incorporate the fourth fundamental force of gravity. Moreover, It
does not provide insight on the nature of the “invisible” matter that is holding
galaxies together, which constitutes ∼ 26% of the energy density of the universe
and is known as Dark Matter. In addition, the SM does not account for the
different masses and mixing of the 12 leptons known as the flavor problem, and
the predominance of matter over antimatter. In order to solve these problems,
searches for physics not accounted for by the SM have been pursued in both
experiment and theory. Any sign of significant discrepancy between experiment
and theory is taken very seriously since it might lead to new insights that can
reveal what is missing in our current view of the universe. Some physicists have
set up experiments to look for answers to SM problems by studying high energy
interactions as is pursued at the Large Hadron Collider at CERN, in the hope of
observing some new particles. This led to the discovery of the Higgs boson in 2012,
a central piece of the SM. Other experiments have been set up to perform detailed
studies of known particles, measuring their properties to very high precisions and
comparing them to theoretical calculations to both check the models and look
for discrepancies. The subject of this current review is an important illustration
of the latter scenario where precision tests of the magnetic moment, an intrinsic
property of a spinning charged elementary particle, will be examined by comparing
experiment to theory.

The possible elementary charged particles that can be used to measure the
magnetic moment are the three spin 1

2
leptons: the electron e, the muon µ, and

the tau τ . While these particles have the same charge and spin, they have very
different masses1 which are given by me = 0.511 MeV/c2, mµ = 105.658 MeV/c2,
and mτ = 1776.82 MeV/c2. The difference in masses alters the lifetimes and decay
modes of each particle. The electron is the lowest mass charged lepton and thus
is stable. The muon lifetime is τµ = 2.197× 10−6 seconds and it decays almost
100% to an electron and two neutrinos (eνµν̄e). Taus have a much shorter lifetime
ττ = 2.906 × 10−13 seconds and a diversified decay pattern where 65% go into
hadronic states (states that contain quark-antiquark pair particles such as pions)
and the remainder go into leptonic states (the two possible states are muons

1The unit of mass is given in MeV/c2 according to the relation E = mc2 with the energy E
given in units of MeV where 1 MeV = 1.6 × 10−13J.
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and two neutrinos or electrons and two neutrinos) [2]. Because of its very short
lifetime, the study of the tau’s magnetic moment is difficult, leaving the electron
and the muon as the practical candidates for measuring the magnetic moment.
While the electron is the most precisely studied lepton, effects in the magnetic
moment sensitive to physics beyond the SM scale with powers of m2

` [3]. For this
reason, muons are more appropriate for the study of the magnetic moment to
search for new physics. The magnetic moment arises from the electric charge
and the current of an elementary particle with spin. For instance, a classical
calculation of a particle with mass m, and charge q, moving in a circular orbit of
radius r, with velocity −→v , shows that its magnetic moment −→µ is related to its

orbital angular momentum (
−→
L = m−→r ×−→v ) by the relation:

−→µ =
q

2mc

−→
L . (1)

In quantum mechanics, the magnetic moment is an intrinsic property of a
particle with spin. Both the magnetic moment and the orbital angular momentum
are promoted to operators in order to give the correct quantum mechanical
representation. While Equation (1) is still valid in describing the orbital angular

momentum
−→
L , the spin magnetic moment requires a modification by a factor g

that is very close to 2. The corrected equation is given by

−→µ = g
q

2mc

−→
S , (2)

where g is called the gyromagnetic ratio, the Lande g-factor, or the g-factor, and
q is the charge given in units of the fundamental charge e, where q = −e for a
lepton particle (negative muon) and q = +e for a lepton antiparticle (positive

muon).
−→
S is the spin operator

−→
S =

~
2
−→σ , (3)

where σi are the Pauli spin matrices. The result g = 2 was first obtained by
Dirac in 1928 when he generalized the Schrödinger equation to incorporate special
relativity (See Appendix A). With the development of the quantum mechanical
description of electromagnetism known as quantum electrodynamics (QED), g
was found to differ from 2 by an anomaly a`, known as the magnetic moment
anomaly, or the anomaly for short, such that: g` = 2(1 +a`). The anomaly is then

a` =
g` − 2

2
. (4)

In this equation, the g − 2 factor appears! The factor g − 2 is incorporated in the
title of all experiments that measure the magnetic moment of the muon and it is
the focus of this review.

In addition to the quantum fluctuations of the electromagnetic field described
by QED, quantum fluctuations due to heavier particles such as the weak gauge
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bosons (W± and Z bosons) and hadrons (for example quark-antiquark pairs such
as pions) also contribute to the anomaly. These effects are known as radiative
corrections (RC) and are mainly dominated by QED as it will be discussed in

Section 5. The anomaly scales as δa` ∼
m2
`

M2 where M � m` can represent the
mass of a heavier SM particle, the mass of an unobserved heavy particle beyond
the SM, or an energy range where the SM is no longer valid [3]. From this
relation, we first see that aµ is more sensitive to new effects than ae by a factor of
(mµ/me)

2 ≈ 4× 104. On the other hand, heavier states (large M) have smaller
effects (∼ 1/M2) which places the determination of g − 2 as a good probe for
interactions with energies at the TeV scale (100 GeV to 1 TeV range). The LHC
is currently probing the TeV energy scale, so g − 2 will complement and guide
the LHC searches and may even be more sensitive to new physics that is not
accessible to the LHC.

The importance of g − 2 is in the fact that it can be precisely measured, as
it will be discussed in Section 3 and it can be precisely calculated based on all
RC of the SM as will be discussed in Section 5. On the experimental side, the
most recent experiment is the Brookhaven National Laboratory (BNL) E821 g− 2
experiment that concluded its run in 2001, with a final reported result of [4]:

aE821
µ = (116 592 08.0± 6.3)× 10−10 (0.54 ppm) [4], (5)

where ppm refers to the precision in parts per million given by the ratio of the
total error to the value as σX/X. The anomaly has been evaluated by different
groups. One of its recent calculations is

aSMµ = (116 591 82.8± 4.5)× 10−10 (0.39 ppm) [5], (6)

which gives a difference of

∆aµ (E821− SM) = (25.2± 7.7)× 10−10. (7)

The difference ∆aµ between the measurement and the prediction is 3.3 standard
deviations with the measurement having the higher value. In particle physics,
a three standard deviation effect “3σ” means that the probability of the mea-
surement to randomly fluctuate from the predicted value by 3σ is equivalent to
the probability of obtaining a value on a Gaussian distribution that is at least
3 standard deviations away from the expected mean. This corresponds to a
probability of 1.35× 10−3 (on average 1 out of every 740 measurements). In order
to be confident that the difference is not just a statistical fluctuation, a difference
of five standard deviations “5σ” is required, which implies that the probability of
such variation is 3× 10−7 (on average 1 out of every 3.5 million measurements).

An independent experiment is designed to reduce the error in Equation (5) to
∼ 1.6× 10−10 giving a precision of 0.14 ppm with a four-fold improvement over
the BNL result [4]. Assuming that a similar value for the anomaly is obtained
and the theoretical calculation is exactly the same, the new deviation would be
5.3σ, which will confirm the discrepancy. This new experiment is currently being
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built at Fermi National Laboratory (FNAL) under the name E989 Muon g − 2
Experiment. An error improvement in the measurement of g − 2 implies that the
error in the calculated prediction should also be improved to the same level. In
the event that E989 confirms this discrepancy, severe constraints will be imposed
on new theoretical models such as supersymmetry,2 extra dimensions,3 or a dark
matter particle.

This review will describe the experimental technique used to measure the
anomaly and present the status of the theoretical calculations. It will also address
the future improvements in both areas and conclude with new physics possibilities.

2 Properties of the Muon

The muon anomaly can be measured to ppm precision by studying the behavior
of the spin magnetic moment of muons in circular orbits subjected to a uniform
magnetic field. In this section, the key ideas that permit the measurement will be
introduced to lead up to a discussion of the BNL experiment in the next section.

2.1 Obtaining Polarized Muons

Muons are obtained from pions that are acquired from sending a high intensity
beam of protons into a target material that has the property of being resistant
to high stresses, nickel for example. The decay of positive and negative pions
produces positive and negative muons according to

π+ → µ+ + νµ,

π− → µ− + νµ.
(8)

The spin orientation, called polarization, of the decayed muon is well determined
for the cases of positive and negative pions. This can be seen by introducing the
concepts of helicity h, parity transformation, and charge conjugation. Helicity is

defined as the projection of spin
−→
S along the momentum direction p̂ = −→p /|−→p |

such that h =
−→
S · p̂. For a spin-1

2
particle, it is right-handed when h = +1/2 (spin

and momentum parallel) and left-handed when h = −1/2 (spin and momentum
anti-parallel). Parity, represented by the operator P , creates the mirror image
of a physical process. For example, for a vector −→x , P |−→x 〉 = − |−→x 〉. Charge
conjugation, represented by the operator C, refers to the conversion of a particle
to its antiparticle by changing the sign of all its quantum numbers (electric charge,
lepton number, baryon number, and flavor charges such as strangeness).

2Supersymmetry (SUSY) theory postulates that a space-time symmetry exists between
the two classes of the SM elementary particles: fermions and boson. It incorporates the
four fundamental forces and predicts energy interactions beyond the weak scale. However,
experimental evidence has yet to support the theory.

3Extra dimension models postulate the existence of dimensions other than the three spatial
dimensions and the temporal dimension.
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Figure 1: An illustration of the possible decays of a pion. The black
arrow represents the spin vector and the green arrow represents the
momentum orientation.

By starting from a spin zero pion and a right-handed antineutrino, the possible
transformations are C, P , or both CP as shown in Figure C. Experimental
evidence shows that neutrinos are almost only left-handed and antineutrinos are
almost only right-handed. For this reason, the only possible process is the one
obtained by a CP transformation, which makes a negative pion produce a right-
handed negative muon (h = +1/2), and a positive pion produce a left-handed
positive muon (h = −1/2).

