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Four ambiguities are inherent in time-independent quantum-mechanical scattering theory: two in the
normalization of continuum functions, and two in the relation between various scattering matrices.
These ambiguities allow the use of different conventions in scattering theory. This freedom has led
to inconsistencies among textbooks, monographs, review articles, and research papers. We identify
these ambiguities, indicate their context and origin in scattering theory, give the key equations of
scattering theory in a form that can by adapted to any convention, and show interrelations between
these equations that can lead to confusion and error. We also give several diagnostic approaches for
determining the conventions used in a particular source, and reference conventions adopted in
widely used books on scattering theory. © 2007 American Association of Physics Teachers.
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I. INTRODUCTION

If you wish to converse with me, define your terms
—Voltaire

Practitioners of quantum collision theory sometimes run
afoul of ambiguities that are inherent in time-independent
continuum-state quantum mechanics. Two of these ambigu-
ities concern the normalization of continuum functions, and
two others concern relations between various scattering ma-
trices. The freedom allowed by these ambiguities has re-
sulted in numerous inconsistencies among various textbooks,
monographs, review articles, and research papers that treat or
use scattering theory. Although many authors are careful
about explicitly stating the conventions they adopt, some are
not. Even in sources that do give this information, it is often
strewn throughout many pages. Research papers rarely state
their conventions—a problem exacerbated by the propensity
of many authors to change conventions during the course of
their career. A further difficulty is posed by research papers
whose authors adopt conventions of a given source but do
not cite their source, and it is left to the reader to deduce the
conventions of such a paper.

This situation holds traps for the unwary. Undergraduate
and graduate students are particularly prone to mix and
match equations from a variety of sources, unaware that the
resulting formalism contains inconsistencies guaranteed to
spawn incorrect results. In spite of almost a century of valu-
able pedagogical resources including many excellent texts
�see, for example, those cited in Table I� and a steady stream
of valuable papers,1–16 no one has directly addressed the am-
biguities inherent in continuum stationary-state quantum
mechanics.

This paper has evolved over 30 years and draws on our
notes that encompass over two dozen textbooks and mono-
graphs, many tens of review articles, and roughly a thousand
research papers. This paper is a codification, synthesis, and
condensation of that material. We hope it will heighten read-
ers’ awareness of these potential land mines and help them
navigate these treacherous waters.

Students usually fail to realize these ambiguities even ex-
ist, probably because no such ambiguities appear in bound-

state quantum mechanics, which remains the primary focus
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of undergraduate and introductory graduate quantum
courses. It is necessary to choose a zero of energy, and it is
possible to multiply the wave function by an overall global
phase factor, and that’s about it. Continuum-state quantum
mechanics, by contrast, presents four options—all of which,
as we shall show, are of great consequence.

This paper has both practical and pedagogical goals. The
practical goals are to identify the choices that must be made
in setting up and using scattering theory; to express the key
equations of scattering theory in a form that facilitates adapt-
ing them to any convention; to explicate and illustrate diag-
nostic approaches that can be used to determine the conven-
tions a particular source uses; and to provide a ready-
reference to the choices made in widely used books on
scattering theory �see Table I�.

The pedagogical goals are to indicate the origin of these
conventions in the formulation of scattering theory; to show
how these conventions are interrelated by key equations of
the theory; and to illustrate the use of simple analytical tools
�particularly dimensional analysis; see Appendix A� to deter-
mine conventions and to ensure consistency among the key
equations. By appreciating these points students gain deeper
insight into the structure of scattering theory and ways in
which the quantum mechanics of continuum states differs
from the more familiar quantum mechanics of bound states.

The most perplexing and frustrating of these differences is
the maze of interconnections between key equations in
which various conventions appear. We have organized this
paper in a series of short sections each of which summarizes
a key area of the nonrelativistic quantum collision theory of
�primarily� elastic collisions. The application of the guide-
lines and results of this paper to inelastic and rearrangement
collisions, although nontrivial, is reasonably straightforward.

To contextualize this presentation, we use a modicum of
formal scattering theory.17–19 Students can use the guidelines
in this paper without knowing this material. In no way is this
paper a comprehensive or self-contained presentation of even
a part of collision physics. We have relegated detailed deri-
vations, discussions, and examples to standard sources, such
as those cited in Table I. We consider primarily elastic scat-
tering in nonrearrangement collisions and omit such topics as

Coulomb scattering, dispersion relations, scattering from tar-
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gets with structure, density-matrix formulations, time-
dependent scattering, reciprocity and time reversal, complex
angular momenta, spin, resonances and other poles of the S
matrix, and analytic properties of the S matrix. These topics
introduce no new choices, and we have found that students
who master the four conventions discussed in this paper have
little difficulty extending that mastery to more advanced
topics.

II. THE MØLLER AND SCATTERING OPERATORS

The Møller operators �̂± are defined in terms of the time-
evolution operator �see Ref. 19 and Sec. VI C of Ref. 18�,

ˆ −iĤt/�

Table I. A summary of conventions in selected resources on scattering
theory. Entries that contain the notation �NS� were not explicitly stated;
these entries were inferred using the methods of this paper. Empty entries
mean that either the convention was not discussed in the paper or could not
be determined from it.

Reference � � 	 


This paper 1 1 1 1
19 1 1 1 1
49 1 −1/� 1 1
21 1 1 1 e−i���E�

23 1 km /�2 −km� /�2 �2/��1/2i� /k
22 1 i /2� 1 e−i���E� / cos ���E�
50 �2��3/2 −1/� 1 1
51 �2��3/2a −i /2� 1 e−i���E�

52 �2��3/2 2� /k 1/k 1/k
33 �2��3/2b 1 −� 1
53 1 1 �NS�c e−i���E� /kd

54 �2��3/2 i /2� 1 e−i���E�

41 �2��3/2 �NS� −1/� 1 k−1/2e−i���E�

18 
mk�2e 1 1 1

55 1f k /� −k e−i���E� cos ���E�
24 �2��3/2 1 4�i� /k
17 1 1 −� e−i���E� /k cos ���E�g

aGeltman �Ref. 51� uses �= �2��3/2, Eqs. �1.18� and �8.1�, and �=1, Eqs.
�5.2� �11.2�, and �15.2�.
bRodberg and Thaler �Ref. 33� use a variety of conventions and sometimes
absorb the constant � into the scattering amplitude �for example, Chapters 2
and 3�. In chapters on formal scattering theory, they use �= �2��3/2 �for
example, their Eqs. �5.4.1� and �6.1.27��. Elsewhere they use �=1 �for ex-
ample, in Eq. �4.4.1� and surrounding discussion�.
cAdhikari �Ref. 53� uses two transition operators, which are denoted by t
and t̃. For equations in which t appears, set �=k /�; for equations with t̃, set
�=1.
dThe scattering function that Adhikari �Ref. 53� denotes by ��

