Note on a Casimir Energy Calculation for a Purely Dielectric Cylinder by Mode Summation

August Romeo and Kimball A. Milton‡

Oklahoma Center for High Energy Physics and Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK 73019, USA

Abstract. We comment on a recent calculation of the zero-point energy for a dilute and infinitely long cylinder of purely-dielectric material. The vanishing result predicted by integration of van der Waals potentials is obtained.

PACS numbers: 42.50.Pq, 42.50.Lc, 11.10.Gh, 03.50.De

The Casimir effect is a change in the electromagnetic vacuum fluctuations brought about by the presence of boundaries. Particularly, cylindrical surfaces limiting dielectric media were considered in [1]. One of the first versions of that paper inspired an unpublished calculation, by Romeo, of the van der Waals energy for a purely dielectric cylinder in the dilute-dielectric approximation, which yielded a null result. That calculation found a tribune in appendix B of the final version of [1] and, eventually, unpublished work by Milonni and ref.[2] by Barton provided independent confirmations.

This finding aroused curiosity about the corresponding Casimir energy, which would have to show the predicted equality between both quantities [3] and, therefore, was expected to vanish similarly. The divergences of this problem were studied through its heat kernel coefficients in [4], and the expected vanishing was first verified in [5], where the Casimir pressure was obtained from the expectation value of the stress-energy tensor using Green's functions. Next, a calculation of the Casimir energy based on the mode summation method [6] was completed. The present note offers a comment on that work.

Let J_m , H_m denote the Bessel and Hankel functions (for y > 0, $H_m(y) \equiv H_m^{(1)}(y)$). Given an infinitely long cylinder of radius a, oriented along the z-axis, with permittivity and permeability (ε_1, μ_1), surrounded by a medium with permittivity and permeability (ε_2, μ_2), the eigenfrequencies ω of the Maxwell equations with the adequate boundary

‡ on sabbatical leave at the Department of Physics, Washington University, St. Louis, MO 63130 USA

conditions are the solutions of:

$$f_m(k_z, \omega) = 0, \quad m \in \mathbb{Z}, \quad k_z \in \mathbb{R},$$

$$f_m(k_z, \omega) \equiv \frac{1}{\Delta^2} \left[\Delta_m^{\text{TE}}(x, y) \Delta_m^{\text{TM}}(x, y) - m^2 \frac{a^4 \omega^2 k_z^2}{x^2 y^2} (\varepsilon_1 \mu_1 - \varepsilon_2 \mu_2)^2 J_m^2(x) H_m^2(y) \right]$$
(1)

(see [7, 1]), where

$$\Delta = -\frac{2i}{\pi},$$

$$\Delta_{m}^{\text{TE}}(x, y) = \mu_{1}y J'_{m}(x) H_{m}(y) - \mu_{2}x J_{m}(x) H'_{m}(y),$$

$$\Delta_{m}^{\text{TM}}(x, y) = \varepsilon_{1}y J'_{m}(x) H_{m}(y) - \varepsilon_{2}x J_{m}(x) H'_{m}(y),$$

$$x = \lambda_{1}a, \quad y = \lambda_{2}a, \quad \lambda_{i}^{2} = \varepsilon_{i}\mu_{i}\omega^{2} - k_{z}, \quad i = 1, 2.$$
(2)

The *m* index is the azimuthal quantum number, k_z is the momentum along the cylinder axis, and *p* labels the zeroes of $f_m(k_z, \omega)$. In fact $f_m = -\Delta^{-2}\Xi$, being Ξ the same object as in [5] and Δ^{-2} a factor introduced for convenience. The velocities of light in each media are $c_i = (\varepsilon_i \mu_i)^{-1/2}$, i = 1, 2.