2.2 Parity Violation

While parity is a conserved quantity in electromagnetic and strong interactions,
it is not conserved in the weak interactions. In fact, the muon weak decays

µ− → e− + ν e + νµ,

µ+ → e+ + νe + νµ
(9)

are parity violating events, which means that the emitted electrons4 have a favored
direction of emission. Because of parity violation in weak processes, a correlation
exists between the momentum direction of the decaying electron and the spin
orientation of the muon. In other words, there is a preferred direction for the
decay of the electron for each spin orientation of the muon. For an illustration of
this correlation, the negative muon decay is considered in the two limiting cases of
Figure 2 in the muon rest frame (MRF). Note that the muon momentum and spin
are parallel and directed to the right in the laboratory frame to better understand
the spin and momentum orientations of the right figure.

If the electron has the maximum possible energy in the MRF, the two neutrinos
will be emitted back-to-back to the electron with the latter carrying approximately
half of the rest mass energy of the muon in order to conserve momentum, Ee,max ≈

4Unless specified, electron refers to both the electron and its antiparticle, the positron.
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Figure 2: In the laboratory frame, the muon spin and momentum
are parallel and directed to the right. Both decays are in the MRF
and show the more likely electron direction. The left decay shows an
electron having the maximum possible energy Ee,max ∼

(
mµc

2
)
/2 =

53 MeV. The right decay shows an electron emitted at rest with its
spin antiparallel to its laboratory momentum.

(mµc
2) /2 = 53 MeV.5 Parity violation favors the electron to be emitted left-handed

which implies that its momentum will be anti-parallel to the muon spin as shown
in the left figure. In the case of a zero momentum electron in the MRF, the
neutrino and antineutrino will be emitted antiparallel to each other with their
spins parallel. Since the electron has a preferred spin direction antiparallel to the
muon laboratory momentum, and the muon momentum and spin are parallel, then
the electron will be emitted parallel to the muon spin as shown on the right figure.
These two examples show that by knowing the direction of the decay electron,
the muon spin orientation can be inferred. This is the key idea of the muon
g − 2 measurement. By placing muons with the same polarization in a circular
orbit within a uniform magnetic field, their longitudinal polarization (their spin
component parallel to the momentum vector) will change slightly with each orbit
at a rate that is directly related to the anomaly a` = g`−2

2
. The change in the

muon longitudinal polarization is determined by using the asymmetric angular
distribution of the decay electrons. Formally, the differential decay probability
for an electron to be emitted with a normalized energy y = E/Ee,max at an angle
θ with respect to the muon spin is given in the MRF with the approximation
Ee � mec

2 by
dP± ∝ N (Ee) (1± A(Ee) cos θ) dydΩ, (10)

where the (+) is for positive muons decay and the (−) is for negative muons
decay and dΩ is the solid angle. N (Ee) is a normalization factor that represents
the number of decay electrons per unit energy and A (Ee) is the non-vanishing
coefficient of cos θ which represents the decay asymmetry factor that reflects the
parity violation. The expressions of N (Ee) and A (Ee) are given by

N (Ee) = 2y2 (3− 2y) and A (Ee) =
1− 2y

3− 2y
. (11)

These relations are derived in Appendix C.
A few remarks related to Equations (10) and (11) are in order. First, the

5More precisely, the conservation of energy leads to Ee,max =
m2
µ +m2

e

2mµ
c2. The above

approximation holds when the value
mec

2

Ee,max
= 9.6× 10−3 is negligible.
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Figure 3: The number of decay electrons and the asymmetry distribu-
tions in the MRF as a function of the fractional energy y = E/Ee,max
[4].

number of decay electrons and asymmetry reach their highest values in the MRF
when the energy of the emitted electron is maximum (y = 1) as shown in Figure
3. Also, the asymmetry changes sign at half the maximum energy (y = 1

2
) which

means that the emitted electron will have a preferred handedness (or helicity)
based on its energy. More importantly, the probability of emitting a specific
number of electrons varies with the angle θ between the electron and the muon
spin directions. To be precise, there are more high energy electrons (e−) emitted
when their momenta are anti-parallel to the muon (µ−) spins than when they are
parallel. By only selecting the highest energy electrons and counting their number,
the spin direction of the muons can be inferred: when the number of electrons is
maximum, the muon spin is anti-parallel to the emitted electron direction, and
when the number is minimum, the muon spin is parallel to the emitted electron
direction. A similar reasoning can be followed for high energy positrons (e+) which
will reach a maximum number when the positive muon (µ+) spins are parallel to
the emitted positrons. If the spin of the muons is allowed to precess, then the
number of high energy electrons will also precess at the same rate, allowing a
direct measurement of the precession frequency.

2.3 Relativistic Muons in a Magnetic Field

In classical electromagnetism, the effect of a uniform magnetic field on a bar
magnet is to exert a torque that will align the magnet with the magnetic field.
However, if the magnet is spinning, then conservation of angular momentum will
cause the bar magnet to precess around the magnetic field. Similarly, the muon
has an intrinsic spin and an intrinsic magnetic moment. The interaction of the
muon magnetic moment with the magnetic field will cause a precession of the
spin around the magnetic field. In fact, it is the expectation value of the spin
operator that precesses around the magnetic field at a constant frequency known
as Larmor frequency. This frequency describes the gyration of the spin and is

7



proportional to the magnetic field, thus the name of gyromagnetic ratio, g. An
additional kinematic effect of precession is introduced due to the acceleration
of the relativistic reference frame. This is the case for muons moving at high
velocities with a transverse acceleration. This precession is derived in Appendix
B and is referred to as Thomas precession.

If relativistic muons are constrained to a circular orbit by a uniform magnetic
field, as is the case in a storage ring,6 their spins experience both Larmor and
Thomas precessions. The ensemble of these effects on the spin was worked out
by Bargmann, Michel and Telegdi in 1959 [6], in an equation known as the BMT
equation

−→ωs =
q

mµc

{(
aµ +

1

γ

)
−→
B − aµ

(
γ

γ + 1

)(−→
β ·
−→
B
)−→
β +

(
aµ +

1

γ + 1

)
−→
E ×

−→
β

}
,

(12)

where the velocity is
−→
β =

−→v
c

, the Lorentz factor is γ = 1/
√

1− β2,
−→
E and

−→
B are

the electric and magnetic fields in the laboratory frame respectively. In addition,
the muons also travel in a circular orbit with a frequency known as the cyclotron
frequency (see Appendix B)

−→ωc =
q

γmµc

{
−→
B +

γ2

γ2 − 1

(−→
E ×

−→
β
)}

. (13)

It is convenient to choose a reference frame which rotates with the velocity vector
in order to keep the equations simple. In this case, the precession is given by the
difference of angular frequencies −→ωa = −→ωs −−→ωc,

−→ωa =
q

mµc

{
aµ
−→
B − aµ

(
γ

γ + 1

)(−→
β ·
−→
B
)−→
β +

(
aµ −

1

γ2 − 1

)
−→
E ×

−→
β

}
. (14)

If the second and third terms are made to vanish by a proper choice of muon
momenta and applied electric and magnetic fields, then Equation (14) becomes

−→ωa = aµ
q

mµc

−→
B . (15)

In this case, a nonzero aµ leads to a precession of the muon spin relative to the
cyclotron frequency. This is the central equation of the g− 2 experiment that will
be discussed in the next section.

6A storage ring is a circular particle accelerator that maintains particles at the same energy
for a long period of time

8



3 Brookhaven g − 2 Experiment: E821

3.1 Historical Background

The muon magnetic moment has been measured by three consecutive experi-
ments at CERN through the 1960’s and 1970’s, and a more recent experiment
at Brookhaven National Laboratory (BNL), E821. The last CERN experiment
developed a number of novel techniques to measure the anomaly. For instance, it
employed a storage ring with a transverse uniform magnetic field to extend the
muon’s lifetime and cancel the second term in Equation (14) since in this case
−→
β ·
−→
B = 0. The experiment chose a specific momentum according to the relation

aµ − 1/ (γ2 − 1) = 0 in Equation (14) known as the magic momentum, which
causes the spin oscillation to be independent of any applied electric fields. This
equation requires knowledge of the anomaly, which is the quantity the experiment
is set to measure. However, the value of the anomaly has already been measured
to the first decimal places, which is enough to determine the momentum to the
desired precision. The goal of the CERN experiment, on the other hand, was to
measure the anomaly to a higher precision. An anomaly value of aµ ≈ 1.166×10−3

led to a Lorentz factor value of γmagic ≈ 29.30, and thus the magic momentum
is approximately 3.09 GeV in the CERN experiment. At the magic momentum,
electric quadrupoles7 were used to provide vertical focusing of the beam. The
combined results of the CERN run established a 7.3 ppm precision that was
consistent with the standard model prediction. The new measurement techniques
developed at CERN were used at Brookhaven with some notable improvements
such as the higher intensity of the primary proton beam from the proton storage
ring; the direct injection of muons into the storage ring instead of pions; the use of
kickers to place muons on the correct orbits; the high field uniformity; and the use
of Nuclear Magnetic Resonance probes to map the magnetic field distribution. The
E821 experiment resulted in a 14-fold improvement over the CERN experiment
where it performed four positive muon runs and one negative muon run which
gave a combined precision of 0.54 ppm. In this section, a description of the E821
experiment and the summary of its measurements is given.

3.2 Description of the Experimental Method

At BNL, 24 GeV protons are extracted from the proton storage ring Alternating
Gradient Synchrotron (AGS) and directed towards a nickel target to generate
pions. The pions subsequently decay to muons which pass through selectors that
maximize the number of longitudinally polarized muons at the magic momentum
of 3.094 GeV/c. These muons are injected into the storage ring via a tangent 1.7
meters long superconducting inflector magnet that provides a 1.5 Tesla vertical
field. The field cancels the main storage ring field, allowing the muons to pass
almost undeflected into the ring. The muon storage ring has a toroid-shaped

7An electric quadrupole is a system composed of two pairs of oppositely polarized poles
placed antiparallel to each other.
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Figure 4: The chain of injection and storage of positive muons in the
muon g−2 ring at BNL. The “forward” muons refer to muons decaying
in the same direction as the laboratory momenta. In this situation,
positive muons have their spins anti-parallel to their momenta [3].

structure with a diameter of 14 meters, a beam pipe with a diameter of 90 mm,
and a uniform field of 1.45 Tesla. This magnetic field is provided by dipole
magnets8 that maintain muons in the desired trajectories. However, when the
muons are first injected, their trajectories are offset from the storage ring orbit.
Pulsed kicker magnets are placed at a specific location in the ring, close to the
inflector exit in order to apply a small magnetic field, a “kick,” to adjust the orbit
by approximately 10 mrad at each injection. Figure 4 shows the complete chain
of the muon g − 2 experiment at BNL for positive muons.