�+��r� is the
auxiliary function vk��r� defined in our Eq. �85�, not the normalized radial
function uk��r�.
eFor plane wave states Newton �Ref. 18� uses several normalization conven-
tions, including the three discussed in Sec. V C. Like Taylor �Ref. 19�,
Newton �Ref. 18� sets �=1.
fKhare �Ref. 55� sometimes leaves � �which is called A� unspecified; � is
variously set equal to 1 or �2��−3/2. The radial function f�k�r� is the auxiliary
function vk��r� of our Eq. �85�. In some equations �=1 is used �see Eq.
�1.109��; in others �=k /� �see Eq. �1.155��.
gJoachain �Ref. 17� is one of the few authors to discuss normalization
choices. In Sec. 4.1.6 an arbitrary factor A�k� is introduced in the partial-
wave expansion, and in Eqs. �4.84�–�4.86� several widely used choices are
listed. In the examples, �=1 is used �see also Ref. 56�.
U�t� � e , �1a�
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Û0�t� � e−iĤ0t/�, �1b�

where Ĥ is the system Hamiltonian Ĥ=Ĥ0+ V̂, with Ĥ0 the
kinetic energy operator, as

�̂± � lim
t→��

Û�t�†Û0�t� . �2�

These operators relate the in- and out-asymptotes, ��in� and
��out�, to the scattering state vector ��� as

��� = �̂+��in� = �̂−��out� , �3a�

where all state vectors refer to t=0. In terms of the evolution
operator, this relation is

Û�t���� ——→
t→��

Û0�t���in/out� . �3b�

A. The scattering operator

The scattering operator Ŝ is defined as

Ŝ � �̂−
†�̂+, �4�

and maps a given in-asymptote into the corresponding out-
asymptote,

��out� = Ŝ��in� . �5�

The probability for a collision process ��in�→ ��out� is

P���out� ← ��in�� = ���out�Ŝ��in��2. �6�

The Møller operators and the S operator preserve normaliza-
tion.

B. The momentum-space S matrix

The momentum-space S matrix appears when an initial
�t=0� scattering state ���0�� is expanded in plane wave states
�k�:

���0�� =	 �k��k���0��d3k . �7�

If we use the time-evolution operator Û�t�, we obtain the
expansion of the corresponding state at any t�0,

���t�� = Û�t����0�� =	 �k��k���0��e−iEkt/�d3k , �8�

where Ek=�2k2 /2m is the scattering �kinetic� energy of the
projectile of mass m. �For central-potential scattering of two
particles, the symbol m denotes the reduced mass of the two
particles.�

To introduce the momentum-space S matrix elements, we
write the definition �5� of the S matrix in momentum space:

�k���out� =	 �k��Ŝ�k��k��in�d3k , �9�
where we have used the identity
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1̂ =	 d3k�k��k� . �10�

The matrix element �k��Ŝ�k� is the probability amplitude for
the scattering process �k�→ �k��.

C. Plane wave scattering states

1. Wave-vector normalization

We shall take the plane wave states �k� to be wave-vector
normalized,19

�k��k� = ��k� − k� . �11�

The coordinate-space projection of �k� is therefore

�r�k� = �2��−3/2eik·r. �12�

The factor of �2��−3/2 in Eq. �12� follows from the integral
expression for the Dirac delta function

��k� − k� =
1

�2��3/2 	 e−ir·�k�−k�d3r , �13�

which must be unaffected by how we choose to normalize
�k�.

Because the Møller operators preserve normalization, the
corresponding plane wave scattering states

�k ± � = �̂±�k� �14�

obey the same normalization condition as the plane wave
states,

�k� ± �k ± � = ��k� − k� . �15�

The scattering function �k
±�r���r �k± � for outgoing waves

obeys the boundary condition8

�k
+�r� ——→

r→�
�2��−3/2�e−ik·r + f�k� ← k�

eikr

r
� , �16�

which contains the scattering amplitude f�k�←k�.

2. Alternative normalizations of plane wave states

Although convenient, the choice of wave vector normal-
ization in Eq. �11� is arbitrary. Many quantum mechanics
textbooks use momentum normalization

�p��p� = �3�p� − p� . �17a�

�Momentum normalization reduces to wave vector normal-
ization in a set of reduced units in which �=1, such as
atomic units or the units used in Ref. 19.� With this choice
the normalized free-particle wave function is

�r�p� = �2���−3/2eip·r/�. �17b�

We can multiply the wave-vector normalized plane wave
state �k� by any complex constant �,

�k� → ��k� , �18a�

provided we implement this “renormalization” in all equa-
tions where plane wave states appear but � doesn’t happen to
cancel. For example, the renormalized free-particle wave

function follows as
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�
�r�k� = �2��−3/2eik·r ⇒ �r�k� = ��2��−3/2eik·r. �18b�

Similarly, the generalized normalization condition is

1

���2
�k��k� = ��k� − k� ⇒ �k��k� = ���2��k� − k� . �18c�

Equation �18� has corresponding analogs for the plane wave

scattering states �k± �=�̂±�k�.20

Another common alternative to wave vector normalization
is �= �2��3/2, for which

�r�k� = eik·r. �19a�

For this choice the normalization condition is

�k��k� = �2��3��k� − k� for � = �2��3/2. �19b�

3. Energy normalization of the plane wave states

Older books and papers on scattering theory use yet a third
normalization of plane wave states �k� �see, for example,
Secs. 8.3 and 10.1 of Ref. 18�. By choosing �=
mk�2 we

can force these states, which we shall write as �Ek̂�, to satisfy

�E�k̂��Ek̂� = ��E� − E��2�k̂� − k̂� . �20�

This result follows from

�3�k� − k� =
1

k2

dE

dk
��E� − E��2�k̂� − k̂� . �21�

Unfortunately, many authors use a notation that fails to

distinguish �k� from �Ek̂� and so leave their normalization
choice ambiguous. We can determine which convention is
being used from the fundamental relation for the differential
cross section in terms of the momentum-space T matrix �see
Sec. III�. For an excitation �i�→ �f� of the target accompanied
by a chance of the projectile’s wave vector from k to k�, and
for wave-vector normalization, this relation reads


 d


d�



i→f
= � m

4�2�4� k�

k
��k�, f �T̂�k,i��2. �22a�

For energy normalization Eq. �22a� reads


 d


d�



i→f
=

�2��4

k2 ��E�k̂��T̂�Ek̂��2. �22b�

In both forms the outgoing wave vector for total energy E is

k� =

2m�E − �� f − �i��

�2 . �23�

The two forms of the differential cross section in Eq. �22�
illustrate how choices of conventions that may be unstated or
difficult to determine can wreak significant changes on equa-
tions for key physical properties—even equations that at first
thought should not depend on conventions. These changes
often occur in seemingly inexplicable factors, typically in-
volving � �usually 4�2� and, sometimes, the particle’s mass,
in cross sections �see, for example, Sec. 6.7 of Ref. 21; Sec.

1.5 of Ref. 22; Sec. 8.1 of Ref. 18, and Chap. 4 of Ref. 23�.
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The choice of normalization also affects important formal
equations. For instance, the relation between the elastic scat-
tering amplitude and the momentum-space T matrix �see Sec.
IV� is affected not only by how the S and T matrices are
related �see Sec. III A�, but also by how we normalize the
plane wave states. For wave-vector normalization, this rela-
tion is

f�k� ← k� = −
m

2��2 �k��T̂�Ek + i0��k� , �24a�

and for energy normalization it is

f�k� ← k� = −
4�2

k
�Ek̂��T̂�E + i0��Ek̂� . �24b�

We must be especially alert for such differences in discus-
sions of dispersion relations and analytic properties of the S
matrix.