If medium 1 is purely dielectric and medium 2 is vacuum, $\varepsilon_1 = \varepsilon$, $\mu_1 = 1$, $\varepsilon_2 = \mu_2 = 1$ (obviously, $c_2 = 1$). Further,

$$\omega = a^{-1}(y^2 + \hat{k}^2)^{1/2}, \qquad x^2 = y^2 + (\varepsilon - 1)(y^2 + \hat{k}^2), \qquad \hat{k} \equiv k_z a.$$
 (3)

The Casimir energy per unit length stems from the mode sum

$$\mathcal{E}_C = \frac{1}{2} \hbar \int_{-\infty}^{\infty} \frac{dk_z}{2\pi} \sum_m \sum_p \omega_{m,p,k_z}, \tag{4}$$

which is divergent, and will be regularized appropriately (see below). Reference [4] tells us that, up through the order of $(\varepsilon - 1)^2$, there are no ambiguities, because the heat kernel coefficient which would multiply them is of $\mathcal{O}((\varepsilon - 1)^3)$. Thus, we may just set

$$\mathcal{E}_C(s) = \frac{\hbar}{2} \int_{-\infty}^{\infty} \frac{dk_z}{2\pi} \sum_m \sum_p \omega_{m,p,k_z}^{-s} = \frac{\hbar}{2} a^{s-1} \int_{-\infty}^{\infty} \frac{d\hat{k}}{2\pi} \sum_m \sum_p (y_{m,p}^2 + \hat{k}^2)^{-s/2}, \tag{5}$$

without any additional mass scale. $\mathcal{E}_C(s)$ is a function of the complex variable s, and our idea is to redefine (4) by analytic continuation of this function to s = -1, i.e.,

$$\mathcal{E}_C = \lim_{s \to -1} \mathcal{E}_C(s). \tag{6}$$

Once that \hat{k} , m have specific values, the sum over p is expressed as a contour integral in complex y plane:

$$\mathcal{E}_C(s) = \frac{\hbar}{2} a^{s-1} \int_{-\infty}^{\infty} \frac{d\hat{k}}{2\pi} \sum_{m=-\infty}^{\infty} \frac{s}{2\pi i} \int_C dy \, y \, (y^2 + \hat{k}^2)^{-s/2-1} \ln f_m, \tag{7}$$

where C is a circuit enclosing all the y values corresponding to the positive zeroes of f_m (the argument principle [8] derived from the residue theorem). When applying this method, one sometimes finds an asymptotic form $f_{m,as}$ of f_m and then subtracts $\ln f_{m,as}$ from $\ln f_m$ in the integrand. In fact, the factors introduced in (1) relative to the original

 f_m of [1] have the same effect as having divided that function by the leading part of $f_{m,as}$.

At this point, the logarithm function of (7) is expanded in powers of $(\varepsilon - 1)$, taking y as an independent variable and x as a function of y, \hat{k} , ε (see (3)). Then,

$$\ln f_{m} = \left[L_{m1}^{0}(y) + L_{m1}^{1}(y)(y^{2} + \hat{k}^{2}) \right] (\varepsilon - 1) + \left[L_{m2}^{00}(y) + L_{m2}^{10}(y)(y^{2} + \hat{k}^{2}) + L_{m2}^{20}(y)(y^{2} + \hat{k}^{2})^{2} + L_{m2}^{11}(y)(y^{2} + \hat{k}^{2}) \hat{k}^{2} \right] (\varepsilon - 1)^{2} + \mathcal{O}((\varepsilon - 1)^{3}),$$
(8)

where

$$L_{m1}^{0}(y) = \frac{1}{\Delta} y J'_{m}(y) H_{m}(y),$$

$$L_{m1}^{1}(y) = \frac{1}{\Delta y} \Delta_{m}^{(1,0)}(y),$$

$$L_{m2}^{00}(y) = -\frac{1}{2\Delta^{2}} y^{2} J'_{m}^{2}(y) H_{m}^{2}(y),$$

$$L_{m2}^{10}(y) = -\frac{1}{2\Delta^{2}} \left[\Delta_{m}^{(1,0)}(y) J'_{m}(y) H_{m}(y) + \frac{\Delta}{y} \left(J'_{m}(y) + y \left(1 - \frac{m^{2}}{y^{2}} \right) J_{m}(y) \right) H_{m}(y) \right],$$

$$L_{m2}^{20}(y) = L_{m2}^{20A}(y) + L_{m2}^{20B}(y),$$

$$\begin{cases} L_{m2}^{20A}(y) = \frac{1}{4\Delta y^{2}} \left(\Delta_{m}^{(2,0)}(y) - \frac{1}{y} \Delta_{m}^{(1,0)}(y) \right), \\ L_{m2}^{20B}(y) = -\frac{1}{4\Delta^{2} y^{2}} \left(\Delta_{m}^{(1,0)}(y) \right)^{2}, \end{cases}$$