Beam focusing is also needed to constrain the muons within the desired
trajectories. Since electric fields do not affect the spin precession, electrostatic
quadrupoles are used to continuously focus and defocus the beam in the vertical
and the horizontal directions in order to precisely control the beam.

Muons will travel around the ring at the cyclotron angular frequency described
by Equation (13), which has a value of approximately 149 ns, and their spin will
interact with the magnetic field resulting in a precession with the angular frequency

ωs given by Equation (14). However, the electric field
−→
E is negligible (E ≈ 0) and

the uniform magnetic field is transverse (
−→
β ·
−→
B = 0), so the anomalous precession

frequency, −→ωa, is given by Equation (15) to the first order. Its magnitude is

ωa = aµ
eB

mµc
(16)

If g = 2, then this relative precession ωa will be zero, which implies that the
muon spin is precessing at the same frequency as the cyclotron frequency. On
the other hand, if g 6= 2, the muon spin will precess at a different rate than

8A dipole magnet is a configuration of two opposite pole magnets in the vertical plane of the
ring which provide a transverse magnetic field.
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Figure 5: Illustration of the spin precession in the storage ring plane
relative to a constant momentum (not to scale). The precession
amounts to ∼ 12 degrees per orbit [3].

the cyclotron frequency, leading the muon spin axis to change by 12 degrees9

after each rotation for a constant momentum. Figure 5 illustrates this change
by showing the momentum vector and the projection of the spin vector in the
horizontal plane of the storage ring.

In order to determine the anomaly aµ =
gµ − 2

2
in Equation (16), three

quantities need to be determined accurately: ωa, B, and the muon mass mµ. The
muon mass was determined indirectly by an independent experiment on muonium,
the bound state of µ+e− [7] as will be discussed. The next two subsections describe
the measurement of ωa and the magnetic field B.

3.3 Measurement of the Anomalous Angular Frequency ωa

As a result of the muons’ high momentum (∼ 3.1 GeV), their lifetime is
extended from 2.197 µs at rest to 64.435 µs in the ring. The muons circle the
ring many times before they decay into an electron and two neutrinos given by
Equation (9). As discussed in Section 2.2, the electron has a preferred emission
direction in the muon rest frame that depends on the orientation of the muon
spin as given by Equation (10). For example, a positron has a higher probability
to be emitted parallel to the muon spin (see Figure 6).

If all decay electrons were detected, the number observed will decay expo-
nentially as exp( −t

γτµ
). Since the interest is in the precession frequency, a choice

of a cut on a laboratory observable that directly depends on this frequency is
required. A reasonable choice will permit the selection of a subset of the decay
electrons in such a way that their number oscillates at the desired frequency ωa.

9The angular change of spin relative to momentum after one revolution around the ring is
θa = ωaTc. For aµ ≈ 1.166 × 10−3, mµ = 105.7 Mev/c

2
, e = 1.6 × 10−19 C, and B = 1.45 T,

ωa ≈ 1.45× 106 Hz and Tc ≈ 149 ns, the result using Gaussian units is θa ≈ 12◦.
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Figure 6: A positive muon in the storage ring emits a positron almost
parallel to the muon spin (green arrow). The electron is subjected
to the same dipole magnetic field which produces a larger deflection
leading the positron to interact with the calorimeter scintillator. The
light is detected by a Photomultipler Tube (PMT) generating a signal
that is digitized by a Wave Form Digitizer [3].

At the magic momentum pµ ≈ 3.09 GeV/c, the direction of the electrons cannot
be chosen as a cut since most decay electrons are nearly parallel to the muon
momentum direction, regardless of their decay orientation in the muon rest frame.
Instead, a more practical cut can be applied on the electron’s laboratory energy.
For instance, if only electrons with the highest possible energy are selected, they
will represent positrons that decayed nearly parallel to the muon laboratory mo-
mentum with maximum muon rest frame energy. The number of these positrons
is larger when they are emitted parallel to the muon spin as opposed to when they
are antiparallel. So the number of positrons detected will be maximum when the
spin is aligned with the decay positron momentum, and will be minimum when
the spin is opposite. It becomes clear that the detected electrons will oscillate
with the frequency of the muon spin oscillation ωa.

In practice, the minimum energy threshold is selected to maximize the statistical
figure-of-merit (FOM), NA2, in order to minimize the statistical uncertainty. On
the left of Figure 7, NA2 is largest for electrons with Eth ≈ 2.6 GeV (y ≈ .85).
However, the interest is in electrons above an energy threshold. By integrating
the quantities N , A, and NA2 for a single electron threshold as a function of the
energy threshold, NA2 is maximized at Eth ≈ 1.8 GeV as shown on the right of
Figure 7.

With the the assumption that the spin precession vector is independent of
time, the angle between the spin component in the orbit plane and the muon
momentum is ωat + φ, where φ is a constant phase. At time t, the number of
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Figure 7: The equivalent of Figure 3 boosted to the laboratory frame.
Left: N , A, and NA2 as a function of the fractional energy y =
E/Ee,max where Ee,max ≈ 3.098 GeV. Right: Integrated N , A, and
NA2 as a function of the threshold energy [4].

decay positrons N(t) with energy larger than the threshold energy Eth is

N(t, Eth) = N0(Eth) exp

(
−t
γτµ

)
[1 + A(Eth) sin (ωat+ φ(Eth))] , (17)

where N0 is a normalization factor and A is the asymmetry factor for positrons of
energy greater than Eth. Figure 8 shows the arrival-time spectrum of the final
E821 data run for 2001. As discussed earlier, the spectrum follows an exponential
decay of the muons modulated by the g − 2 dependent angular frequency. By
fitting this time distribution to the five-parameter function of Equation (17), the
angular frequency ωa is determined.

The electron detection is made via 24 symmetrically distributed calorimeters
inside of the ring as shown in Figure 6. The goal of the calorimeters is to determine
the electrons’ energy and arrival time. The calorimeters are designed to detect
the high energy electrons where 65% of the electrons with energy higher than
1.8 GeV are intercepted [4]. Each calorimeter is made out of plastic-scintillator10

material (52% lead alloy, 38% scintillating fiber, and 10% epoxy) read out by
photomultiplier tubes11 (PMTs). The decaying electrons have both tangential
and radial momentum components. However, the radial component is quite small,
which permits the extrapolation of the electron’s trajectory from the calorimeter
to the central muon orbit, allowing a measurement of the decay position and
vertical angle as shown in Figure 6. The muon position information is particularly
important in characterizing the magnetic field felt by the muon at that specific

10A plastic-scintillator causes the particle to deposit energy when it passes through. The
scintillator re-emits the absorbed energy in the form of light.

11Photomultiplier tubes are light detectors that operate via the photoelectric effect where
photons, upon hitting a photocathode, generates a cascade of electrons that can be read by a
Wave Form Digitizer.
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Figure 8: Histogram of the 3.6 billion detected electrons above 1.8
GeV as a function of time, modulo 100 µs, for the 2001 data set [4].

location. Finally, a Wave Form Digitizer (WFD) captures raw analog PMT signals
and digitizes them for further processing with the advantage of maintaining high
resolution measurements. An example of a WFD output is shown in Figure 6.

3.4 Measurement of the Magnetic Field B

The magnetic field B is weighted by the stored muons distribution and averaged
over the running time. It can be expressed as an integral of the product of the
muon distribution multiplied by the magnetic field distribution over the storage
region leading to a coupling of the moments of the muon distribution to the
respective multipoles of the magnetic field. In order to determine the weighted
magnetic field B to sub-ppm precision, either the moments and multipoles of
the muon and magnetic field distributions should be known extremely well, or
a particularly uniform magnetic field and a circular beam aperture should be
used so that the leading term dominate the multipole expansion of the magnetic
field. The latter option was selected where Nuclear Magnetic Resonance (NMR)
permitted the determination of the magnetic field to the tens of ppb. In this
experiment, NMR is based on using protons in a water sample placed in the dipole
magnetic field, and exposed to a π

2
radio-frequency (RF) pulse which rotates

the net magnetization of the protons.12 A pickup coil placed in the transverse
direction registers the induced signal that exponentially decays with an oscillation

12A radio-frequency pulse is a pulse in the range from 3 KHz to 300 GHz that excites a large
frequency band resulting in the appearance of a time-dependent magnetic field which can rotate
the magnetization vector of the protons.
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as the protons’ magnetization vector regains its equilibrium position. This process
is known as Free Induction Decay, which has a frequency sensitive to the the local
magnetic field value.

The NMR procedure allows the determination of the magnetic field at thou-
sands of points around the ring which permits the mapping and monitoring of the
field during data taking. A calibration method is used to express the Larmor spin
frequency of a proton in a water sample in terms of the Larmor spin frequency
of a free proton ωp. The Larmor frequency of a free proton is ωp = γpB, where
γp is the free proton gyromagnetic moment ratio given by Equation (2) such

that −→µp = γp
−→
S . Hence, the free proton frequency, ωp, is related to the magnetic

moment of the free proton µp and the magnetic field B by

B =
~ωp
2µp

. (18)

According to the last equation, this weighted magnetic field can be referred to as

ωp. By writing Equation (2) in the form
q

mc
=

2µµ
1 + aµ

and using Equations (16)

and (18), the anomaly can be written in terms of dimensionless ratios,

aµ =
R

λ−R
, (19)

where λ ≡ µµ
µp

and R ≡ ωa
ωp

. The muon-to-proton magnetic moment ratio, λ,

embodies in it both the muon and the proton masses since
µµ
µp

=
gµ
gp

mp

mµ

. Its

value is determined through a precision measurement of the Zeeman ground state
hyperfine transitions in muonium (µ+e−) by E1054 LAMPF at Los Alamos [7],

λ+ =
µµ+

µp
= 3.183 345 137 (85).