The normalization constant � as well as the other three
choices discussed in the following must disappear from a
few key invariant equations. This requirement guides users
in checking their derivations and in deducing conventions
used in various sources. For example, no matter what choice
we make, the optical theorem11 must always relate the scat-
tering amplitude to the total cross section as


tot � �
f


 f←i =
4�

ki
Im f�f ,k� ← i,k;0� , �25�

where the sum is over all open �energetically accessible�
channels i→ f �including the elastic channel i← i�, and
f�f ,k�← i ,k ;0� is the scattering amplitude for forward scat-
tering.

III. THE TRANSITION „T… MATRIX

In most scattering calculations, cross sections are calcu-
lated not from the scattering amplitude but from matrix ele-

ments of the transition operator T̂. We shall define this op-

erator from the Green’s operator Ĝ as

T̂�z� � V̂ + V̂Ĝ�z�V̂ . �26�

The Green’s operator is defined for any complex z in terms
of the system Hamiltonian as

Ĝ�z� � �z − Ĥ�−1. �27�

A. The S matrix and the T matrix

The crucial relation between elements of the S matrix and
elements of the on-shell T matrix �see Sec. 8d of Ref. 19�
follows solely from the definitions of the S operator, Eq. �4�,
and of the T operator, Eq. �26�,

�k��Ŝ�k� = ��k� − k� − 2�i��Ek� − Ek��k��T̂�Ek + i0��k� .

�28�

The term ��k�−k� corresponds to the possibility that nothing
happens �no scattering�; the second term corresponds to the
scattering possibility. This term contains an energy-
conserving delta function ��Ek�−Ek� and the on-shell

momentum-space T-matrix element
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�k��T̂�Ek + i0��k� � lim
�→0+

�k��T̂�Ek + i���k� . �29�

The factor −2�i in the second term of Eq. �28� results from
introducing the energy-conserving delta function via

lim
�→0

� 1

E1 − E2 + i�
−

1

E1 − E2 − i�
� = − 2�i��E1 − E2� .

�30�

Equation �28� is sometimes taken as the definition of the T
operator. Often this equation is written as an operator equa-
tion,

Ŝ = 1̂ − 2�iT̂ . �31�

This operator form implies that the momentum-space
T-matrix elements must contain �in the second term� both the
delta function ��Ek�−Ek� and the on-shell restriction. Forget-
ting this implication can lead to incorrect equations and pro-
cedures, such as simply writing Eq. �31� in momentum space

as ��k�−k�−2�i�k��T̂�k�. This expression, versions of which
have appeared in the literature, is not the correct momentum-
space S-matrix element.

Usually the momentum-space S and T matrices are related,
as in Eq. �28�, just like the corresponding operators in Eq.
�31�. However some authors �especially in nuclear physics23�
relate the matrices differently than they do the corresponding

operators. For example, Sitenko24 defines the operator as T̂

� Ŝ−1̂, but introduces a multiplicative factor in the defini-
tion of the momentum-space matrix elements of this opera-

tor, as �k��T̂�k�=−2�iTk�,k�E���E�−E�.

B. Alternative relations between the T and S operators

As noted, the factor −2�i in Eq. �28� is not arbitrary; it
follows from Eq. �30�. We can, however, introduce into the
scattering term in Eq. �28� an arbitrary multiplicative con-
stant � �which many authors have done, see Table I�, as

�k��Ŝ�k� = ��k� − k� − 2�i���Ek� − Ek��k��T̂�Ek + i0��k� .

�32a�

In terms of operators, this expression reads25

Ŝ = 1̂ − 2�i�T̂ , �32b�

Doing so amounts to redefining the T operator; that is, to
making the replacement

T̂ → �T̂ . �33�

We must therefore multiply the T operator �and hence all
T-matrix elements� by � in any equations in which these
quantities appear. For example, the defining equation of the
T operator, Eq. �26�, becomes

�T̂�z� � V̂ + V̂Ĝ�z�V̂ . �34�

Note that any redefinition of the T matrix must be imple-
mented so as to leave unchanged the definition of the S op-

ˆ ˆ † ˆ
erator, S=�−�+.
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IV. THE SCATTERING AMPLITUDE

A. The scattering amplitude and the T matrix

If we change the normalization of �k� via � or the relation

between Ŝ and T̂ via �, we must modify several key equa-
tions to ensure consistency and dimensional correctness �see
Appendix A�. The most important of these equations is the
definition of the scattering amplitude. Following Taylor19 we
define the scattering amplitude in terms of the on-shell T

matrix element �k��T̂�Ek+ i0��k� as

f�k� ← k� � − 4�2� m

�2��k��T̂�Ek + i0��k� . �35�

Calculations are often based on an integral equation16 for

the scattering amplitude in terms of the potential operator V̂.
To obtain this equation, we first use the definition Eq. �26� of
the T operator to show that on the energy shell,26

T̂�Ek ± i0��k� = V̂�k ± � , �36a�

where we note in passing that

V̂�k ± � = V̂�̂±�k�T̂�Ek ± i0� = V̂�̂±. �36b�

Then we insert Eq. �36a� into the definition of the scattering
amplitude Eq. �35� to obtain

f�k� ← k� = − 4�2� m

�2��k��V̂�k + � . �37�

In configuration space this relation becomes the aforemen-
tioned integral equation,

f�k� ← k� = − �2��1/2� m

�2� 	 e−ik�·rV�r��k
+�r�d3r , �38�

where we have assumed that the potential operator is local,

�r��V̂�r� = V�r��3�r� − r� . �39�

B. Dimensions of the scattering amplitude
and of T matrix elements

We have found dimensional analysis �see Appendix A� to
be very useful not only in checking derived equations of
collision theory, but also in determining unstated conventions
in published equations. For example, the boundary condition
�16� on the scattering function reveals the dimension of the
scattering amplitude. If the scattering states are subject to
wave-vector normalization, the dimension of the scattering
amplitude is length L. If we denote the “dimension” by
square brackets, we have

�f�k� ← k�� = L � dimension of scattering function �k
+�r� .

�40�

Equation �35� shows that the dimensions of the
momentum-space T-matrix elements, if the scattering states
are subject to wave-vector normalization, are

��k��T̂�k�� = EL2 � dimension of scattering amplitude,

�41a�

where EL2 is the dimension of �2 /m. From Eq. �40�, we

conclude that
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��k��T̂�k�� = EL3 � dimension of scattering function �k
+�r� .

�41b�

For dimensionless scattering functions ��k��T̂�k��=EL3.

C. Effect on the scattering amplitude of renormalizing
the plane wave states and redefining T̂

If we renormalize the plane wave states via �k�→��k�, we
must include a factor of 1 / ���2 in the definition of the scat-
tering amplitude to cancel the factors of � that are absorbed
into the on-shell T matrix element. If we also redefine the T

operator via T̂→�T̂, we must include a factor of � in the
scattering amplitude. The general form of this important re-
lation is

f�k� ← k� � − 4�2 �

���2
� m

�2��k��T̂�Ek + i0��k� . �42�

Equation �42� codifies and illustrates the rules for the renor-
malization of scattering states and/or redefinition of the T
operator:

�1� Divide plane wave states �and the corresponding bras in
dual space� by �.