$$L_{m2}^{11}(y) = -\frac{m^{2}}{\Delta^{2} y^{4}} J_{m}^{2}(y) H_{m}^{2}(y),$$

$$(9)$$

with

$$\Delta_m^{(1,0)}(y) = -\frac{1}{y} \left[y^2 J_m'(y) H_m'(y) + (y^2 - m^2) J_m(y) H_m(y) \right] - (J_m(y) H_m(y))',
\Delta_m^{(2,0)}(y) = \left(\Delta_m^{(1,0)}(y) \right)' - \left(1 - \frac{m^2 + 1}{y^2} \right) \Delta, \qquad (\Delta_m^{(1,0)}(y))' \equiv \frac{d}{dy} \Delta_m^{(1,0)}(y).$$
(10)

Now, (8) is inserted into (7). The obtained expression involves integrals of the form

$$I \equiv \int_{-\infty}^{\infty} d\hat{k} \int_{C} dy \, y \, F(y) \, (y^2 + \hat{k}^2)^{-\alpha} \, \hat{k}^{2\beta}, \tag{11}$$

where C is the contour of (7) and F satisfies F(-iv) = F(iv) for $v \in \mathbb{R}$, as well as having good asymptotic properties (the role of F is played by the L_m 's of (9),(10)). Examining the $(y^2 + \hat{k}^2)$ powers in (7), (8), one sees that, in the required cases, $\alpha = s/2 + 1, s/2, s/2 - 1$, and $\beta = 0$ except for one integral with $\beta = 1$. Analytic continuation in s obviously amounts to analytic continuation in s. Following [6], the value of s is given by

$$I = -2i \operatorname{B} \left(\beta + \frac{1}{2}, 1 - \alpha \right) \sin(\pi \alpha) \int_0^\infty dv \, v^{2 - 2\alpha + 2\beta} F(iv), \tag{12}$$

where B denotes the Euler beta function (about the mathematical basis, see also [9, 10]). Note that for s = -1, i.e., $\alpha = 1/2, -1/2, -3/2$, and for $\beta = 0, 1$, the beta and sine functions are finite. Application of formula (12) to Eqs. (7), (8) gives:

$$\mathcal{E}_C(s) = \mathcal{E}_{C1}(s)(\varepsilon - 1) + \mathcal{E}_{C2}(s)(\varepsilon - 1)^2 + \mathcal{O}((\varepsilon - 1)^3), \tag{13}$$

where

$$\mathcal{E}_{C1}(s) = \mathcal{E}_{C1}^{0}(s) + \mathcal{E}_{C1}^{1}(s),$$

$$\begin{cases}
\mathcal{E}_{C1}^{0}(s) = -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} \operatorname{B}\left(\frac{1}{2}, -\frac{s}{2}\right) \sin\left(-\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{-s} L_{m1}^{0}(iv),$$

$$\mathcal{E}_{C1}^{1}(s) = -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} \operatorname{B}\left(\frac{1}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{2-s} L_{m1}^{1}(iv),$$

$$(14)$$

and

$$\mathcal{E}_{C2}(s) = \mathcal{E}_{C2}^{00}(s) + \mathcal{E}_{C2}^{10}(s) + \mathcal{E}_{C2}^{20A}(s) + \mathcal{E}_{C2}^{20B}(s) + \mathcal{E}_{C1}^{11}(s),$$

$$\begin{cases}
\mathcal{E}_{C2}^{00}(s) &= -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^2} \operatorname{B}\left(\frac{1}{2}, -\frac{s}{2}\right) \sin\left(-\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{-s} L_{m2}^{00}(iv), \\
\mathcal{E}_{C2}^{10}(s) &= -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^2} \operatorname{B}\left(\frac{1}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{2-s} L_{m2}^{10}(iv), \\
\mathcal{E}_{C2}^{20A,B}(s) &= -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^2} \operatorname{B}\left(\frac{1}{2}, 2 - \frac{s}{2}\right) \sin\left(-\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{4-s} L_{m2}^{20A,B}(iv), \\
\mathcal{E}_{C2}^{11}(s) &= -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^2} \operatorname{B}\left(\frac{3}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi\frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{4-s} L_{m2}^{11}(iv).
\end{cases}$$
(15)