Note that this result has a precision of ∼ 27 ppb which could not be obtained by
mass measurements. The use of λ+ to determine aµ− implies CPT invariance.13

In other words, the relations aµ− = aµ+ and λ+ = λ− must be valid. In fact, the
measurement of ωa for positive and negative muons provides a CPT test where

∆R = Rµ− −Rµ+ = (3.6± 3.7)× 10−9. (20)

3.5 Corrections and Systematic Errors

The method described so far presents an ideal scenario. However, there are
additional effects that affect the measurements, the most important of which are
related to the beam dynamics leading to a displacement of the beam trajectory

13CPT invariance implies that the product of the three discrete transformations C, P, and
T taken in any order is a symmetry of theories like the SM. It guarantees that particles and
antiparticles have the same masses and lifetimes.
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and the determination of the magnetic field at a location offset from the orbit of
the muons. While the dipole magnetic field insures the bending of the muon beam,
the vertical focusing is done via electric quadrupoles. These quadrupoles set an
electric field gradient that causes the beam to oscillate around its equilibrium in
the plane transverse to the beam. This type of oscillation is known as the betatron
oscillation and it satisfies the harmonic oscillator equations

ẍ+ ω2
xx = 0,

ÿ + ω2
yy = 0,

(21)

where the frequencies are defined as

ωx = ωc
√

1− n, ωy = ωc
√
n, (22)

where ωc is the cyclotron frequency and n is the field index defined as

n =
R0

βB0

∂Ey
∂y

, (23)

with an orbit stability condition of 0 < n < 1 and where R0 is the equilibrium
radius, B0 is the dipole magnetic field, and β is the muon speed. Since the betatron
frequencies are smaller than the cyclotron frequency, this type of focusing is called
weak focusing.

The betatron motion perturbs the muons trajectories affecting the muons

momenta and directions. This implies that the assumptions
−→
β ·
−→
B = 0 and

aµ − 1/ (γ2 − 1) = 0 (E ≈ 0) are no longer valid. These effects should be taken
into account in determining the anomalous frequency ωa as given by Equation

(15). The correction for the momentum direction to satisfy
−→
β ·
−→
B = 0 is called the

Pitch Correction. Similarly, the momentum spread from the magic momentum
requires a correction to the electric field referred to as the Radial Electric Field
Correction. The combination of these two corrections are explicitly shown in
column 4 of Table 3 (E/pitch).

Next, the sources of systematic errors in ωa are briefly defined with their
numerical values listed in Table 1:

• Pileup: Two low-energy electrons that reach the detector at very close times
can be interpreted as one high-energy electron.

• AGS background: Mis-steering the proton beam in the AGS might lead it
to hit a part of the target that produces a higher flux of pions entering the
storage ring when muons are injected.

• Lost muons: Small perturbations in the magnetic or electric fields may
couple to betatron oscillations at their resonant frequency leading to a
motion without bound until the muons are lost.

• Timing shifts and gain changes: A calibration pulse was sent in parallel to
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Table 1: Systematic errors for ωa for the three high-statistics running
periods. † In the 2001 run, the AGS background, timing shifts, E
field and pitch correction, binning and fitting procedure have a total
systematic error of 0.11ppm.

Years 1999 2000 2001
(ppm) (ppm) (ppm)

Pileup 0.13 0.13 0.08
AGS background 0.10 0.01 †
Lost Muons 0.10 0.10 0.09
Timing Shifts 0.10 0.02 †
E-field and pitch 0.08 0.03 †
Fitting/Binning 0.07 0.06 †
CBO 0.05 0.21 0.07
Gain Changes 0.02 0.13 0.12
Total systematic error on ωa 0.3 0.31 0.21

the beam data through the optical and electronic readout system to monitor
the time resolution of the detector and variations in the energy scale used.

• Fitting/Binning: The electron decay spectra was sorted into discrete energy
bins and fitted to a multi-parameter fitting function for different data subsets
which introduced errors related to the corrections applied to the spectra
and the experimental conditions.

• Coherent Betatron Oscillation (CBO): Mismatch between the inflector and
storage ring apertures at the injection point causes the beam to alternatively
widen and narrow as it circulates around the ring.

The systematic uncertainties in the magnetic field measurement are due to
effects related to the determination of the precession frequency of protons in a
water sample placed in a trolley probe that is offset from the orbit of the muons.
The positioning of the trolley permits measurements of the magnetic field during
data taking at multiple locations around the ring. However, the magnetic field
at the trolley’s position might vary from the field that muons experience. In
addition, the desired quantity is the free proton precession, but the measured
quantity is the proton’s precession in water. For these reasons, uncertainties are
introduced in the processes of calibration and interpolation. Table 2 summarizes
the numerical values of the errors in ωp for three running periods.

The electric dipole moment (EDM) of the muons should also be mentioned for
completeness of the discussion. Just as the magnetic moment originates from the
current of the spinning charged lepton and interacts with the magnetic field, the
EDM is due to the electric charge of the lepton and it interacts with the electric
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Table 2: Systematic errors for ωp for the three high-statistics running
periods. † After 1999, the inflector, which was damaged, was replaced
making the disturbance of the inflector’s fringe field on the main
storage ring field negligible.

Years 1999 2000 2001
(ppm) (ppm) (ppm)

Absolute calibration of standard probe 0.05 0.05 0.05
Calibration of the trolley probes 0.20 0.15 0.09
Trolley measurements of B 0.10 0.10 0.05
Interpolation with fixed probes 0.15 0.10 0.07
Uncertainty from muon distribution 0.12 0.03 0.03
Inflector fringe field uncertainty 0.20 † †
Others 0.15 0.10 0.10
Total systematic error on ωp 0.4 0.24 0.17

field. The equivalent of Equation (2) for the EDM is

−→
d = η

q

2mc

−→
S (24)

where d is the dimensionless constant equivalent to the g-factor. Equation (19)
assumes a zero muon EDM. For a non-zero muon EDM, the spin frequency is

−→ω = −→ω a +−→ω EDM = −→ω a −
qη

2mc

(−→
β ×

−→
B
)

(25)

However, the current experimental value for muons is dµ = (−0.1± 0.9)× 10−19e ·
cm [2], which is too small to affect the anomalous precession frequency ωa.

3.6 Summary of Results from E821

The experiment E821 has conducted four positive muon runs (1997-2000) and
one negative muon run (2001) that are all reported in [4]. The results of the
experiment for the last three runs with the largest statistics are displayed in Table
3 and Table 4.

The averaged value of the ratio R = ωa/ωp of Equation (19) evaluated in the
cases of negative and positive muons is

Rµ (E821) = 0.003 707 206 4(20). (26)

The anomalous magnetic moment is thus

aE821
µ = 11 659 208 (5.4)stat (3.3)sys (6.3)tot × 10−10 (0.54 ppm) (27)

This final measurement has a statistical uncertainty of 0.46 ppm and a systematic
uncertainty of 0.28 ppm which were added in quadrature to get a total uncertainty
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Table 3: Results for the anomalous precession frequency ωa including
the relative electric field and pitch corrections shown in column 4 and
the event-weighted magnetic field ωp given with their uncertainties.
The error on the average takes into account the correlated systematic
uncertainties between different periods.

Years Electrons ωa/(2π) E/pitch ωp/(2π) R = ωa/ωp
[millions] [Hz] [ppm]

1999 (µ+) 950 229 072.8(3) 0.81(8) 61 791 256(25) 0.003 707 204 1(51)
2000 (µ+) 4000 229 074.11(16) 0.76(3) 61 791 595(15) 0.003 707 205 0(25)
2001 (µ−) 3600 229 073.59(16) 0.77(6) 61 791 400(11) 0.003 707 208 3(26)
Average 0.003 707 206 3(20)

Table 4: BNL E821 results of the anomaly aµ for the three high-
statistics running periods.

Years Polarity aµ × 1010 Precision [ppm]
1999 µ+ 11 659 202(15) 1.3
2000 µ+ 11 659 204(9) 0.73
2001 µ− 11 659 214(9) 0.72

Average 11 659 208.0(6.3) 0.54

of 0.54 ppm. In order to improve the statistical uncertainty to the same level as
the systematic uncertainty, an additional running period of 8 years is required.
Alternatively, the experiment can use a higher intensity beam to produce more
electrons, and thus more statistics. This is precisely what the new Fermilab
experiment does.

4 Future Fermilab g − 2 Experiment: E989

The Fermilab experiment, E989, will measure the anomaly aµ with an error
of 1.6 × 10−10 leading to a fractional error of 0.14 ppm, where the level of the
statistical and systematic uncertainties are both at the 0.10 ppm level. In order
to achieve this goal, a collection of data that is twenty-one times larger than the
E821 data collection is required, which scales to 1.8 × 1011 detected positrons
with energy greater than 1.8 GeV and arrival time greater than 30 µs after muon
injection in the storage ring. Since the detected positron number is directly
proportional to the protons on target, the Fermilab experiment will have to deliver
4× 1020 protons. Indeed, it will be possible to reach these numbers by using the
Fermilab beam complex which is expected to annually deliver 2.3× 1020 8 GeV
protons on an Inconel14 core target. At this rate, the desired number of protons,

14Inconel is an alloy, composed of a metal and other elements, specifically designed to withstand
high beam stresses.
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and thus positrons, will be achieved in less than two years of running.
Fermilab will improve upon the methods and instrumentation used at BNL.

