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Abstract. The construction of PT -symmetric quantum electrodynamics is reviewed.

In particular, the massless version of the theory in 1 + 1 dimensions (the Schwinger

model) is solved. Difficulties with unitarity of the S-matrix are discussed.

1. PT QED

Quantum electrodynamics (QED) is by far the most successful physical theory ever

devised [1]. However, although its reach includes all of atomic physics, there are a myriad

of phenomena that we do not understand. Thus it is essential to explore alternative

theories, in the hope that we may be able to describe aspects of the world that are as

yet not under our understanding.

One very promising new approach to quantum theories are those included under

the rubric of non-Hermitian theories, in particular theories in which invariance under

the combined operation of space and time reflection PT replaces mathematical Dirac

Hermiticity in order to guarantee unitarity of the theory. (For a recent review, see [2].)

Little work, however, has been done on applying this idea to quantum field theory. This

paper represents our continuing effort to develop a PT -symmetric version of quantum

electrodynamics, in the hope that a consistent theory, with a unitary S-matrix, results

that may eventually find physical applications in nature.

1.1. Transformation properties

At the first International Workshop on Pseudo-Hermitian Hamiltonians in Quantum

Physics [3] a PT -symmetric version of quantum electrodynamics was proposed. A

non-Hermitian but PT -symmetric electrodynamics is based on the assumption of novel

transformation properties of the electromagnetic fields under parity P transformations,

that is,

P : E → E, B → −B, A → A, A0 → −A0, (1)
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just the statement that the four-vector potential is assumed to transform as an axial

vector. Under time reversal T , the transformations are assumed to be conventional,

T : E → E, B → −B, A → −A, A0 → A0. (2)

Fermion fields are also assumed to transform conventionally. We use the metric

gµν = diag(−1, 1, 1, 1).

1.2. Lagrangian and Hamiltonian

The Lagrangian of the theory then possesses an imaginary coupling constant in order

that it be invariant under the product of these two symmetries:

L = −1

4
F µνFµν −

1

2
ψγ0γµ

1

i
∂µψ − m

2
ψγ0ψ +

i

2
ψγ0γµeqψAµ. (3)

Here, because we are discarding Hermiticity as a physical requirement, it is most

appropriate to use a “real” field formulation, where correspondingly the (antisymmetric,

imaginary) charge matrix q = σ2 appears. Furthermore, γ0γµ is symmetric and γ0 is

antisymmetric. In the radiation (Coulomb) gauge ∇ · A = 0, the dynamical variables

are A and ψ, and the canonical momenta are πA = −ET , πψ = i
2
ψ, where T denotes the

transverse part, and so the relation between the Hamiltonian and Lagrangian densities

are

H = E2 + E · ∇A0 +
i

2
ψψ̇ − L. (4)

Then, if integrate by parts and use ∇ · E = ij0, we find that the corresponding

Hamiltonian is

H =
∫

(dr)
{

1

2
(E2 + B2) +

1

2
ψ
[

γ0γk
(

1

i
∇k − ieqAk

)

+mγ0
]

ψ
}

. (5)

We can also obtain this same Hamiltonian from the stress tensor

tµν = − i

4
ψγ0 (γµ∂ν + γν∂µ)ψ + F µλF ν

λ −
i

2
(jµAν + jνAµ) + gµνL. (6)

1.3. Current density

The electric current appearing in both the Lagrangian and Hamiltonian densities,

jµ =
1

2
ψγ0γµeqψ, (7)

transforms conventionally under both P and T :

Pjµ(x, t)P =

(

j0

−j

)

(−x, t), (8a)

T jµ(x, t)T =

(

j0

−j

)

(x,−t). (8b)

This just reflects the normal transformation properties of the fermion fields.
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1.4. Equal-time commutation relations

We are working in the Coulomb gauge, ∇ ·A = 0, so the nonzero canonical equal-time

commutation relations are (the fermion index a includes both the Dirac and charge

indices)

{ψa(x, t), ψb(y, t)} = δabδ(x − y), (9a)

[ATi (x), ET
j (y)] = −i

[

δij −
∇i∇j

∇2

]

δ(x − y). (9b)

∇ · AT = ∇ · ET = 0. (10)

1.5. The C operator

As for quantum mechanical systems, and for scalar quantum field theory, we seek a C
operator in the form

C = eQP, (11)

where P is the parity operator. C must satisfy the properties

C2 = 1, (12a)

[C,PT ] = 0, (12b)

[C, H ] = 0. (12c)

From the first two equations we infer

Q = −PQP, (13)

and because PT = T P ,

Q = −T QT . (14)

The third equation (12c) allows us to determine Q perturbatively. If we separate the

interaction part of the Hamiltonian from the free part,

H = H0 + eH1, (15)

and assume a perturbative expansion of Q:

Q = eQ1 + e2Q2 + . . . , (16)

the first contribution to the Q operator is determined by

[Q1, H0] = 2H1. (17)

The second correction commutes with the Hamiltonian,

[Q2, H0] = 0. (18)