�2� Multiply the T operator �and all matrix elements of this
operator� by �.

The factor � / ���2 in Eq. �42� ensures that the values of the
scattering amplitude are unaffected by our choice of the nor-
malization of plane wave states and/or by our definition of
the T matrix. This invariance is required because the differ-
ential cross section, a measurable quantity, is the squared
modulus of the scattering amplitude,

d


d�
=

kf

ki
�f�k� ← k��2, �43a�

where, allowing for inelastic scattering, kf =
2mEf /�2 is the
exit-channel wave vector �of the outgoing particle� and
ki=
2mEi /�2 is the entrance-channel wave vector �of the
incident particle�. For elastic scattering Ef =Ei and kf =ki.
The integral cross section is the integral of the differential
cross section over the scattering angles,


 = 	
4�

d


d�
sin � d� d� . �43b�

The elastic momentum transfer cross section is


 = 	
4�

d


d�
�1 − cos ��sin � d� d� . �43c�

We have already noted the importance of the integral
equation �38� for the scattering amplitude. The factor � / ���2
in Eq. �42� does not affect this relation because upon the
redefinition of the T operator, Eq. �36b� becomes

�T̂�Ek± i0�= V̂�̂±, and we have

f�k� ← k� = − 4�2 1

���2
� m

�2��k��V̂�k + � . �44�
The most general form of this integral equation is therefore
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f�k� ← k� = −
1

4�

�2��3/2

�
�2m

�2 � 	 e−ik�·rV�r��k
+�r�d3r .

�45�

V. THE REACTANCE „K… MATRIX

For practical reasons many quantum scattering calcula-
tions are designed to determine the K matrix �sometimes
called the reactance matrix� rather than the S or T matrices.27

In formulations that impose real boundary conditions the
asymptotic form of the scattering function involves the K
matrix, which is also real. �For scattering processes that are
invariant under time-reversal, the unitarity of the S matrix
guarantees that the T matrix is symmetric.� In such an ap-
proach a key step is relating the calculated K matrix to the T
�or S� matrix from which cross sections can be calculated. At
this point a third ambiguity enters.

A. The K matrix and the S matrix

The K matrix consists of momentum-space matrix ele-

ments of the operator K̂ that we shall define19 as the Caley
transform of the S operator �see p. 232 of Ref. 28�

K̂ � i�1̂ − Ŝ��1̂ + Ŝ�−1. �46�

The inverse of this definition gives the S operator in terms of
the K operator:29

Ŝ � �1̂ + iK̂��1̂ − iK̂�−1 �47a�

=��1̂ − K̂2��1̂ + K̂2�−1� + i��2K̂��1̂ + K̂2�� , �47b�

where the second form isolates the real and imaginary parts

of Ŝ. This definition ensures that the unitarity of Ŝ implies

the hermiticity of K̂. The matrix form of Eq. �47�,

S = �1 + iK��1 − iK�−1, �48�

is widely used in scattering calculations. The elements of the
S and K matrices are explicitly related by

�k��Ŝ�k� =
��k� − k� + i��Ek� − Ek��k��K�k�

��k� − k� − i��Ek� − Ek��k��K�k�
. �49�

Unlike the S and T matrices, the K matrix is defined only on
the energy shell.

B. The K matrix and the T matrix

Because elements of the T matrix appear directly in equa-
tions for the differential and integral cross sections, the rela-
tion between the T and K matrices is of vital importance. To
relate these matrices, we insert Eq. �47� into S=1−2�iT to
obtain

T = −
1

�
K�1 − iK�−1. �50�

To illustrate the practical consequence of introducing the
K matrix, we look ahead to scattering from a local central
potential V�r� �see Sec. VII�. For this problem, a partial-

7,10
wave phase shift ���E� is defined by
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S��E� � e2i���E�, �51a�

where S��E� is an element of the diagonal S matrix that re-
sults from the transformation from plane wave to orbital an-
gular momentum states �see Sec. VII B�. We substitute this
definition into the angular momentum matrix elements of the
K operator Eq. �46� and obtain the partial-wave K matrix
elements

K��E� = tan ���E� . �51b�

Correspondingly, the partial-wave T-matrix elements are

T��E� = −
ei���E� sin ���E�

�
, �51c�

where we have used 1−e2i���E�=−2iei���E� sin ���E�.

C. Alternate definitions of the K operator

Almost as various as the relations between the S and T
operators are the relations between the S and K operators.30

To accommodate these variations we introduce yet another
constant 	 and write the definition Eq. �46� as

Ŝ � �1̂ + i	K̂��1̂ − i	K̂�−1. �52a�

This relation conforms to the requirement that redefinition of
the K matrix must leave the S matrix unchanged. The corre-
sponding replacement is

K̂ →
1

	
K̂ . �52b�

Various authors use various combinations of choices of �

�in Ŝ=1̂−2�i�T̂� and 	. Consequently there is a range of
relations between the S, T, and K matrices. Equations �48�
and �50� correspond to �=1 and 	=1.19 �In partial-wave
theory12 these choices yield Eq. �51�.� A common alternative
is 	=1 and �=−1/�.

The general matrix transformation equations when �
and/or 	 differ from 1 are

T = −
1

�

	

�
K�1 − i	K�−1, �53a�

T = −
i

2�

1

�
�1 − S� , �53b�

K = i
1

	
�1 − S��1 + S�−1, �53c�

K = − i
��

	
T�i + ��T�−1. �53d�

The corresponding equations of partial-wave theory are31

K��E� =
1

	
tan ���E� , �54a�

T��E� = −
1

�

ei���E� sin ���E�
�

. �54b�

Equations �53� and �54� are independent of the normalization
of the plane wave states �k�, that is, they are independent of

the renormalization constant � �see Eq. �18��.
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VI. THE GREEN’S FUNCTION AND LIPPMANN-
SCHWINGER EQUATIONS

A. The integral equation for the scattering amplitude

We now return to the crucial relation between the bound-
ary conditions on the scattering function, Eq. �16�, and the
integral equation for the scattering amplitude in terms of the
potential, Eq. �37�. This relation is founded on the
Lippmann-Schwinger equation for the scattering function,

�k
+�r� = �k

0�r� +	 GEk

0 �r,r��V�r���k
+�r��d3r�, �55�

where �k
0�r���r �k�= �2��−3/2eik·r is the �wave vector nor-

malized� plane wave function �see Eq. �12��. The free-
particle Green’s function in Eq. �55� is defined in terms of

the free-particle Green’s operator Ĝ0�z���z−Ĥ0�−1 �see Eq.
�27�� as

GEk

0 �r,r�� � �r��Ĝ0�Ek + i0��r� = lim
�→0+

�r��Ĝ0�Ek + i���r� .