For instance, the produced pion beam will pass through a bending magnet to
select particles with a momentum of 3.1 GeV (± 10 %), and subsequently traverse
a decay line of over one kilometer, which results in a pure muon beam entering
the storage ring. The muon storage ring will be filled at a repetition rate of 15
Hz compared to 4.4 Hz at BNL, and the stored muon-per-proton ratio will also
be increased by a factor of 5 to 10 times. The muons will enter the ring via a new
superconducting inflector, characterized by a limited flux leakage onto the storage
region and a larger horizontal beam aperture to allow a higher storage efficiency.
The muon kicker will have an optimized pulse-forming network15 that will provide
a pulse close to the beam width, as opposed to the E821 kicker which had a pulse
width longer than the cyclotron period. At BNL, the injected muon beam was
contaminated with pions which introduced a hadronic flash background. This
background will be reduced by a factor of 20 in E989.

E989 will use the same muon storage ring of E821, which has been relocated
to Fermilab in the summer of 2013 in a new building characterized by mechanical
stability and controlled temperature. These options were not available at BNL.
The new segmented calorimeters will use silicon Photomultipliers (SiPMs) to read
signals from lead-fluoride crystal (PbF2). The crystal has an improved energy
resolution and a very fast Cherenkov signal16 response. When a photon strike a
SiPM pixel, it generates an avalanche that is linearly combined with the other
pixels that were hit to form the response. SiPMs are designed so that their number
of pixels exceed the number of photons that are expected to strike the device
allowing a high photo-detection efficiency. The added benefit of using SiPMs is
that they can be placed inside the storage ring at the back of the PbF2 crystals
without perturbing the field, as opposed to PMTs which require long lightguides.

Since momentum spread, betatron oscillations, and muons distribution intro-
duced ppm level corrections in the anomalous precession at BNL, E989 introduces
in-vacuum straw drift tubes17 as tracking detectors to better understand beam
dynamics, limit pile up effects, and provide an independent validation of the
systematic uncertainties analysis (for example, an independent momentum mea-
surement.) In addition, it will also be used to search for a permanent EDM. The
electronics and data acquisition systems will be upgraded to handle the increased
rate of data taking and to record all information related to the run for monitoring
and the application of corrections in the analysis stage.

15A pulse-forming network is an electric circuit composed of capacitors that provide a square
pulse with a flat top upon discharge.

16A Cherenkov signal is due to Cherenkov radiation which is an electromagnetic radiation
produced when a particle travel through a dielectric material with a velocity greater than the
phase velocity of light in that dielectric. While no particle travels faster than light in vacuum,
the situation is different in a dielectric since vlight = c/n with n >1.

17A straw tube for high resolution position measurement is constructed with an anode wire
centered within a cathode tube and maintained at a potential difference in a gas environment.
When a charged particle passes through the tube, it ionizes the gas generating a signal for a
particle “hit’.’
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Last but not least, the storage ring magnetic field, and thus ωp, will be
measured with an uncertainty that is approximately 2.5 times smaller by placing
critical NMR probes at strategic locations around the ring and shimming the
magnetic field to achieve a high uniformity in addition to other incremental
adjustments. [8]

5 The Standard Model Evaluation of the Anomaly (aµ)

5.1 Introduction

The magnetic moment of the muon is described by Equation (2)

−→µ = g
q

2mc

−→
S , g = 2 (1 + aµ) , (28)

where g = 2 in the Dirac theory. Particles with g = 2 are referred to as
Dirac particles. The anomaly aµ is due to quantum fluctuations that couple the
muon spin to virtual fields which leads to contributions that can be calculated
in the SM theory. For instance, the three interactions that the SM describes
are electromagnetic interactions by Quantum Electrodynamics (QED), hadronic
strong interactions by Quantum Chromodynamics (QCD), and weak interactions
by the Electro-Weak theory (EWT). In this language, the anomaly can be written
as the sum of contributions from each theory as

aSMµ = aQED
µ + aHadronic

µ + aEW
µ . (29)

The QED and weak contributions to the anomaly are well understood and
have been evaluated using perturbation theory to a high precision leading to
small errors, and thus permitting the comparison with experimental results. On
the other hand, the hadronic contribution limits the accuracy of the theoretical
prediction since these effects cannot be evaluated using perturbation methods
at low energies. For this reason, the hadronic contribution has to be evaluated
using experimental data via a dispersion relation, and thus leading to the highest
uncertainty in the prediction.

5.2 The QED Contribution to aµ

The mediator of electromagnetic processes involve the interactions between
charged particles is the photon. In a loose language, sometimes the muon will
“recapture” the photon it emitted and thus forming a new “Dirac muon + photon”
system. If the magnetic moment of the muon is probed at that instant, it will be
different from 2 since the configuration does not have just a Dirac muon. Similarly,
there can be more than one photon or even electron-positron pairs that form a
new system, and thus the contributions to g of Equation (28) can be expressed as
a series in the form: Dirac muon + {Dirac muon + photon} + {Dirac muon +
several photons} + {electron + positron} . . . .
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Figure 9: The lowest-order (Schwinger) contribution to the muon
magnetic moment anomaly [10].

Formally, the dominant contribution is that of the lowest-order (LO) QED
process that involves the exchange of a virtual photon and is represented by
a one-loop diagram as illustrated in Figure 9. This contribution is known as
the Schwinger term and it is common to all three charged leptons. Its value is
calculated in Appendix D and the result is

aQED,LO
µ =

α

2π
≈ 1.16× 10−3, (30)

where α is the fine structure constant that has been measured experimentally in
the 87Rb atom with 0.66 ppb precision and has an inverse value of

α−1 (Rb) = 137.035 999 049(90) [9]. (31)

Equation (28) can be written to first order in α representing the first-order term
in the one-loop diagram contribution that will be calculated in Appendix D

g = 2

(
1 +

1

2

α

π
+O

((α
π

)2
))

, (32)

where the higher-order corrections to QED processes are suppressed by increasing
powers of α. In fact, the QED calculation has been carried out to the fifth-loop
contribution

aQED
µ = 116 584 71.895 (0.009)(0.019)(0.007)(0.077)× 10−10 [11] (33)

with the uncertainties corresponding to the lepton mass ratios, the fourth-order
term in the four-loop contribution, the fifth-order term in the five-loop contribution,
and the value of the fine structure constant α (Rb). It should be noted that this
contribution accounts for over 99.99% of the total contribution to the muon
magnetic moment anomaly with much smaller uncertainties than the experimental
value.

5.3 The Weak Contribution to aµ

The weak contribution is the smallest correction to the anomaly. The current
electroweak calculation is performed up to two loops. The leading electroweak
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Figure 10: Weak contributions to the muon anomalous magnetic
moment with a one-loop diagrams with virtual W and Z gauge bosons
[10].

effect originates from the single loop diagrams of Z and W± bosons shown in
Figure 10 with a result of

aEW(1)
µ = 19.48× 10−10 [12]. (34)

The two-loop contribution is negative which reduces the weak contribution, and
the third-loop contribution is negligible leading to a total result of

aEW
µ = 15.36(1.0)× 10−10 [13], (35)

where the error is due to unknown higher order contributions. Nevertheless, the
error is very small. Since the weak contribution to the anomaly is of the order
of 1.3 ppm, the 0.54 ppm precision of E821 allowed this experiment to be the
first to probe the weak scale of the SM at this precision and subsequently test
aEW
µ . Moreover, the value of the EW contribution is smaller than the current

discrepancy between experiment and theory as given in Equation (7).

5.4 The Hadronic Contribution to aµ

The hadronic contribution is the second largest contribution, which constitutes
about 60 ppm of the total value of aµ with a dominant error of about 0.4 ppm.
This contribution is divided into three pieces: the lowest-order (LO) and higher-
order (HO) vacuum polarization (VP) contributions, and the light-by-light (LbL)
scattering contribution. Hence, aHad

µ can be expressed as

aHad
µ = aHad,LOVP

µ + aHad,HOVP
µ + aLbL

µ . (36)

Schematics of these three contributions are shown in Figure 11.
VP refers to the partial screening of the charge of a particle by the vacuum

which plays the role of a dielectric medium. In the case of the hadronic contri-
bution to the muon anomaly, the virtual photon of Figure 9 may lead to the
virtual creation and re-absorption of quark pairs and the corresponding hadrons,
schematically represented in Figure 11 by “had.” corresponding to all possible
hadronic states. The electromagnetic and weak interactions have small coupling
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Figure 11: The Feynman diagrams for the three different hadronic
contributions to aµ [10].

constants which makes the higher terms in the perturbative expansion of the
anomaly negligible. But the strong interactions have a small coupling only at
high energies, which prevents the use of perturbative methods at low energies.
Generally, the energy region below 2 GeV cannot be treated using perturba-
tive QCD. The virtual hadrons that affect the anomaly have an energy scale of
mµc

2 ≈ 106 MeV which is well below the perturbative QCD region. For this rea-
son, a semi-phenomenological method that uses experimental input from hadronic
e+e− annihilation data to evaluate the LO and HO VP contributions is employed.
This method, which make use of a dispersion relation, connects the photon VP
due to hadronic contributions shown in the two left diagrams in Figure 11 to
the total e+e− → hadrons cross section at low energies which is obtained from
experimental data. The improvement in the measurement of e+e− annihilation
to hadrons at low energies have been the focus of several experiments. Some of
the experiments are CMD2 and SND collaborations in Novosibirsk (Russia); the
KLOE collaboration at Frascati (Italy); and the BaBar at SLAC (USA). It should
be noted that there is an alternative method in evaluating the VP contributions by
using the τ -decays. One of the most recently reported LO hadronic contribution
is

aHad,LOVP
µ = 6 94.9(4.3)× 10−10 [5]. (37)

While the HO hadronic contribution is given by

aHad,HOVP
µ = −9.84(0.07)× 10−10 [5]. (38)

The hadronic LbL contribution, shown in the far right schematic of Figure
11, is of the order of O (α3

s) which is quite small. Since the process involves three
virtual photons, the use of experimental data to evaluate the LbL contribution
is not possible. Instead, the contribution is evaluated based on hadronic models
with the requirement that they correctly reproduce the QCD properties. The
downside of this approach is that the final result is model dependent. Currently,
active research work is being done in this area. One of the calculations obtained is

aHad,LbL
µ = 10.5(2.6)× 10−10 [14]. (39)
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Figure 12: SM predictions of aµ calculated by several groups. The
new experimental result is due to an improvement in the measurement
of the muon-to-proton magnetic moment ratio λ [5].

