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Abstract. Although Casimir, or quantum vacuum, forces between distinct bodies, or

self-stresses of individual bodies, have been calculated by a variety of different methods

since 1948, they have always been plagued by divergences. Some of these divergences

are associated with the volume, and so may be more or less unambiguously removed,

while other divergences are associated with the surface. The interpretation of these has

been quite controversial. Particularly mysterious is the contradiction between finite

total self-energies and surface divergences in the local energy density. In this paper we

clarify the role of surface divergences.

PACS numbers: 03.70.+k, 11.10.Gh, 03.65.Sq, 11.30.Ly

1. Introduction

The subject of local energy density associated with the confinement of quantum fields

by surfaces has a rather long history. For example, Brown and Maclay [1] computed

the vacuum expectation value of the electromagnetic energy-momentum tensor between

two parallel perfectly conducting plates, which is twice that of a conformally coupled

massless scalar field satisfying Dirichlet or Neumann boundary conditions on the plates,

namely

〈T µν〉 =
π2

1440a4
diag (−1,−3, 1, 1), (1)

which corresponds precisely to the attractive energy or pressure found by Casimir [2] in

the same situation. If a nonconformal scalar stress tensor is used, a position-dependent

term in the stress tensor appears, which does not contribute to either the total energy

or the pressure on the plates [3, 4].

Local surface divergences were first discussed for arbitrary smooth boundaries by

Deutsch and Candelas [5]. They found cubic divergences in the energy density as

one approaches the surface; for example, outside a Dirichlet sphere (that is, for a
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Figure 1. A plot of the TM Casimir stress FTM for −2 < D < 4 on a spherical shell,

compared with FTE, taken from Bender and Milton [7, 8]. For D < 2 (D < 0) the

stress FTM (FTE) is complex and we have plotted Re F .

conformally-coupled scalar field satisfying Dirichlet boundary conditions on the surface)

the energy density diverges as

r → a+ : u ∼ 1

360π2

1

a(r − a)3
, (2)

where a is the radius of the sphere.

This raises the question: How can it be that the total Casimir energy of a

Dirichlet sphere (or a perfectly conducting sphere in electrodynamics) is finite? The

electromagnetic case is the well-known one first calculated by Boyer [6], EEM =

0.04618/a, while the scalar case was first worked out by Bender and Milton [7],

ES = 0.002817/a. In general the Casimir energy of a region bounded by a perfect

hyperspherical surface depends in a complicated way upon the number of spatial

dimension D, as shown in Figure 1.

Thus there has been a suspicion since the time of Deutsch and Candelas that

there was something incomplete in the calculations of Casimir self energies of ideal

closed boundaries. (We note that there is now a proof that any such smooth perfectly

conducting boundary possesses a finite electromagnetic Casimir energy [9]. Whether

such an idealized limit is physical is, of course, another question.) This suspicion has

been recently intensified by a series of talks and papers by Jaffe’s group [10]. The

essential outcome of their analysis is that for a δ-function sphere, described by the

following Lagrangian for a massless scalar field,

L = −1

2
∂µφ∂µφ − 1

2

λ

a2
δ(r − a)φ2, (3)

a divergence occurs in third order in λ. (They claimed a divergence in second order,

but that was spurious [11, 12].) This divergence in fact was discovered much earlier by

Bordag, Kirsten, and Vassilevich [13], and possible ways of dealing with it have been

suggested [14, 15]. Objections complementary to those of Jaffe’s group have also been
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voiced by Barton [16, 17], all of which raise doubts as to the physical relevance of results

such as those of Boyer.

2. Green’s function for λ sphere

We consider the potential

Lint = − λ

2a2
φ2σ(r), where σ(r) =



















0, r < a−,

h, a− < r < a+,

0, a+ < r.

(4)

Here a± = a ± δ/2, and we set hδ = 1. We have chosen the dimensions of λ so that

the total energy of interaction does not explicitly refer to the radius a. In the limit as

δ → 0 (or h → ∞) we recover the δ-function sphere.