�56�

To demonstrate consistency between the usual boundary
conditions on �k

+�r� and our definitions of the scattering am-
plitude, Eq. �35�, and the T operator, Eq. �26�, we must
evaluate the free-particle Green’s function �56�, substitute the
result into the Lippmann-Schwinger equation �55�, and con-
sider the result in the asymptotic limit r→�. We first substi-

tute the resolution of the identity �Eq. �10�� into �r�Ĝ0�z��r��
twice. We then evaluate the result using free-particle plane
wave functions and the action of the free-particle Green’s
operator on a plane wave state,

Ĝ0�z��k� =
1

z − Ek
�k� . �57�

These calculations yield

�r�Ĝ0�z��r�� = −
1

4�
�2m

�2 � exp�i
2mz/�2�r − r���
�r − r��

. �58a�

The particular free-particle Green’s function that appears
in the Lippmann-Schwinger equation �55� requires evaluat-
ing Eq. �58a� at z=Ek+ i� and then taking the limit �→0+.
These manipulations lead to

GEk

0 �r,r�� = −
1

4�
�2m

�2 � eik�r−r��

�r − r��
. �58b�

To take the required asymptotic limit, we consider r��r and
expand �r−r�� in powers of r� /r. Dropping terms of order
higher than the first leaves �for details see Sec. 10c of Ref.
19�

GEk

0 �r,r�� ——→
r→�

−
1

4�
�2m

�2 � eikr

r
e−ikr̂·r�. �58c�

The final step is to substitute this asymptotic form of the
free-particle Green’s function into the r→� limit of the
Lippmann-Schwinger equation �55�. By matching the result
to the boundary conditions �16� on �k

+�r�, we make the iden-

tification
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f�k� ← k� = − 4�2� m

�2��k��V̂�k + � . �59�

We thus regain Eq. �37�. If we now invoke the definition of

the T operator, T̂� V̂+ V̂Ĝ�z�T̂, Eq. �26�, we can use the re-

sulting on-shell relation T̂�Ek± i0��k�= V̂�k± � �Eq. �36a�� to

obtain the definition f�k�←k��−4�2�m /���k��T̂�Ek

+ i0��k� �Eq. �35�� of the scattering amplitude.
This algebra does not constitute a derivation of the bound-

ary conditions in any useful sense, but it justifies our defini-
tion �35� of the scattering amplitude in terms of the
momentum-space on-shell T-matrix element.

B. The partial-wave Green’s function

In applications of Lippmann-Schwinger theory based on
the expansion of the scattering function in spherical harmon-
ics �such as scattering from a central potential, Sec. VII� the
partial-wave Green’s function plays a key role. The free-
particle partial-wave Green’s function g��r� ,r� is defined
from

GEk

0 �r,r�� =
1

4�
�2m

�2 ��
�=0

�

�2� + 1�g��r�,r�P��cos �� . �60�

The function g��r� ,r� consists of a combination of Riccati-
Bessel, -Neumann, and -Hankel functions �see Appendix B�,
depending on the boundary conditions imposed on the radial
scattering function. For instance, for complex S-matrix
boundary conditions Eq. �94a� is

g��r�,r� = −
1

k
ĵ��kr��ĥ�

+�kr�� , �61�

where r� and r� are the minimum and maximum of �r� ,r�,
respectively.32

C. Consequences for the Green’s function
of renormalization of plane wave states

Because a derivation of Eq. �58� requires the use of the
coordinate-space form �r �k� of the plane wave states �k�,
these equations depend on how we normalize the plane wave
states. If we allow for alternatives to wave vector normaliza-
tion by including the constant � of Eq. �18�, we must multi-
ply the right-hand side of Eq. �58� by ���2. For example, Eq.
�58b� becomes

GEk

0 �r,r�� = −
���2

4�
�2m

�2 � eik�r−r��

�r − r��
. �62�

Some authors define the free-particle Green’s function as
the solution of �see, for example, Eq. �6.4.1� of Ref. 33�

��2 + k2�GEk

0 �r,r�� = �3�r − r�� . �63�

In effect, this definition absorbs a factor of −2m /�2 �from

the coordinate-space free-particle Hamiltonian Ĥ0

=−��2 /2m��2� into the Green’s function GEk

0 �r ,r��, altering
the Lippmann-Schwinger equation, Eq. �55�, and the explicit
equations for the Green’s function, Eq. �58�, accordingly.

Other authors absorb the factor 2m /�2 into the definition
of the potential energy, for example, by defining U�r�

2
��2m /� �V�r� and using U�r� instead of V�r� in the
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Lippmann-Schwinger and related equations �see, for ex-
ample, Chap. VIII of Ref. 34�. Unfortunately, in many papers
this redefinition is used along with the symbol V�r� but with-
out the information that V�r� denotes not the potential energy
but rather the potential energy times �2m /�2�. Readers can
usually spot this redefinition by finding an integral equation
for the scattering amplitude, such as Eq. �37�. The presence
of �2 instead of 4�2 in this equation �even in atomic units�
indicates that the author is probably using a scaled potential
energy.35

VII. PARTIAL-WAVE SCATTERING STATES

To define the partial-wave scattering states, we first trans-
form the free-particle plane wave states �k�, which are eigen-
functions of the linear-momentum operator p̂, to eigenfunc-

tions of the free-particle Hamiltonian Ĥ0 and the orbital-

angular momentum operators L̂2 and L̂z. The elements of the
requisite transformation matrix �E�m �k� are defined by the
fundamental expansions36

�k� = �
�=0

�

�
m=−�

� 	
0

�

�E�m��E�m�k�dE . �64�

The coordinate-space projection of Eq. �64� is the familiar
expansion of a plane wave function in spherical harmonics,

eik·r =
1

kr
�
�=0

�

i��2� + 1�ĵ��kr�P��k̂ · r̂� , �65a�

where ĵ��kr��krj��kr� is the Riccati-Bessel function9 �see
Appendix B�. In scattering theory, the most useful form of
this expansion, which follows from the addition theorem of
spherical harmonics, is

eik·r =
4�

kr
�

�
�
m

i�ĵ��kr�Y�m
* �k̂�Y�m�r̂� . �65b�

Whatever the normalization for �k� and �E�m�, all equations
relating to these states must preserve Eq. �65�. That is, this
expansion is another invariant equation.

Like the plane wave states in Eq. �14�, the partial-wave
scattering states are related to the corresponding free-particle
angular momentum states via Møller operators as

�E�m ± � = �̂±�E�m� . �66�

Hence the expansion of the plane wave scattering state in
angular momentum scattering states involves the same trans-
formation matrix that appears in the expansion of the corre-
sponding free-particle states:

�k + � = �
�=0

�

�
m=−�

� 	
0

�

�E�m + ��E�m�k�dE . �67�

The fundamental expansions �64� and �67� follow from the
resolution of the identity in angular momentum states

1̂ = �
�=0

�

�
m=−�

� 	
0

�

�E�m��E�m�dE . �68�

Like the resolution of 1̂ in plane wave states, Eq. �10�, Eq.
�68� is valid only for energy-normalized angular momentum

states.
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A. Energy normalization

The most convenient normalization for the partial-wave
scattering states is energy normalization:37

�E���m��E�m� = ��Ek� − Ek����,��m�,m. �69a�

Because the Møller operators preserve normalization, the
partial-wave scattering states obey the same condition,

�E���m� ± �E�m ± � = ��Ek� − Ek����,��m�,m. �69b�

B. The transformation matrix

If we use plane wave states that obey wave vector normal-
ization and angular momentum states that obey energy nor-
malization, we find for the elements of the transformation
matrix