5.5 The SM Value of aµ

The SM is determined using the QED contribution given in Equation (33)
from [11], the EW contribution given in Equation (35) from [13], the hadronic
LbL contribution given in Equation (39) from [14], the LO VP given in Equation
(37) from [5], and finally the HO VP given in Equation (38) from [5]. The final
result is:

aSMµ = (116 591 82.8± 4.5)× 10−10 (0.39 ppm) [5]. (40)

There are several groups that evaluated the anomaly, so the above result is not
the only one. In fact, there is a tension in the theory community related to the
use of τ -data instead of e+e−-data to evaluate the LO VP of aHad

µ . Except for one
group, all the other evaluations have values close to each other and approximately
three standard deviations away from the BNL result as illustrated in Figure 12.

The present error in the SM determination of the anomaly aµ is dominated
by the errors in the LO VP and LbL contributions, 4.3 ×10−10 and 2.6 ×10−10

respectively. The error in the LO VP is expected to diminish to 2.6 ×10−10 by the
expected new data from new collaborations such as VEPP-2000 in Novosibirsk
and BES-III at BEPC (China). The projected combined error of LO VP and
LbL could go down to 3.0 ×10−10 [15]. By combining the proposed Fermilab
error of 1.6 ×10−10 with the new expected theoretical error, the total error in the
difference between experiment and theory could go down to 3.1 ×10−11, to be
compared with the current 7.7 ×10−11. By assuming that the experimental and
theoretical values of the anomaly do not change, the new deviation is at the 8.1σ
level. This last result is an important motivation for the continuous efforts in
improving the experimental and theoretical determinations of the muon magnetic
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moment anomaly.

6 Conclusions and Prospects

The SM calculation of the anomalous magnetic moment of the muon is
smaller than the recent experimental measurement performed by BNL. Depending
on the SM evaluation, the discrepancy is approximately ∆aµ (E821− SM) =
(25.2± 7.7) × 10−10, which is larger than the 3σ level. This difference will be
investigated by a future FNAL experiment which aims at reducing the error in
the measurement to 1.6×10−10. In parallel, theoretical groups aim at reducing
the SM error to 3.0 ×10−10.

Currently, candidates such as supersymmetry, extra dimensions, and dark
matter models attempt to account for the discrepancy. On the high energy frontier,
the LHC is sensitive to the electroweak symmetry breaking (EWSB) scale and
its extension that may incorporate new particles and new interactions from the
above models. While the first run of the LHC has concluded with the discovery of
a new particle compatible with the SM Higgs boson, new physics beyond the SM
has not yet been found. The new 2015 run of the LHC is expected to collect a
significantly large amount of data at

√
s = 13 TeV, and thus probe the weak-scale

extensions of the SM. However, even if the LHC discovers new effects, it is still not
in its capacity to discern between the possible interpretations of different models.
In other words, the LHC data might be compatible with different models leading
to alternative explanations. For this reason, the LHC requires complementary
experiments to determine the properties of any possible new physics. The muon
g − 2 is one of the measurements that is sensitive to parameters not accessible
to the LHC. The evaluation of the anomaly is affected by a large class of models
describing the TeV scale that may be used to constrain the parameter search at
the LHC.

In short, the muon g− 2 magnetic moment anomaly is sensitive to SM physics
and beyond, which is valuable in complementing searches at the LHC, and at
the same time constraining existent and future theoretical models. While the
discrepancy between experiment and theory has yet to be confirmed with the new
FNAL experiment, and more data at higher energy needs to be collected by the
LHC to search for new physics, the muon g − 2 remains an important tool to
explore physics beyond the standard model at the TeV scale.

26



Appendix A

The Dirac Result g = 2

In this section, Gaussian units are used.

The Dirac equation is a relativistic version of the Schröedinger equation written
to first order in derivatives which allows a symmetrical treatment of space and
time. The derivation follows from the relativistic energy-momentum relation:
E2 = (pc)2 + (mc2)2, thus the Hamiltonian can be written as

H =
(
(cp)2 + (mc2)2

)1/2

Dirac found a representation with a set of matrices that satisfies:

H = c−→γ · −→p + γ0mc2 (A.1)

where the 4× 4 γ matrices are

−→γ =

(
0 −→σ
−→σ 0

)
, γ0 =

(
I 0
0 −I

)
(A.2)

I is a 2× 2 identity matrix and σi for i = 1, 2, 3 are the Pauli spin matrices. By
promoting the variables E and −→p to operators

−→p →
−→
P = −i~

−→
∇ , E → i~

∂

∂t

and working in the coordinate basis, the eigenvalue equation Hψ(t) = Eψ(t)
becomes the Dirac equation:

i~
∂ψ(t)

∂t
=
(
c−→γ ·

−→
P + γ0mc2

)
ψ(t) (A.3)

where
ψ(t) = ψe−iEt/~ (A.4)

is a 4-component spinor. Equation (A.3) can be written more compactly in the
form (

i~γµ∂µ − γ0mc
)
ψ(t) = 0 (A.5)

where ∂0 = 1
c
∂
∂t

and ∂i = ∂
∂xi

.

In the presence of a magnetic field represented by a potential Aµ = (A0,
−→
A ),

the Hamiltonian of Equation (A.1) is

H = c−→γ ·
(−→
P − q

−→
A/c

)
+ γ0mc2 + qA0 (A.6)
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and the eigenvalue Equation (A.3) becomes

i~
∂ψ(t)

∂t
=
(
c−→γ · −→π + γ0mc2 + qA0

)
ψ(t) (A.7)

using Equation (A.4), the result is

Eψ =
(
c−→γ · −→π + γ0mc2 + qA0

)
ψ (A.8)

where
−→π =

−→
P − q

−→
A/c

and ψ is a 4-component object that can be written in terms of two 2-component
spinors:

ψ =

(
χ
Φ

)
Equation (A.8) becomes(

E −mc2 − qA0 −c−→σ · −→π
−c−→σ · −→π E +mc2 + qA0

)(
χ
Φ

)
=

(
0
0

)
(A.9)

which leads to (
E −mc2 − qA0

)
χ− c−→σ · −→π Φ = 0 (A.10)(

E +mc2 + qA0
)

Φ− c−→σ · −→π χ = 0 (A.11)

The latter equation gives

Φ =

(
c−→σ · −→π

E +mc2 + qA0

)
χ, (A.12)

by working at low velocities, E + mc2 ≈ 2mc2, and at small field-interaction
energies compared to the rest mass, qA0 < mc2, the result is

Φ ≈
( −→σ · −→π

2mc+ qA0/c

)
χ

≈ 1

2mc
(−→σ · −→π )

(
1− qA0

2mc

)
χ

(A.13)

Plugging this result in Equation (A.10), the new equation is

E ′χ =

{
1

2mc
(−→σ · −→π ) (−→σ · −→π )

(
1− qA0

2mc

)
+ qA0

}
χ (A.14)

where E ′ = E −mc2. By using the identity

(−→σ · −→α )
(−→σ · −→β ) = −→α ·

−→
β + i−→σ · −→α ×

−→
β
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and
−→π ×−→π =

iq~
c

−→
B

which can be derived by letting the left hand side act on a spinor φ, using the
definition of −→π along with the derivative rule of a product, and recalling that−→
∇ ×

−→
A =

−→
B . The result is

(−→
P − q

−→
A/c

)2

2m
− q~

2mc
−→σ ·
−→
B + qA0

χ = E ′χ, (A.15)

the Hamiltonian is then

H =

(−→
P − q

−→
A/c

)2

2m
− q~

2mc
−→σ ·
−→
B + qA0 (A.16)

Since the interaction term between the spin magnetic moment and the magnetic
field is

Hint = −−→µ ·
−→
B = −g q~

2mc

−→σ
2
·
−→
B (A.17)

Comparing Equation (A.16) to Equation (A.17) leads to

g = 2. (A.18)

The above derivation follows Sections 20.1 and 20.2 of [16].
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Appendix B

Spin Dynamics

In this section, Gaussian units are used.

In an inertial reference frame, the rate of change of a vector in a rotating
frame is given by: (

d
−→
S

dτ

)
NRF

=

(
d
−→
S

dτ

)
RF

+−→ω T ×
−→
S (B.1)

NRF: Non-Rotating Frame
RF: Rotating Frame

In this case the vector
−→
S represents the expectation value of the spin operator

of a charged elementary particle such as the muon. The Thomas precessional
frequency −→ω )T is due to the acceleration experienced by the muon as it moves
under the action of external forces in the transverse direction relative to its velocity
vector.

In the muon rest frame, (
d
−→
S

dτ

)
RF

= −→µ ×
−→
BRF (B.2)

where −→µ is the magnetic moment vector, and
−→
BRF is the magnetic field seen by

the muons at rest. The spin magnetic moment is:

−→µ = g
e

2mc

−→
S (B.3)

In the laboratory frame, the magnetic field (
−→
B ) and the electric field (

−→
E ) experi-

enced by the muons are related by:

−→
BRF = γ

(−→
B −

−→
β ×

−→
E
)
− γ2

γ + 1

−→
β
(−→
β ·
−→
B
)

(B.4)

Equation (B.2) becomes:(
d
−→
S

dτ

)
RF

= g
e

2mc

−→
S × {γ

(−→
B −

−→
β ×

−→
E
)
− γ2

γ + 1

−→
β
(−→
β ·
−→
B
)
} (B.5)

In order to determine −→ω T , consider a system undergoing a sidewise acceleration
where the rest frame of this system is different at every instant. The spin direction
in the laboratory frame is constantly changing even in the absence of torque. By
finding the connection between the coordinates in the muon’s rest frame and the
coordinates in the laboratory frame, the rate of change of the spin vector can be
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determined. At time t, the muon rest frame (x) is moving with velocity −→v =
−→
β c

with respect to the laboratory frame. The two frames can be related by

x′ = Aboost
(−→
β
)
x (B.6)

At time t+ δt, the rest frame is moving with a velocity
−→
β + δ

−→
β , thus:

x′′ = Aboost
(−→
β + δ

−→
β
)
x (B.7)

The relation between the two instantaneous rest frames at times t and t+ δt is:

x′′ = Aboost
(−→
β + δ

−→
β
)
Aboost

(
−
−→
β
)
x′ (B.8)

The vector quantities of interest are:

−→
β = (β, 0, 0)

δ
−→
β = (δβ1, δβ2, 0)

−→
β + δ

−→
β = (β + δβ1, δβ2, 0)

At time t, the boost is

Aboost
(
−
−→
β
)

=


γ γβ 0 0
γβ γ 0 0
0 0 1 0
0 0 0 1


and the Lorentz factor is

γ =
(
1− β2

)−1/2
,

At time t+ δt, the Lorentz factor becomes

γ′ =

(
1−

(−→
β + δ

−→
β
)2
)−1/2

.