A straightforward solution of the Green’s function equation, with κ2 = −ω2,
(

−∇2 + κ2 +
λ

a2
σ

)

G(r, r′) = δ(r − r′) (5)

in terms of the reduced Green’s function

G(r, r′) =
∑

lm

gl(r, r
′)Ylm(θ, φ)Y ∗

lm(θ′, φ′), (6)

and the modified Riccati-Bessel functions,

sl(x) =

√

πx

2
Il+1/2(x), el(x) =

√

2x

π
Kl+1/2(x), (7)

is as follows, outside of the shell:

r, r′ < a− : gl =
1

κrr′

[

sl(κr<)el(κr>) − Ξ̃

Ξ
sl(κr)sl(κr′)

]

, (8a)

r, r′ > a− : gl =
1

κrr′

[

sl(κr<)el(κr>) − Ξ̂

Ξ
el(κr)el(κr′)

]

, (8b)

where

Ξ = [κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)][κ′el(κa+)s′l(κ
′a+) − κe′l(κa+)sl(κ

′a+)]

− [κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)][κ′el(κa+)e′l(κ
′a+) − κe′l(κa+)el(κ

′a+)]. (9)

Ξ̃ is obtained from Ξ by replacing sl(κa−) → el(κa−), while Ξ̂ is obtained from Ξ by

replacing el(κa+) → sl(κa+). Here κ′ =
√

κ2 + λh. Green’s function within the shell,

a− < r < a+, is given by

gl =
1

κ′rr′

{

sl(κ
′r<)el(κ

′r>) − 1

Ξ

[

[sl(κ
′r)el(κ

′r′) + sl(κ
′r′)el(κ

′r)]

×[κe′l(κa+)el(κ
′a+) − κ′el(κa+)e′l(κ

′a+)][κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]

− sl(κ
′r′)sl(κ

′r)[κe′l(κa+)el(κ
′a+) − κ′el(κa+)e′l(κ

′a+)]

×[κs′l(κa−)el(κ
′a−) − κ′sl(κa−)e′l(κ

′a−)]

− el(κ
′r′)el(κ

′r)[κe′l(κa+)sl(κ
′a+) − κ′el(κa+)s′l(κ

′a+)]

×[κs′l(κa−)sl(κ
′a−) − κ′sl(κa−)s′l(κ

′a−)]
]}

. (10)
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3. Energy density

We can calculate the local energy density from the stress tensor:

T µν = ∂µφ∂νφ − gµνL − ξ(∂µ∂ν − gµν∂2)φ2, (11)

from which the energy density follows:

T 00 =
1

2

[

∂0φ∂0φ + ∇φ · ∇φ +
λ

a2
σφ2

]

− ξ∇2φ2, (12)

where the conformal value is given by ξ = 1/6. To obtain the one-loop vacuum

expectation values, we use the connection to the Green’s function

〈φ(x)φ(x′)〉 =
1

i
G(x, x′). (13)

The energy density thus is, within or outside the shell,

〈T 00〉 =
1

2i

(

∂0∂′0 + ∇ · ∇′ +

{

λh/a2

0

})

G(x, x′)
∣

∣

∣

∣

x′=x
− ξ

i
∇2G(x, x). (14)

When we insert the partial wave decomposition of the Green’s function (6), the

expression for the energy density is immediately reduced to (inside or outside the shell,

but not within it)

〈T 00〉 =
∫

∞

0

dκ

2π

∞
∑

l=0

2l + 1

4π

{[

−κ2 + ∂r∂
′

r +
l(l + 1)

r2

]

gl(r, r
′)
∣

∣

∣

∣

r′=r
− 2ξ

1

r2

∂

∂r
r2 ∂

∂r
gl(r, r)

}

.

(15)

We insert the Green’s function in the exterior region, but delete the free part, the

first term in (8a), (8b), (10), which corresponds to the bulk energy which would be

present if either medium filled all of space, leaving us with for r > a+ (for r < a−,

el → sl and Ξ̂ → Ξ̃)

u(r) = −(1 − 4ξ)
∫

∞

0

dκ

2π

∞
∑

l=0

2l + 1

4π

Ξ̂

Ξ

{

e2
l (κr)

κr2

[

− κ2 1 + 4ξ

1 − 4ξ
+

l(l + 1)

r2
+

1

r2

]

− 2

r3
el(κr)e′l(κr) +

κ

r2
e′2l (κr)

}

. (16)

4. Surface divergences

We want to examine the singularity structure as r → a++. For this purpose we use the

leading uniform asymptotic expansion, l → ∞,

el(x) ∼
√

zt e−νη, sl(x) ∼ 1

2

√
zt eνη, e′l(x) ∼ − 1√

zt
e−νη, s′l(x) ∼ 1

2

1√
zt

eνη, (17)

where ν = l + 1/2, x = νz, t = (1 + z2)−1/2, dη/dz = 1/zt.