With $\mathcal{E}_{C_1}^0(s)$ taken from (14), and $L_{m_1}^0(iv)$ from (9), we arrive at

$$\mathcal{E}_{C1}^{0}(s) = -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} B\left(\frac{1}{2}, -\frac{s}{2}\right) \sin\left(-\pi \frac{s}{2}\right) \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{1-s} \, I'_{m}(v) K_{m}(v). \tag{16}$$

The beta and sine functions are already finite at s = -1, and the integral will be reexpressed by introducing the factor $1 = -vW[I_m(v), K_m(v)] = -v[I_m(v)K'_m(v) - I'_m(v)K_m(v)]$ for every m:

$$\int_{0}^{\infty} dv \, v^{1-s} \sum_{m=-\infty}^{\infty} I'_{m}(v) K_{m}(v) =$$

$$-\int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v) I'_{m}(v) K_{m}(v) K'_{m}(v) + \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I'_{m}^{2}(v) K_{m}^{2}(v).$$

$$(17)$$

The summations over m will be performed by taking advantage of the addition theorem for the modified Bessel functions:

$$\sum_{m=-\infty}^{\infty} I_m(kr) K_m(k\rho) e^{im\phi} = K_0(kR(r,\rho,\phi))$$

$$R(r,\rho,\phi) = \sqrt{r^2 + \rho^2 - 2r\rho\cos\phi}, \quad \rho > r.$$
(18)

Suitable manipulations of this identity ([11, 12, 5, 6]) yield:

$$\begin{split} \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I'_{m}^{2}(v) K_{m}^{2}(v) &= \\ \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} K'_{m}^{2}(v) I_{m}^{2}(v) &= \\ \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v) I'_{m}(v) K_{m}(v) K'_{m}(v) &= \frac{1}{8\pi^{1/2}} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})\Gamma(\frac{1-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{s+1}{2})} \\ \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} m^{2} I_{m}(v) I'_{m}(v) K_{m}(v) K'_{m}(v) &= \frac{1}{16\pi^{1/2}} \frac{\Gamma^{4}(\frac{5-s}{2})\Gamma(\frac{2-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{s+1}{2})} \\ \int_{0}^{\infty} dv \, v^{4-s} \sum_{m=-\infty}^{\infty} I'_{m}^{2}(v) K'_{m}^{2}(v) &= \frac{1}{8\pi^{1/2}} \frac{\Gamma^{4}(\frac{5-s}{2})\Gamma(\frac{5-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{\Gamma^{2}(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{4} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{4} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{4} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{4} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(5-s)} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{6\pi^{1/2}} \frac{\Gamma(\frac{s-1}{2})\Gamma(\frac{s-1}{2})}{\Gamma(3-s)} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s+1}{2})} \\ &+ \frac{1}{2} \frac{\Gamma(\frac{5-s}{2})\Gamma^{2}(\frac{3-s}{2})}{\Gamma(\frac{5-s}{2})} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{s-1}{2})} \\ &+ \frac{1}{2} \frac{\Gamma(\frac{5-s}{2})}{\Gamma(\frac{5-s}{2})} \frac{\Gamma(\frac{5-s}{2})}{\Gamma(\frac{5-s}{2})} \frac{\Gamma(\frac{s-1}{2})}{\Gamma(\frac{5-s}{2})} \\ &+ \frac{1}{2} \frac{\Gamma(\frac{5-s}{2})}{\Gamma(\frac{5-s}{2})} \frac{\Gamma(\frac{5-s}{2})}{\Gamma(\frac{5-s}{2})} \frac{\Gamma(\frac{5-s}{2})}{\Gamma(\frac{5-s}{2})}$$

Although the left hand side of each integral is not initially defined for s = -1, the right hand side together with the remaining s dependent factors in $\mathcal{E}_{\mathcal{C}}(s)$ will eventually provide the desired extension to negative s through the existing analytic continuations of the involved functions. Then, the poles at $s = -1, -3, -5, \ldots$ in the last dividing

gamma functions, will give rise to zeros at these points.