To first order,
γ′ = γ + γ3βδβ1,

and the boost is

Aboost
(−→
β + δ

−→
β
)

=


γ + γ3βδβ1 − (γβ + γ3δβ1) −γβ2 0

− (γβ + γ3δβ1) γ + γ3βδβ1

(
γ−1
β

)
δβ2 0

−γβ2

(
γ−1
β

)
δβ2 1 0

0 0 0 1


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(see Equation (11.98) of [17]). So

Aboost
(−→
β + δ

−→
β
)
Aboost

(
−
−→
β
)

=


1 −γ2δβ1 −γδβ2 0

−γ2δβ1 1
(
γ−1
β

)
δβ2 0

−γδβ2 −
(
γ−1
β

)
δβ2 1 0

0 0 0 1


Define AT such that

AT ≡ Aboost
(−→
β + δ

−→
β
)
Aboost

(
−
−→
β
)

= 1 +
γ − 1

β
δβ2S3 − γ2δβ1K1 − γδβ2K2

where

S3 =


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

 , K1 =


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K2 =


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0


(See Section 11.7 of [17]).

AT = 1− γ − 1

β2

(−→
β × δ

−→
β
)
·
−→
S −

(
γ2δ
−→
β ‖ + γδ

−→
β ⊥

)
·
−→
K

In the Lorentz group,
−→
S is a 4 × 4 matrix that generates rotations in a three

dimensional space, and
−→
K is a 4× 4 matrix that produces boosts where

Rrotation

(
∆
−→
Ω
)

= e−∆
−→
Ω ·
−→
S ≈ I −∆

−→
Ω ·
−→
S

Aboost
(

∆
−→
β
)

= e−∆
−→
β ·
−→
K ≈ I −∆

−→
β ·
−→
K

such that
∆
−→
β = γ2δ

−→
β ‖ + γ

−→
β ⊥

∆
−→
Ω =

γ2

γ + 1

−→
β × δ

−→
β .

Again to first order in δ
−→
β :

AT = Aboost
(

∆
−→
β
)
· Rrotation

(
∆
−→
Ω
)

The transformation from the reference frame at time t, x′, to a reference frame at
time t+ δt, x′′, introduces an angular change ∆Ω which varies at a rate:

−→ω = − lim
δt→0

∆
−→
Ω

δt
= − γ2

γ + 1

−→
β × d

−→
β

dt
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This relation is the Thomas angular frequency:

−→ω T =
γ2

γ + 1

−→a ×−→v
c2

(B.9)

By substituting Equation (B.9) into Equation (B.1), the new expression for
the rate of change of the spin vector is:(

d
−→
S

dτ

)
NRF

=

(
d
−→
S

dτ

)
RF

+
γ2

γ + 1

−→
S ×

(
−→
β × d

−→
β

dτ

)
(B.10)

The time elapsed in the laboratory frame dt is related to the time elapsed in the
muon rest frame dτ by

dτ =
dt

γ
(B.11)

By using Equations (B.5), (B.10), and (B.11), the rate of change of the spin vector
is thus given by

d
−→
S

dt
= g

e

2mc

−→
S ×

{
−→
B −

−→
β ×

−→
E − γ

γ + 1

−→
β
(−→
β ·
−→
B
)}

+
γ2

γ + 1

−→
S ×

(
−→
β × d

−→
β

dt

)
(B.12)

Since the Lorentz force 4-vector is

dUα

dτ
=

q

mc
FαβUβ

where Uα is the 4-velocity and Fαβ is the field strength tensor, leading to

dγ

dt
=

q

mc

−→
E ·
−→
β

d (γβ)

dt
=

q

γmc
{
−→
E +

−→
β ×

−→
B }

which leads to
d
−→
β

dt
=

q

γmc
{
−→
E +

−→
β ×

−→
B −

−→
β
(−→
E ·
−→
β
)
} (B.13)

From Equations (B.12) and (B.13), the result is

d
−→
S

dt
=

q

mc

−→
S×

{(
g

2
− 1 +

1

γ

)
−→
B −

(g
2
− 1
)( γ

γ + 1

)(−→
β ·
−→
B
)−→
β +

(
g

2
− 1 +

1

γ + 1

)
−→
E ×

−→
β

}
(B.14)

This equation was derived in 1959 by V. Bargmann, L. Michel, and V.L Telegdi

and it is known as the BMT equation. Since
d
−→
S

dt
=
−→
S ×−→ωs and a =

g

2
− 1, the
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final result for the spin angular frequency for muons is Equation (12)

−→ωs =
q

mµc

{(
aµ +

1

γ

)
−→
B − aµ

(
γ

γ + 1

)(−→
β ·
−→
B
)−→
β +

(
aµ +

1

γ + 1

)
−→
E ×

−→
β

}
,

(B.15)
The equation of motion of the velocity vector in a cyclotron is given by

Equation (B.13) which can be written in the form
d
−→
β

dt
=
−→
β ×−→ω c. By making the

assumption that the electric field has no component parallel to the velocity vector

(
−→
β ·
−→
E = 0), the angular cyclotron frequency for muons is given by Equation (13):

−→ωc =
q

γmµc

{
−→
B +

γ2

γ2 − 1

(−→
E ×

−→
β
)}

. (B.16)

For more details, check [18] and Sections 11.8 and 11.11 of [17].
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Appendix C

Muon Decay Rate

In this section, natural units c = ~ = 1 and conventions of [19] are used.

The differential muon decay rate is derived by using the Feynman rules for
electroweak processes. The decay

µ (p1)→ νµ (p2) + e (p′1) + ν̄e (p′2) (C.1)

is represented by the Feynman diagram

The Amplitude is

M =

∫
d4k

(2π)4 δ
4 (p1 − p2 − k) ū2

ig

2
√

2
γµ (1− γ5)u1

−i
(
gµν − kµkν

m2
W

)
k2 −m2

W + iε
×

δ4 (k − p′1 − p′2) ū1
′ ig

2
√

2
γν (1− γ5) v′2

(C.2)

By performing the delta function integral over k, canceling the remaining delta
function, and using the Dirac equations:

(γµp
µ −m)u = 0

ū (γµp
µ −m) = 0

(γµp
µ +m) v = 0.

The amplitude is then

M =
ig2

8
(
(p1 − p2)2 −m2

W

){ū2γµ (1− γ5)u1ū
′
1γ

µ (1− γ5) v′2−

mµme

m2
W

ū2 (1 + γ5)u1ū
′
1 (1− γ5) v′2}

(C.3)

Since mµme
m2
W
≈ 8 × 10−9, and assuming that (p1 − p2)2 � m2

W , Equation (C.3)

becomes

M = − ig2

8m2
W

{ū2γµ (1− γ5)u1ū
′
1γ

µ (1− γ5) v′2} (C.4)

35



The squared amplitude is

|M|2 =
g4

64m4
W

{ū2γµ (1− γ5)u1ū
′
1γ

µ (1− γ5) v′2}{v̄′2γν (1− γ5)u′1ū1γ
ν (1− γ5)u2}

(C.5)
where there is an implicit summation over Dirac indices. By rearranging the
previous equation and taking the trace due to the summation, the squared
amplitude is

|M|2 =
g4

64m4
W

Tr[u2ū2γµ (1− γ5)u1ū1γν (1− γ5)]Tr[u′1ū
′
1γ

µ (1− γ5) v′2v̄
′
2γ

ν (1− γ5)].

(C.6)
By using the spinor combination

uū = (γµp
µ +m)

1 + γ5γνs
ν

2
(C.7)

where sν is the spin direction, and using the gamma matrices properties

• Trace of odd number of gamma matrices is zero.

• (1− γ5)2 = (1− γ5).

• γ5 anti-commutes with γµ.

• γ5 (1− γ5) = − (1− γ5).

the first trace is

Tr[u2ū2γµ (1− γ5)u1ū1γν (1− γ5)] =

Tr[γρp
ρ
2γµ (1− γ5)

(
γλp

λ
1 +mµγ5γλs

λ
µ

)
γν (1− γ5)]

(C.8)

where the neutrino masses are negligible. The squared amplitude is then

|M|2 =
g4

64m4
W

{pρ2
(
pλ1 −mµs

λ
µ

)
(p′α1 −meseα) p′2βTr[γργµγλγν (1− γ5)]

Tr[γαγµγβγν (1− γ5)]}

=
g4

m4
W

[p2 · (p′1 −mese)][(p1 −mµsµ) · p′2].