Let us consider the thin shell limit, δ → 0, hδ = 1, where it is easy to check that

Ξ̂

Ξ
→

λ
κa2 s

2
l (κa)

1 + λ
κa2 el(κa)sl(κa)

, (18)
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which is exactly the coefficient occurring in the δ-function potential. There are two

simple limits of this, strong and weak coupling: (κa ∼ 1)

λ

a
→ ∞ :

Ξ̂

Ξ
→ sl(κa)

el(κa)
,

λ

a
→ 0 :

Ξ̂

Ξ
→ λ

κa2
s2

l (κa). (19)

In either case, we carry out the asymptotic sum over angular momentum using the

uniform asympotic expansion and
∞
∑

l=0

e−νχ =
1

2 sinh χ
2

, χ = 2
[

η(z) − η
(

z
a

r

)]

≈ 2zη′(z)
r − a

r
=

2

t

r − a

r
. (20)

The remaining integrals over z are elementary, and in this way we find that the leading

divergences are as r → a+,

λ

a
→ ∞ : u ∼ − 1

16π2

1 − 6ξ

(r − a)4
, (21a)

λ

a
→ 0 : u(n) ∼

(

−λ

a

)n
Γ(4 − n)

96π2a4
(1 − 6ξ)

(

a

r − a

)4−n

, n < 4, (21b)

the latter being the leading divergence in order n, which clearly seems to demonstrate

the virtue of the conformal value of ξ = 1/6. (The value for the Dirichlet sphere first

appeared in Deutsch and Candelas [5].) Thus, for ξ = 1/6 we must keep subleading

terms. This includes keeping the subdominant term in χ, and the distinction between

t(z) and t̃ = t(z̃ = za/r),

χ ≈ 2

t

r − a

r
− t

(

r − a

r

)2

, z̃t̃ ≈ zt − t3z
r − a

r
, (22)

as well as the next term in the uniform asymptotic expansion of the Bessel functions,

sl(x) ∼ 1

2

√
zt eνη (1 + u1(t) + . . .) , el(x) ∼

√
zt e−νη (1 − u1(t) + . . .) , (23a)

s′l(x) ∼ 1

2

1√
zt

eνη (1 + v1(t) + . . .) , e′l(x) ∼ − 1√
zt

e−νη (1 − v1(t) + . . .) , (23b)

where u1(t) = (3t−5t3)/24, v1(t) = (3t+7t3)/24. Including all this, it is straightforward

to recover the well-known result (2) of Deutsch and Candelas for strong coupling

(Dirichlet BC). Following the same process for weak coupling, we find that the leading

divergence in order n, 1 ≤ n < 3, is (r → a±)

u(n) ∼
(

λ

a2

)n
1

1440π2

1

a(a − r)3−n
(n − 1)(n + 2)Γ(3 − n). (24)

Note that the subleading O(λ) term again vanishes. Both of these results apply for the

conformal value ξ = 1/6.

The above results for the conformally coupled scalar show that the inverse linear

divergences which occur in either order λ or λ2 cancel between inside and outside, when

one computes the total energy, while the divergence encountered at n = 3 is logarithmic:

u(3) ∼ λ3

a7

1

144π2
Γ(0) → λ3

144π2a7
ln

r − a

a
, (25)

where the latter form is shown by explicit calculation. The integral of this, however, is

finite, so this does not signal any difficulty.
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5. Surface and shell energy

However, as discussed first by Dowker, Kennedy and Critchley [18, 19], and later

elaborated by Saharian and Romeo [20, 21], and put in a broader context by Fulling

[22], for situations when other than Neumann or Dirichlet boundary conditions apply,

an additional term must be supplied in calculating the energy, a term which resides

entirely on the surface. For the case of the general stress tensor, that extra term is [12]

ES = −1 − 4ξ

2i

∫

dS · ∇G(x, x′)

∣

∣

∣

∣

x=x′

, (26)

where the direction of the normal is out of the region in question, which arises from the

T 0i component of the stress tensor. The total energy in a given region is not, therefore,

just the integral of the local energy density, but has this extra contribution [12]

E =
∫

(dr)〈T 00〉 + ES =
1

2i

∫

(dr)
∫

dω

2π
2ω2G(r, r)e−iωτ , (27)

which is independent of ξ. (τ is a point-splitting regulator [23].) The latter expression

has a rather evident interpretation in terms of summing zero-point energies. The surface

energy cancels for a nonsingular potential when computing the total energy in all space.