Going back to $\mathcal{E}_{C1}^0(s)$, since (19) show that the two integrals in the second line of (17) have the same value,

$$\mathcal{E}_{C1}^0(s) = 0, (20)$$

even before setting s = -1.

Formulas (14) tell us that $\mathcal{E}_{C1}^1(s)$ involves the integration of the $L_{m1}^1(iv)$ function, defined by (9), (10). Therefore,

$$\mathcal{E}_{C1}^{1}(s) = -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} B\left(\frac{1}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi \frac{s}{2}\right) \times \sum_{m=-\infty}^{\infty} \int_{0}^{\infty} dv \, v^{2-s} \left[I'_{m}(v) K'_{m}(v) - \left(1 + \frac{m^{2}}{v^{2}}\right) I_{m}(v) K_{m}(v) + \frac{1}{v} (I_{m}(v) K_{m}(v))' \right].$$
(21)

We multiply, again, each term in the m summation of (21) by $1 = -vW[I_m(v), K_m(v)]$, and turn the initial expression into a linear combination of integrals with summations of products of four Bessel functions. That linear combination yields an identically null result — one that is zero for any s value — by virtue of the symmetries observed in (19) under interchange of different Bessel function types (see also comment after Eqs. (80) in [5]). As a result,

$$\mathcal{E}_{C1}^{1}(s) = 0. (22)$$

Equation (21) admits the following reinterpretation. Taking into account the fact that I_m , K_m satisfy the modified Bessel equation, we apply partial integration to (21) omitting a 'boundary term' which vanishes for a given s range that does not include s = -1 yet. Doing so, we find

$$\mathcal{E}_{C1}^{1}(s) = -\frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} B\left(\frac{1}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi \frac{s}{2}\right) \times \left[\int_{0}^{\infty} dv \, v^{1-s} \sum_{m=-\infty}^{\infty} (I_{m}(v)K_{m}(v))' + \frac{2}{1-s} \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}(v)K_{m}(v)\right].$$
(23)

These integrals cannot be straightforwardly taken at s = -1 but, if this is ignored, we may formally put s = -1 and get

$$\mathcal{E}_{C1}^{1}(-1) \to -\frac{\hbar}{8\pi a^{2}} \int_{0}^{\infty} dv \, v^{2} \sum_{m=-\infty}^{\infty} (I_{m}(v)K_{m}(v))' -\frac{\hbar}{8\pi a^{2}} \int_{0}^{\infty} dv \, v^{3} \sum_{m=-\infty}^{\infty} I_{m}(v)K_{m}(v). \tag{24}$$

The first part could arguably be dismissed as a mere contact term because, from (18), it may be shown that it is local in v (In fact it is possible to obtain $\lim_{\phi\to 0} \sum_{m=-\infty}^{\infty} (I_m(v)K_m(v))'e^{im\phi} = -\frac{1}{v}$). The second part of (24) cancels the bulk contribution found in [5] (See formulas (72), (78) there and recall that the Casimir radial pressure is $P_C = \frac{1}{\pi a^2} \mathcal{E}_C$.)

Viewed in a different way, by the arguments in [13] (and references therein) all linear terms in $(\varepsilon_2 - \varepsilon_1)$ have to be removed because they are the self-energy of the electromagnetic field due to polarizable particles. By that rule, one simply must take

out the linear part, regardless of its particular form. This is actually a re-statement of the physical reason for the removal of the bulk contribution.