�E�m�k� = i���2

m
�1/2

k−1/2Y�m
* �k̂���E −

�2k2

2m
� ,

�k�E�m� = i−���2

m
�1/2

k−1/2Y�m�k̂���E −
�2k2

2m
� . �70�

We can use the transformation matrix in Eq. �70� to trans-
form any equation of scattering theory from the plane wave
to the angular momentum representation by inserting resolu-
tions of the identity operator in angular momentum states,
Eq. �68�, next to each plane wave ket or bra. To illustrate we
transform Eq. �35� for the scattering amplitude in terms of
the momentum-space T-matrix elements. If we substitute two

resolutions of 1̂ and evaluate the integrals over energy, we
obtain

f�k� ← k� = − 4�2� m

�2� �
��=0

�

�
m�=−��

��

�
�=0

�

�
m=−�

�

�k��E��m��

��E��m��T̂�E + i0��E�m��E�m�k� . �71a�

Equation �71a� immediately yields the desired equation for
f�k�←k� in terms of the partial-wave T matrix,

f�k� ← k� = −
�2��2

k
�

��=0

�

�
m�=−��

��

�
�=0

�

�
m=−�

�

i�−��Y��m��k̂��

��E��m��T̂�E + i0��E�m�Y�m
* �k̂� , �71b�

via the handy result

�k��E��m���E�m�k� =
i�−��

k
��2

m
�Y��m��k̂��Y�m

* �k̂� . �72�

Equation �71� simplifies further if the system is rotation-
ally invariant, in which case the phase shift reappears �see
Eq. �51c��:

�E��m��T̂�E + i0��E�m� = T��E����,��m�,m

= −
1

�
ei���k� sin ���k����,��m�,m. �73�

For such a system we can evaluate the sums over ��, m�, and

m to obtain
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f�k� ← k� = −
4�2

k
�
�=0

�

�
m=−�

+�

Y�m
* �k̂��T��E�Y�m�k̂� �74a�

=−
�

k
�
�=0

�

�2� + 1�T��E�P��k̂� · k̂� , �74b�

which implies that

f�k� ← k� =
1

k
�
�=0

�

�2� + 1�ei���k� sin ���k�P��k̂� · k̂� .

�74c�

C. Partial-wave scattering amplitudes and cross sections

Equation �74c� motivates the introduction of the partial-
wave scattering amplitude f��k� via38

f��k� � −
�

k
T��E� =

1

k
ei���k� sin ���k� =

i

2k
�1 − e2i���k�� ,

�75�

which implies that

f�k� ← k� = �
�=0

�

�2� + 1�f��k�P��k̂� · k̂� . �76�

In the literature, definitions of the partial-wave scattering
amplitude vary by additional factors in Eq. �76�. But Eq.
�74c� for f�k�←k� in terms of phase shifts is an invariant
equation: it is independent of the choices of all four arbitrary
constants.

In terms of the partial-wave scattering amplitude, the in-
tegral cross section for scattering from a local central poten-
tial is


�E� = �
�=0

�


��E� = �
�=0

�

4��2� + 1��f��k��2 �77a�

=
4�

k2 �
�=0

�

�2� + 1�sin2 ���E� �77b�

=
�

k2 �
�=0

�

�2� + 1��1 − S��E��2, �77c�

where in Eq. �77c� we have used the definition of the phase
shift Eq. �51a�.

D. Alternate normalization of the angular momentum
states

The normalization of angular momentum states is arbi-
trary. This arbitrariness introduces our fourth �and last� arbi-
trary constant:

�E�m� → 
�E�m� . �78a�

The renormalization constant 
 may be complex and may
depend on � and k; many authors choose 
 to depend on the
partial-wave phase shift.39 The effect of renormalization of

the angular momentum states parallels that of the renormal-
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ization of the plane wave states in Eq. �18�: it changes the
normalization condition Eq. �69a� to

�E���m��E�m� = �
�2��Ek� − Ek����,��m�,m. �78b�

We strongly recommend that one not deviate from energy
normalization lightly. Transforming from a plane wave rep-
resentation to an angular momentum representation is the
first step in the practical solution of many scattering
problems—not just for central potentials.40 The conse-
quences of the normalization of �E�m+ � are more far reach-
ing than those of normalization of �k+ �; correspondingly, the
chances for error and �especially� inconsistency are far
greater.

To illustrate these consequences, we look ahead to the
boundary conditions on the normalized radial function uk��r�
of partial-wave theory �see Sec. VII G�. With our conven-
tions these boundary conditions can be written in terms of
the phase shift as

uk��r� ——→
r→�

ei���E� sin�kr − �
�

2
+ ���E�� . �79�

In the literature there is a variety of alternative forms of these
boundary conditions �see Table II�. These forms arise from
different normalizations of the orbital angular momentum
states. The consequences propagate through several equa-
tions �every equation in Table II that contains 
 is affected�,
ranging from the resolution of the identity in these states to
the transformation matrix between the plane wave and angu-
lar momentum representations.

For example, the normalization condition on the normal-
ized radial functions becomes

	
0

�

uk���r�uk��r�dr = �
�2
�

2
��k� − k� , �80�

which no longer corresponds simply to the normalization
condition on the Riccati-Bessel functions, Eq. �91�. Scaling
uk��r� by 
 implies that the corresponding zero-potential
�free particle� scattering function is

uk��r� ——→
V→0


¸̂��kr� . �81�

E. Transformations using alternate normalization
of plane wave and angular momentum states

It is desirable although not required to preserve the math-
ematical structure of the fundamental transformation Eq.
�64� regardless of how �k� and �E�m� are normalized. We can
do so by multiplying the transformation matrices in Eq. �70�
by � /
:

�E�m�k� = i���



���2

m
�1/2

k−1/2Y�m
* �k̂���E −

�2k2

2m
� . �82�

With arbitrary normalization constants � and 
 and the con-
stant � in the equation relating the T matrix to the S matrix,
Eq. �53b�, the partial-wave scattering amplitude defined in
Eq. �76� becomes

f��k� = − �
�

k
T��E� =

1

k
ei���k� sin ���k� . �83�

All the dependence on � and 
 has canceled. Moreover, the

factor of 1 /� in the generalized equation relating the partial-
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wave T matrix to the phase shift, Eq. �54�, results in an
equation for f��k� in terms of ���E� that doesn’t depend on �.
Consequently, the subsequent equations for the differential
and integral cross section in terms of phase shifts are also
independent of all arbitrary constants. For example, the
partial-wave expansion of the scattering amplitude depends
on � as

f�k� ← k� = − �
�

k �
�=0

�

�2� + 1�T��E�P��k̂� · k̂� , �84�

so that inserting Eq. �54� gives a scattering amplitude that is
independent of �.

F. The radial scattering function

The radial scattering function vk��r� is defined via the
partial-wave scattering function �E�m

+ �r���r �E�m� as

�E�m
+ �r� �

1

r
vk��r�Y�m�r̂� , �85�

where r̂= �� ,�� represents the polar ��� and azimuthal ���
angles of spherical coordinates. We further define the nor-

Table II. Useful equations for determining conventio
which contains additional relevant equations.