(C.9)

where the identity

gµνgαβTr[γδγµγφγβ (C1 − C2γ5)]Tr[γλγνγργα (C3 − C4γ5)] =

32[C1C3 (δδλδφρ + δδρδφλ) + C2C4 (δδλδφρ − δδρδφλ)]
(C.10)

was used to get the last line in Equation (C.9). The Golden rule relates the
differential decay probability of a process with the amplitude squared by the
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relation:

dΓ (p1 → p2p
′
1p
′
2) =

(2π)4 |M|2

2E1

δ4 (p2 + p′1 + p′2 − p1)
d3p2

(2π)3 2E2

d3p′1
(2π)3 2E ′1

d3p′2
(2π)3 2E ′2

(C.11)
Since neutrino momenta are not measured, the integration over the momenta p2

and p′2 is first performed.

dΓ (p1 → p2p
′
1p
′
2) =

∫
d3p2

(2π)3 2E2

d3p′2
(2π)3 2E ′2

δ4 (p2 + p′1 + p′2 − p1) pα2p
′β
2 ×

(2π)4

2E1

g4

m4
W

(p′1 −mese)α (p1 −mµsµ)β
d3p′1

(2π)3 2E ′1

(C.12)

The result of the integration over p2 and p′2 has to be a tensor of second rank with
a term XαXβ and a scalar X2 where

Xα = p′α1 − pα1 = pα2 + p′α2

X2 = 2p2 · p′2 (C.13)

The integral over the neutrino momenta is then∫
d3p2

2E2

d3p′2
2E ′2

δ4 (X + p2 + p′2) pα2p
′β
2 = AgαβX2 +BXαXβ (C.14)

By doting both sides of Equation (C.14) with gαβ∫
d3p2

2E2

d3p′2
2E ′2

δ4 (X + p2 + p′2) p2 · p′2 = 4AX2 +BX2 (C.15)

The left hand side contains a standard integral∫
d3b

2b0

d3c

2c0
δ4 (A− b− c) =

πλ1/2 (A2, b2, c2)

2A2

where λ(x, y, z) = x2 + y2 + z2 − 2xy− 2xz − 2yz. By using Equation (C.13), the
result of the integration is then

X2

2

π

2
λ1/2 (1, 0, 0) = 4AX2 +BX2

4A+B =
π

4
(C.16)

Alternatively, by doting both sides of Equation (C.14) with XαXβ, and using

(X − p2)2 = 0 = X2 − 2X · p2

(X − p′2)
2

= 0 = X2 − 2X · p′2
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the result of the integration is

p2 ·Xp′2 ·X
π

2
λ1/2 (1, 0, 0) = AX4 +BX4

A+B =
π

8
(C.17)

From Equation (C.16) and Equation (C.17): A =
π

24
and B =

π

12
. The result of

the integral of Equation (C.15) is∫
d3p2

2E2

d3p′2
2E ′2

δ4 (p′1 + p2 + p′2 − p1) pα2p
′β
2 =

π

24

(
gαβ (p′1 − p1)

2
+ 2 (p′1 − p1)

α
(p′1 − p1)

β
)

(C.18)
Equation (C.12) becomes

dΓ =
g4d3p′1

192 (2π)4m4
WE1E ′1

{(p′1 − p1)
2

(p1 −mµsµ) · (p′1 −mese) +

2 (p′1 − p1) · (p1 −mµsµ) (p′1 − p1) · (p′1 −mese)}
(C.19)

This equation can be simplified by ignoring the electron mass, choosing a coordinate
system in the rest frame of the muon where the angle between the muon spin and
the electron momentum is θ, and summing over the final spin states. The result is

dΓ =
2g4d3p′1

192 (2π)4m4
WmµE ′1

{
(
m2
µ − 2E ′1mµ

)
(mµE

′
1 +mµE

′
1 cos θ) +

2
(
mµE

′
1 −m2

µ +mµE
′
1 cos θ

)
(−mµE

′
1)}

=
2g4E ′1dE

′
1d cos θdφ

192 (2π)4m4
Wmµ

{3m3
µE
′
1 − 4m2

µE
′2
1 −m3

µE
′
1 cos θ + 4m2

µE
′2
1 cos θ}

(C.20)

By defining y =
E′1
mµ/2

, Equation (C.20) is

dΓ =
2g4y2dyd cos θdφ

192× 16π4m4
W

m5
µ

8
{3− 2y − cos θ + 2y cos θ}

=
g4

32m2
W

dyd cos θdφ

4π

m5
µ

192π3
{2y2 (3− 2y)}{1− 1− 2y

3− 2y
cos θ}

(C.21)

This is equivalent to Equation (10) and Equation (11) for a negative muon decay.
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Appendix D

The Schwinger Term
α

2π
In this section, natural units c = ~ = 1 and conventions of [19] are used.

The QED vertex of the Feynman diagram

is −ieγµ. By analogy, the vertex of the Feynman diagram

is −ieΓµ(p1, p2) where Γµ is a 4-vector proportional to γµ, pµ1 , and pµ2 . So

Γµ = Aγµ +B(qµ1 + qµ2 ) + C(qµ1 − q
µ
2 ) (D.1)

where A, B, and C may be functions of q2
1 = q2

2 = m2 and (q2 − q1)
2 = p2. The

use of the Ward identity
ū(q2)pµΓµu(q1) = 0,

and the momentum conservation relation pµ = qµ2 − q
µ
1 leads to

ū(q2){A (�q2 − �q1) +B (q2 − q1)µ (q1 + q2)µ + C (q2 − q1)2}u(q1) = 0.

The Dirac equations �q1u(q1) = mu(q1) and ū(q2)�q2 = mū(q2), lead to

ū(q2) (�q2 − �q1)u(q1) = ū(q2) (m−m)u(q1) = 0,

and consequently C = 0. Now, by using the Gordon identity of Problem 3.2 of
[19]

ū(q2)γµu(q1) = ū(q2){q
µ
1 + qµ2
2m

+ i
σµνqν
2m

u(q1)} (D.2)

where σµν = i
2
[γµ, γν ], the (qµ1 + qµ2 ) term is eliminated. Rewriting the above

39



expression

Γµ(q1, q2) = γµF1

(
p2
)

+
iσµνpν

2m
F2

(
p2
)
, (D.3)

where F1 and F2 are form factors that represent a parametrization of all orders
in perturbation theory. In principle, these form factors completely characterize
the interaction between the charged lepton, in this case the muon, and the
electromagnetic field. The number of loops in a Feynman diagram determines the
order of the contribution, for instance a one loop diagram is of order α and so on.
The factor that modifies the muon magnetic moment is F2 at a scale associated
with the p2. The first diagram with a single QED vertex is the leading order
graph where F1 = 1 and F2 = 0, where in this case g = 2. By considering higher
order contributions, the g factor is g → 2 + 2F2 (p2). For non-relativistic energies

g = 2 + 2F2(0). (D.4)

In order to find the first order correction, F2(0) should be determined.
According to the Feynman rules, the amplitude of the Feynman diagram

is

iMµ =(−ie)3

∫
d4k

(2π)4

−igνα

(k − q1)2 + iε
ū(q2)γν

i (�p+ ��k +m)

(p+ k)2 −m2 + iε
γµ

i (��k +m)

k2 −m2 + iε
γαu(q1)

= −e3ū(q2)

∫
d4k

(2π)4

γν (�p+ ��k +m) γµ (��k +m) γν

{(k − q1)2 + iε}{(p+ k)2 −m2 + iε}{k2 −m2 + iε}
u(q1)

(D.5)

First, the denominator can be simplified according to the relation

1

ABC
= 2

∫ 1

0

dxdydzδ (x+ y + z − 1)
1

{xA+ yB + zC}3
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where

A = k2 −m2 + iε

B = (p+ k)2 −m2 + iε

C = (k − q1)2 + iε

.

So the denominator yields

{xA+ yB + zC}3 = {k2 + 2k (yp− zq1) + yp2 + zq2
1 − (x+ y)m2 + iε}3

= {(kµ + ypµ − zqµ1 )2 −∆ + iε}3

where ∆ = −xyp2 + (1− z)2m2. This expression can be simplified by a change of
variables kµ → kµ − ypµ + zqµ1 so that the denominator becomes (k2 −∆)

3
. For

the numerator (Nµ)

Nµ = ū(q2)γν (�p+ ��k +m) γµ (��k +m) γνu(q1)

= −2ū(q2){��kγµ�p+ ��kγµ��k +m2γµ − 2m (2kµ + pµ)}u(q1)

and by applying the same change in variables, the result is

Nµ = −2ū(q2){(��k − y�p+ z�q1) γµ�p+ (��k − y�p+ z�q1) γµ (��k − y�p+ z�q1)}u(q1)

+ū(q2){m2γµ − 2m (2kµ − 2ypµ + 2zqµ1 + pµ)}u(q1)

The delta function δ (x+ y + z − 1) implies that x+y+z = 1, and since gµνgµν = 4,
then kµkν = 1

4
gµνk2, the numerator is now

−1

2
Nµ =

{
−1

2
k2 + (1− x) (1− y) p2 +

(
1− 4z + z2

)
m2

}
ū(q2)γµu(q1)

+ imz (1− z) pν ū(q2)σµνu(q1)

+m (z − 2) (x− y) pµū(q2)u(q1)

(D.6)

In order to get the magnetic moment contribution, the only term that needs to
be considered is the one containing σµν , thus

iMµ = pν ū(q2)σµνu(q1)

{
4ie3m

∫ 1

0

dxdydzδ(x+ y + z − 1)

∫
d4k

(2π)4

z (1− z)

(k2 −∆ + iε)3

}
+· · ·

(D.7)
By comparing Equations (D.3) and (D.7), the form factor F2 is

F2

(
p2
)

=
2m

e

(
4ie3m

) ∫ 1

0

dxdydzδ(x+ y + z − 1)

∫
d4k

(2π)4

z (1− z)

(k2 −∆ + iε)3 + · · ·

(D.8)
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This is a correction to the order e2 = α. To compute this integral, use∫
d4k

(2π)4

1

(k2 −∆ + iε)3 =
−i

32π2∆
(D.9)

(see A.4 of [19]). The result of the integral in Equation (D.8) is then

F2

(
p2
)

=
α

π
m2

∫ 1

0

dxdydzδ(x+ y + z − 1)
z (1− z)

(1− z)2m2 − xyp2
(D.10)

Since this integral needs to be evaluated for p2 = 0, the steps follow

F2 (0) =
α

π

∫ 1

0

dz

∫ 1

0

dy

∫ 1

0

dxδ(x+ y + z − 1)
z

(1− z)

=
α

π

∫ 1

0

dz

∫ 1−z

0

dy
z

1− z
=

α

2π

(D.11)

This result is called the Schwinger term which represents the first order QED
correction and by far the largest radiative correction given in Equation (30). So
to first order in α

g = 2
(

1 +
α

2π

)
(D.12)

which agrees with Equation (32).
More details can be found in Sections 6.2 and 6.3 of [19].
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