In the limit of h → ∞ for the region in the shell, a− < r, r′ < a+, the reduced

Green’s function becomes

gl →
1

2κrr′
el(κa)sl(κa)

1 + λ
κa2 el(κa)sl(κa)

[

cosh

√
λh

a
(r − r′) + cosh

√
λh

a
(r + r′ − a+ − a−)

]

. (28)

In the thin shell limit (δ → 0) this leads to an energy density in the shell nearly

independent of r, leading to the energy (ǫ = τE/a, y = |x|)

Es =
λ

4πa2
(1 − 4ξ)

∞
∑

l=0

(2l + 1)
∫

∞

−∞

dx
Iν(y)Kν(y)

1 + λ
a
Iν(y)Kν(y)

eixǫ. (29)

However, we have to include the surface term (26) in the shell at r = a±, which exactly

cancels this: Es + ESs = 0, because the total energy of the shell is given by (27)

integrated over the volume of the shell, which clearly vanishes as the thickness of the

shell δ → 0. However, we shall see shortly that Es plays a special role.

6. Total energy of λ sphere

Likewise, if one integrates the interior and exterior energy density, and includes the

surface energy, one gets, for arbitrary ξ, the total energy as found by Bordag et al [13],

E = Ein + Eout + ES = − 1

4πa

∞
∑

l=0

(2l + 1)
∫

∞

−∞

dx y
d

dy
ln

[

1 +
λ

a
Iν(y)Kν(y)

]

eixǫ, (30)

exactly that obtained from the integral (27) of the Green’s function.

However, there is more to say here. As noted above, the integral of the local

energy, inside and outside the sphere, is finite perturbatively, because of cancellations

between inside and outside, for the conformally coupled scalar. But it is well known
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that divergences occur in the total energy at order λ3. These evidently must arise from

the surface term. So let us consider the latter, which is given in the outside region by

ES = a2(1 − 4ξ)
∞
∑

l=0

2ν
1

2

∫

∞

−∞

dζ

2π

∂

∂r
gl(r, r

′)

∣

∣

∣

∣

r=r′=a
eiζτE , |ζ | = κ. (31)

In the strong coupling limit, there is, of course, no surface term. This is because then

r, r′ > a : gl(r, r
′) =

1

κrr′

[

sl(κr<)el(κr>) − sl(κa)

el(κa)
el(κr)el(κr′)

]

, (32)

which vanishes on the surface, and has a derivative proportional to the Wronskian.

In general, in the thin-shell limit, the sum of the inside and outside surface terms

is given by

ES =
λ

4πa2
(1 − 4ξ)

∫

∞

−∞

dx
∞
∑

l=0

(2l + 1)
Iν(y)Kν(y)

1 + λ
a
Iν(y)Kν(y)

eixǫ. (33)

Perhaps not remarkably, this is precisely the same as the integrated local shell energy

(29). Thus the surface energies within and outside the shell regions cancel. (This is

generally true, as follows from the continuity requirements on the Green’s function.)

For weak coupling, we expand this in powers of λ. Perhaps the easiest way to

isolate the asymptotic behavior is to use the leading uniform asymptotic expansion,

Iν(x)Kν(x) ∼ t/2ν. This yields the following expression for the nth term in the total

surface energy, (ǫ = 0, analytically continued in n)

E
(n)
S ∼ −(−1)n

2
√

πa
(1 − 4ξ)

(

λ

2a

)n Γ
(

n−1
2

)

Γ
(

n
2

) (2n−2 − 1)ζ(n − 2). (34)

Note that this expression vanishes for n = 2; in this approximation the order λ2 term

in the energy arises only from the local energy density. However, for n = 3 we obtain

for the conformal value, ξ = 1/6,

E
(3)
S ∼ λ3

24πa4
ζ(1), (35)

precisely the divergent term in the energy first found by the heat kernel calculation of

Bordag, Kirsten, and Vassilevich [13]. Alternatively, if we keep ǫ 6= 0:

E
(2)
S ∼ − λ2

24ǫa3
, E

(3)
S ∼ λ3

24πa4
Γ(0). (36)

The former can be removed as a contact term, while the O(λ3) term is divergent

even with the regulator. Thus E (λ2) = λ2/32πa is unambiguously finite, while E (λ3)

is unambiguously divergent.

7. Conclusions

For the case of a massless scalar field in a spherically symmetric step-function shell

potential, we have shown that there is a net effective surface energy in the thin shell limit,

to be added to the integrated local energy density for the inside and outside regions,
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which is exactly the integrated local energy density of the shell. This shell energy, for

the conformally coupled theory, is finite in second order in the coupling, but diverges in

third order. We show that the latter precisely corresponds to the known divergence of

the total energy in this order. Thus we have established the suspected correspondence

between surface divergences and divergences in the total energy, which has nothing to do

with divergences in the local energy density as the surface is approached. This precise

correspondence should enable us to absorb such divergences in a renormalization of the

surface energy, and should lead to further advances of our understanding of quantum

vacuum effects. Further details are given in [24].
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