Relation

T matrix and K matrix T=−

T matrix and S matrix T=−

Scattering amplitude and
T matrix

f�k�

S matrix and K matrix S= �

K matrix and S matrix K= i

K matrix and T matrix K=−

Boundary condition on the
normalized radial function

uk��r

Partial-wave expansion of
scattering amplitude

f�k�

Boundary condition on the radial
function

vk��r

Partial-wave T matrix T��E

Plane wave to angular
momentum free-state
transformation

�E�m

Partial-wave K matrix K��E
malized radial function uk��r� via
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vk��r� �
1


�
�2m

�2 �1/2

k−1/2uk��r� . �86�

The normalized radial function reduces to the Riccati-Bessel
function for zero potential energy, uk��r�→ ĵ��kr�=uk�

0 �r� as
V�r�→0.

In coordinate space the partial-wave expansion Eq. �67�
becomes

�k
+�r� = �

�=0

�

�
m=−�

�

�E�m�k��E�m
+ �r� �87a�

=��



��

�=0

�

�
m=−�

� �i�� �2

mk
�1/2

Y�m
* �k̂���E�m

+ �r� �87b�

=��



�� �2

mk
�1/21

r
�
�=0

�

�
m=−�

�

i�vk��r�Y�m
* �k̂�Y�m�r̂�

�87c�

=��



�� �2

mk
�1/2 1

4�r
�
�=0

�

i��2� + 1�vk��r�P��k̂ · r̂� .

�87d�

We can write this expansion in terms of the normalized ra-

he quantities �, 
, 	, and � are defined in Table III,

Equation

�1− i	K�−1

�1−S�

=−4�2 �

���2 � m

�2 ��k��T̂�Ek+ i0��k�

K2��1+	2K2�−1+ i�2	K��1+	2K2�

S��1+S�−1

T�i+��T�−1

→
�


ei���E� sin�kr−�
�

2
+���E��

=−�
�

k
��=0

� �2�+1�T��E�P��k̂� · k̂�

→
�



1


� �2m

�2 �1/2

k−1/2ei���E� sin�kr−�
�

2
+���E��

1 ei���E� sin ���E�

�

i���


 ���2

m �1/2

k−1/2Y�m
* �k̂���E−

�2k2

2m �
tan ���E�
ns. T

1

�

	

�
K

i

2�

1

�

←k�

1−	2

1

	
�1−

i
��

	

� ——
r→

←k�

� ——
r→

�=−
�

�k�=

�=
1

	

dial function as
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�k
+�r� = ��



�� 2

�
�1/2

k−1�
�=0

�

�
m=−�

�

i�Y�m
* �k̂��1

r
uk��r�Y�m�r̂��

�88a�

=��



��2��−3/2k−1�

�=0

�

i��2� + 1�uk��r�P��k̂ · r̂� .

�88b�

We have found the various forms in Eqs. �87� and �88� to be
useful templates when trying to deduce choices of � and 
 in
various publications.

Both the radial and normalized radial functions satisfy the
radial Schrödinger equation:

�−
�2

2m

d2

dr2 +
�2��� + 1�

2mr2 + V�r� − E�uk��r� = 0. �89�

The linearity of Eq. �89� renders its form invariant to the
choice of the normalization of the plane wave or partial-
wave scattering states.

The scattering function �E�m
+ �r� must conform to the nor-

malization of the scattering states �E�m+ �. With energy nor-
malization �69b�, this requirement reads

	 �E���m�
* �r��E�m

+ �r�d3r = ��Ek� − Ek����,��m�,m. �90�

Because the Møller operator in �E�m+ �=�̂+�E�m� preserves
the normalization, the function uk��r� obeys the same ortho-
normality condition as the Riccati-Bessel function,

	
0

�

ĵ��k�r�ĵ��kr�dr =
�

2
��k� − k� , �91a�

which implies that

	
0

�

uk���r�uk��r�dr =
�

2
��k� − k� . �91b�

Like ĵ��kr�, the normalized radial function uk��r� is real and
dimensionless. The normalized radial function obeys the
simple �dimensionless� boundary conditions in Eq. �79�.

The �diagonal� partial-wave S-matrix elements are related
to the phase shifts in these boundary conditions by

�E���m��Ŝ�E�m� = S��E���Ek� − Ek����,��m�,m

= e2i���E���Ek� − Ek����,��m�,m, �92�

where we have used the conventional definition of the phase
shift, Eq. �51a�. Equations �91� and �92� are invariant with
respect to normalization: Eq. �91� hinges on a property of the
Riccati-Bessel functions �Appendix B�, and Eq. �92� is the
definition of ���E� in terms of the partial-wave S matrix. As
invariants, these equations serve as a check of algebraic and
internal consistency. With energy normalization of plane
wave and angular momentum states, the definition �86� of
the normalized radial function ensures that uk��r� reduces to

ĵ��kr� in the limit of zero scattering potential energy, that
uk��r� is dimensionless �see Appendix A�, and that uk��r�
obeys the normalization condition obeyed by ĵ��kr�,

Eq. �91�.
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The use of partial waves through the introduction of an-
gular momentum states is best known for a spherically sym-
metric interaction potential. For any system the S operator

commutes with the Hamiltonian, �Ŝ ,Ĥ�=0. If the system is

rotationally invariant, Ĥ commutes with the angular momen-

tum operators L̂2 and L̂z, and Ŝ is diagonal in the basis of
angular momentum free states ��E�m��. This feature justifies
the introduction of the phase-shift via Eq. �92�.

Partial waves may be useful even if the system lacks
spherical symmetry.40 If, for example, the system is axially

symmetric, then Ĥ commutes with L̂z but not with L̂2. In, for
example, charged-particle scattering from a linear molecule,
the S operator is diagonal with respect to m but not with
respect to �; instead of Eq. �92� we have

�E���m��Ŝ�E�m� = S��,�
m �E���Ek� − Ek��m�,m. �93�

G. Boundary conditions on the normalized radial
scattering function

The boundary conditions �79� can be written in various
forms that are useful either for practical or interpretive rea-
sons. For example, in terms of the partial-wave S matrix
element of Eq. �92�, these boundary conditions are

uk��r� ——→
r→�

i

2
�ĥ�

−�kr� − S��k�ĥ�
+�kr�� . �94a�

In terms of the partial-wave scattering amplitude of Eq. �76�,
they are

uk��r� ——→
r→�

ĵ��kr� + kf��k�ĥ�
+�kr� . �94b�

In calculations it is often convenient to use the real boundary
conditions

uk��r� ——→
r→�

ĵ��kr� + tan ���E�n̂��kr� , �94c�

which we can derive via a partial-wave expansion of the
principal value scattering function rather than the function in
Eq. �85� �see Sec. 11.1.2 of Ref. 18�. If we normalize the
angular momentum states differently from energy normaliza-
tion via the factor 
 in Eq. �78�, we must multiply each of
these boundary conditions by 
.