When going on to second order in $(\varepsilon - 1)$, we take first the piece called $\mathcal{E}_{C2}^{20A}(s)$, as its calculation is most similar to that of $\mathcal{E}_{C1}^0(s)$, $\mathcal{E}_{C1}^1(s)$. From the $\mathcal{E}_{C2}^{20A}(s)$ given in (15), the $L_{m2}^{20A}(y)$ in (9), expressions (10) with y = iv, introducing, once more, $1 = -vW[I_m(v), K_m(v)]$, and using the same reasoning that led to (22), one gets

$$\mathcal{E}_{C2}^{20A}(s) = 0. (25)$$

Now, selecting the lines in (15), which determine $\mathcal{E}_{C2}^{00}(s)$, $\mathcal{E}_{C2}^{10}(s)$, $\mathcal{E}_{C2}^{20B}(s)$, $\mathcal{E}_{C2}^{11}(s)$, the parts of (9) which define $L_{m2}^{00}(y)$, $L_{m2}^{10}(y)$, $L_{m2}^{20B}(y)$, $L_{m2}^{11}(y)$, the form of $\Delta_m^{(1,0)}(y)$ dictated by (10) (its square for the case of $L_{m2}^{20B}(y)$), and setting y=iv, we come to

$$\mathcal{E}_{C2}^{00}(s) = \frac{\hbar}{2} \frac{sa^{s-1}}{4\pi^2} \operatorname{B}\left(\frac{1}{2}, -\frac{s}{2}\right) \sin\left(-\pi \frac{s}{2}\right) \int_{0}^{\infty} dv \, v^{2-s} \sum_{m=-\infty}^{\infty} I_{m}^{\prime 2}(v) K_{m}^{2}(v),$$

$$\mathcal{E}_{C2}^{10}(s) = \frac{\hbar}{2} \frac{sa^{s-1}}{4\pi^2} \operatorname{B}\left(\frac{1}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi \frac{s}{2}\right) \int_{0}^{\infty} dv \, v^{2-s}$$

$$\times \sum_{m=-\infty}^{\infty} \left[2I_{m}(v)I_{m}^{\prime}(v)K_{m}(v)K_{m}^{\prime}(v) + v \, I_{m}^{\prime 2}(v)K_{m}(v)K_{m}^{\prime}(v)\right],$$

$$\mathcal{E}_{C2}^{20B}(s) = \frac{\hbar}{2} \frac{sa^{s-1}}{8\pi^{2}} \operatorname{B}\left(\frac{1}{2}, 2 - \frac{s}{2}\right) \sin\left(-\pi \frac{s}{2}\right) \int_{0}^{\infty} dv \, v^{2-s}$$

$$\times \sum_{m=-\infty}^{\infty} \left[I_{m}^{\prime 2}(v)K_{m}^{2}(v) + I_{m}^{2}(v)K_{m}^{\prime 2}(v)\right.$$

$$\left. + 2(1 - v^{2} - m^{2})I_{m}(v)I_{m}^{\prime}(v)K_{m}(v)K_{m}^{\prime}(v) + v^{2}I_{m}^{\prime 2}(v)K_{m}^{\prime 2}(v) + \left(v^{2} + 2m^{2} + \frac{m^{4}}{v^{2}}\right)I_{m}^{2}(v)K_{m}^{\prime 2}(v)\right.$$

$$\left. + 2v\left(I_{m}^{\prime 2}(v)K_{m}(v)K_{m}^{\prime}(v) + I_{m}(v)I_{m}^{\prime}(v)K_{m}^{\prime 2}(v)\right) - 2\left(v + \frac{m^{2}}{v}\right)\left(I_{m}(v)I_{m}^{\prime}(v)K_{m}^{2}(v) + I_{m}^{2}(v)K_{m}^{\prime 2}(v)\right)\right],$$

$$\mathcal{E}_{C2}^{11}(s) = \frac{\hbar}{2} \frac{sa^{s-1}}{2\pi^{2}} \operatorname{B}\left(\frac{3}{2}, 1 - \frac{s}{2}\right) \sin\left(\pi \frac{s}{2}\right) \int_{0}^{\infty} dv \, v^{-s} \sum_{m=-\infty}^{\infty} m^{2}I_{m}^{2}(v)K_{m}^{2}(v).$$

The outcome of replacing the results (19) into (26) and expanding in (s+1) is:

$$\mathcal{E}_{C2}^{00}(s) + \mathcal{E}_{C2}^{10}(s) + \mathcal{E}_{C2}^{20B}(s) + \mathcal{E}_{C2}^{11}(s) = \frac{\hbar}{a^2} \widehat{\mathcal{E}}(s+1) + \mathcal{O}((s+1)^2), \tag{27}$$

with $\widehat{\mathcal{E}} = \frac{23}{5760\pi}$. Formulas (25) and (27) make evident that

$$\lim_{s \to -1} \mathcal{E}_{C2}(s) = 0, \tag{28}$$

i.e., the $(\varepsilon-1)^2$ contribution to the Casimir energy per unit length in the dilute-dielectric approximation is zero, as we wished to prove.

Employing a regularization which analytically continues the vacuum energy as a function of the eigenmode power, we have found a pure Casimir term (in the sense

of [2]) that is seen to vanish to the order of $(\varepsilon - 1)^2$. Remarkably, for the analogous problem with light velocity conservation condition [1, 12] the result is null to the order of $\xi^2 \equiv \left(\frac{\varepsilon_1 - \varepsilon_2}{\varepsilon_1 + \varepsilon_2}\right)^2$. In fact, we have applied a form of zeta function regularization, whose links to other techniques have been studied in e.g. [14]. The sight of (19) makes us evoke the words of [15] and proclaim that a forest of gamma functions has grown out of an analytic continuation.

A divergence at third order in $(\varepsilon - 1)$ introduces an unavoidable ambiguity [4] (for further discussions on divergences see [16].) No universal agreement exists on the physical interpretation of the technique used, as commented in [15]. The nature of a third order divergence, viewed as a weak-coupling limit, has been considered in [17].

Acknowledgments

A.R. thanks V.V. Nesterenko, M. Bordag and I.G. Pirozhenko for observations and comments. The authors acknowledge useful conversations with Inés Cavero-Peláez. The work of K.A.M. is supported in part by a grant from the U.S. Department of Energy.

References

- [1] Milton KA, Nesterenko AV and Nesterenko VV 1999 Phys. Rev. D **59** 105009 (Preprint hep-th/9711168 v3. The v1 version did not include the first author)
- [2] Barton G 2001 J. Phys. A **34** 4083
- [3] Milton KA and Ng YJ 1997 Phys. Rev. E 55 4207; Brevik IH, Marachevsky VN and Milton KA 1999 Phys. Rev. Lett. 82 3948; Barton G 1999 J. Phys. A 32 525
- [4] Bordag M and Pirozhenko IG 2001 Phys. Rev. D 64 025019 (Preprint hep-th/0102193)
- [5] Cavero-Peláez I and Milton KA 2005 Ann. Phys. NY **320** 108 (Preprint hep-th/0412135 v2)
- [6] Romeo A and Milton KA 2005 Phys. Lett. B **621** 309 (Preprint hep-th/0504207)
- [7] Stratton JA 1941 Electromagnetic Theory (McGraw-Hill)
- [8] van Kampen NG, Nijboer BRA and Schram K 1968 Phys. Lett. A 26 307
- [9] Milton KA, DeRaad LL and Schwinger JS 1978 Ann. Phys. NY 115 388
- [10] Brevik I, Jensen B and Milton KA 2001 Phys. Rev. D 64 088701 (Preprint hep-th/0004041)
- [11] Gradshteyn IS and Ryzhik IM 1994 Table of Integrals, Series and Products, Fifth Ed. (Acad. Press)
- [12] Klich I 2000 Phys. Rev. D 61 025004 (Preprint hep-th/9908101); Klich I and Romeo A 2000
 Phys. Lett. B 476 369 (Preprint hep-th/9912223)
- [13] Lambiase G, Scarpetta G and Nesterenko VV 2001 Mod. Phys. Lett. A 16 1983 (Preprint hep-th/9912176)
- [14] Cognola G, Vanzo L and Zerbini S 1992 J. Math. Phys. 33 222; Beneventano CG and Santangelo EM 1996 Int. J. Mod. Phys. A 11 2871 (Preprint hep-th/9501122)
- [15] Fulling SA 2003 J. Phys. A **36** 6857 (Preprint quant-ph/0302117)
- [16] Graham N, Jaffe RL, Khemani V, Quandt M, Schroeder O and Weigel H 2004 Nucl. Phys. B 677 379 (Preprint hep-th/0309130) and references therein
- [17] Cavero-Peláez I, Milton KA and Wagner J 2005 Preprint hep-th/0508001 v2