H. Sleuthing out the normalization
of angular momentum states

Many books and papers on scattering theory do not explic-
itly state their normalization convention for the angular mo-
mentum or partial-wave scattering states. Knowing the value
of this normalization constant, 
, may be vital because it
appears in boundary conditions and in equations for the scat-
tering amplitudes. Fortunately, there is a sequence of linear
proportionality relations that leads from the defining equa-
tion �78� for 
 to the boundary condition �86� for the normal-
ized radial scattering function uk��r�. Each item in this se-
quence is proportional to 
:

�E�m� → �E�m
+ �r� → vk��r� → uk��r� . �95�

An equation for any quantity in this sequence is a clue to the

normalization convention. If, for example, a source states a
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boundary condition on the radial function, we can determine

 from the generic form

uk��r� ——→
r→�


ei���E� sin�kr − �
�

2
+ ���E�� . �96�

Thus we often see �for example, in Ref. 41�

uk��r� ——→
r→�

k−1/2 sin�kr − �
�

2
+ ���E�� , �97�

from which we deduce that 
=k−1/2e−i���E�. This example il-
lustrates that 
 may depend on the scattering energy and even
on the phase shift.42

VIII. CONCLUSION

We have shown that to define a nonrelativistic scattering
theory of nonrearrangement collisions, four quantities must
be chosen. These quantities, their defining equations, and the
values adopted in this paper are summarized in Table III.
Students must be �repeatedly� cautioned that before they take
equations from any source, they must determine what
choices the author�s� made for the relevant constants. Many
authors are careful in this regard and state clearly their
choices, although often this information must be tracked
down throughout many pages.

Unfortunately, some well-known texts, monographs, re-
views, and �especially� research papers do not state this in-
formation clearly �or at all� and are not consistent. We have
found that the following guidelines usually maximize the
chances of success while minimizing the required time and
effort:

�1� Find the key equations that involve only one of the four
constants in Table III.

�2� Keep in mind equations that must not depend on the
choices for the constants in Table III. These equations,
which we call invariant, include the definition of the
scattering operator in terms of Møller operators in Eq.
�4�, the integral equation for the Dirac-delta function in
Eq. �13�, the expansion of a plane wave in Eq. �65�, and
the definition of the partial-wave phase shift in Eq. �51a�.

�3� Use dimensional analysis �see Appendix A� to ensure
that all the terms in all equations are dimensionally con-
sistent and that �except for monomial power law func-
tions such as x2�, the arguments of all mathematical
functions are dimensionless.

Students also must learn how these choices propagate
through various equations of scattering theory, a point we

Table III. Choices that must be made in setting up a

Role in collision theory Symbol

Normalize asymptotic plane � �k� �k�
wave states
Relate the S and T
operators

� Ŝ=1̂−

Relate the S and K
operators

	 Ŝ= �1̂+

Normalize asymptotic
angular momentum states


 �E���m
have illustrated several times. A ready reference for this de-
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tective work appears in Table II. The equations in Tables III
and I should also prove useful in checking consistency
among different sources.

It would be impractical to tabulate the choices made in the
hundreds of resources we have investigated. In the interest of
saving readers some of this drudgery, we present in Table I
this information for a small number of current, widely used
books on collision theory. To further facilitate the use of the
transformation equations in this paper, we have prepared a
MATHEMATICA notebook43 that uses replacement rules to gen-
erate the key equations in this paper once the user has iden-
tified as many of the four constants �, �, 	, and 
 as re-
quired.
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APPENDIX A: DIMENSIONAL ANALYSIS

The considerable work often required to determine the
conventions used by a particular source is greatly aided by
dimensional analysis. Although often marginalized in phys-
ics courses and not mentioned in any scattering theory books
known to us, dimensional analysis is valuable for deriving
and checking equations involving scattering quantities. Not
only does dimensional analysis provide an almost foolproof
way to check consistency between various equations, it lim-
its �somewhat� the choices that can be made, particularly if
partial-wave analysis is used.44 Table IV lists the dimensions
of relevant quantities. Omitted from this table are well-
known quantities such as the wave number k �dimensions
L−1� and the radius r �dimensions L�.

APPENDIX B: THE RICCATI FUNCTIONS

The Riccati-Bessel, -Neumann, and -Hankel functions are
closely related to the familiar spherical Bessel, Neumann,
and Hankel functions. The latter functions are defined as

j��z� � � �

2z
�1/2

J�+1/2�z� , �B1a�

n��z� � �− 1��� � �1/2

J−�−1/2�z� , �B1b�

ing scattering theory.

efining equation Value in this paper

��k�−k� 1

T̂ 1

�1̂− i	K̂�−1 1

m�= �
�2��Ek�−Ek����,��m�,m 1
nd us

D

= ���2

2�i�

i	K̂�

� �E�
2z
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h�
±�z� � n��z� ± ij��z� . �B1c�

It is easy to overlook the arbitrary phase in the definition of
the spherical Neumann function. For the convention we have
chosen the asymptotic �for real z� behavior of this function
as45

n��z� ——→
z→�

1

z
cos�z − �

�

2
��real z� . �B2�

The Riccati functions corresponding to the spherical func-
tions of Eq. �B1� are these functions times their argument,

ĵ��z� � zj��z�, n̂��z� � zn��z�, ĥ�
+�z� � zh�

±�z� . �B3�

The introduction of the Riccati functions simplifies express-
ing and manipulating the boundary conditions on radial func-
tions, because the Riccati functions have the simple
asymptotic forms

ĵ��kr� ——→
r→�

sin�kr − �
�

2
� , �B4a�

n̂��kr� ——→
r→�

cos�kr − �
�

2
� , �B4b�

ĥ�
+�kr� ——→

r→�
e±i�kr−��/2�. �B4c�

Almost as useful as the asymptotic behavior of these func-
tions is their behavior as z→0:

ĵ��kr� ——→
1

�2� + 1�!!
�kr��+1 �B5a�

Table IV. Dimensions of quantities in scattering theory. If no entry appears
in the third entry in a particular row, then the item in that row has no
dimensions. This table assumes our default conventions.

Physical quantity Symbol Dimensions

Position eigenstate �r� L−3/2

Plane wave statea �k� L3/2

Angular momentum statea �E�m� E−1/2

Transformation matrix �k �E�m� E−1/2L3/2

Scattering amplitude f�k�←k� L
Scattering state ���
Plane wave scattering function �k

+ L−3/2

Partial-wave scattering function �E�m
+ E−1/2L−3/2

Radial scattering function vk��r� E−1/2L−1/2

Normalized radial scattering functionb uk��r�
Partial-wave scattering matrices S��E� ,T��E� ,K��E�
Phase shift ���E�
Green’s functionc GEk

�r ,r�� E−1L−3

aBecause the Møller operators are dimensionless, these dimensions apply to
the scattering state obtained when these operators act on this item.
bThe zero potential limit of this function is the Riccati-Bessel function
ĵ��kr�, which is dimensionless. Note that with our conventions the boundary
conditions imposed on uk��r� must not contain any dimensional quantities.
cThese dimensions also apply to the free-particle Green’s function. Note that
these dimensions correspond to our definition of the Green’s function as the

solution of �Ĥ+Ek�GEk
�r ,r��=�3�r−r�.
r→0
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n̂��kr� ——→
r→0

1

�2� − 1�!!
�kr�−�. �B5b�

Although ĵ��kr� is regular at the origin, n̂��kr� diverges as
r→0. This behavior is important in the integral equations
approach to scattering theory. Extensive information about
these functions appears in Refs. 46 �which contains pictures�,
Ref. 47 �which discusses their calculation�, and the “bible”
of this subject, Ref. 48.
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