Thus we may take

Q = eQ1 + e3Q3 + . . . , (19)

which illustrates a virtue of the exponential form. The O(e) term was explicitly

computed for four-dimensional QED in 2005 [4].
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2. (PT QED)2

However, the above perturbative construction of C fails for 2-dimensional PT -symmetric

QED. We are here discussing the Schwinger model [5, 6, 7, 8]. In two dimensions, the

only nonzero component of the field strength tensor is F 01 = E, and the Hamiltonian

of the system is

H =
∫

dx
[

1

2
E2 − ij1A1 −

i

2
ψγ0γ1∂1ψ +

m

2
ψγ0ψ

]

. (20)

As before, we choose the radiation gauge because it is most physical:

∇ · A = ∂1A1 = 0, (21)

and then the Maxwell equation becomes

∂1E1 = −∂2
1A

0 = ij0, (22)

which implies the following construction for the scalar potential

A0(x) = − i

2

∫ ∞

−∞

dy|x− y|j0(y). (23)

2.1. Construction of E

Without loss of generality, we can disregard A1, and then the electric field is

E(x) =
i

2

∫ ∞

−∞

dy ǫ(x− y)j0(y), (24)

with

ǫ(x− y) =















1, x > y,

0, x = y,

−1, x < y.

(25)

Thus the electric field part of the Hamiltonian is
∫

dx
1

2
E2 = − 1

8

∫

dx dy dz ǫ(x− y)ǫ(x− z)j0(y)j0(z)

= − 1

8
LQ2 +

1

4

∫

dy dzj0(y)|y − z|j0(z), (26)

where L is the infinite “length of space” and the total charge is

Q =
∫

dy j0(y). (27)

As this is a constant, we may disregard it.

2.2. Form of Hamiltonian

Thus we obtain the form found (for the conventional theory) years ago by Lowell Brown

[7]:

H =
1

4

∫

dy dzj0(y)|y − z|j0(z) −
∫

dx
{

i

2
ψγ0γ1∂1ψ − m

2
ψγ0ψ

}

. (28)

This resembles φ4 theory, and for the same reason, we cannot calculate the C operator

perturbatively.
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2.3. Functional integral

It may be useful to rederive the Hamiltonian using the functional integral approach.

The partition function is

Z =
∫

[dψ][dφ] ei
∫

dtdxL, (29)

where in the Coulomb gauge (with A0 = φ)

L =
1

2
(∂1φ)2 − ij0φ− 1

2
ψγ0γµ

1

i
∂µψ − m

2
ψγ0ψ. (30)

We integrate out the scalar potential φ by completing the square,

1

2
(∂1φ)2 − ij0φ =

1

2

(

∂1φ+
i

∂1
j0
)2

− 1

2
j0 1

∂2
1

j0, (31)

where
1

∂2
1

=
1

2
|x− y|. (32)

The functional integral on φ is carried out over real values of φ(x). Then, the partition

function can be written as

Z =
∫

[dψ]ei
∫

dt dx(πψ̇−H), (33)

where the momentum conjugate to ψ is

π =
∂L

∂ψ̇
=
i

2
ψ. (34)

The result for H , given in (28), is reproduced. Because the sign of the quartic term in

H is reversed, presumably we can no longer regard [dψ] in (33) as over “real” values of

ψ. Since Grassmann integration is a formal procedure, it is not immediately clear how

to proceed. Henceforth, we will set the fermion mass m = 0, so we will refer to the

Schwinger model proper.

2.4. ETCR of currents

It is easy to check that

[j0(x, t), j0(y, t)] = 0. (35)

However, it requires a point-splitting calculation [which does not modify (35)] to verify

that

[j0(x, t), j1(y, t)] = − ie2

π

∂

∂x
δ(x− y). (36)

The key element in the latter is that the singular part of the 2-point fermion correlation

function is given by the free Green’s function:

〈ψα(x)(ψ(y)γ0)β〉 =
1

i
Gαβ(x− y), (37a)

G(z) = − 1

2π

γµz
µ

z2 + iǫ
. (37b)

This agrees with the massless fermion propagator found in (59b) below.
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2.5. Conservation of electric charge

The electric current is exactly conserved:

∂0j
0 =

1

i
[j0, H ] = −∂1j

1, (38a)

or

∂µj
µ = 0. (38b)

2.6. Axial-vector anomaly

In 2-dimensions, the dual current is

∗jµ = ǫµνjν ,
∗j0 = j1,

∗j1 = j0. (39)

Now, using the above commutator between j0 and j1, we find

∂0
∗j0 = ∂0j1 =

1

i
[j1, H ]

= − ∂1j
0 +

1

i

[

j1(x),
1

4

∫

dy dz j0(y)|y − z|j0(z)
]

, (40)

so from (36) this can be rewritten as

∂µ
∗jµ(x) = − e2

2π

∫

dy dz ∂xδ(x− y)|y − z|j0(z)

= − ie2

π
∂xA

0 =
ie2

π
E. (41)

This is the two-dimensional version of the famous Schwinger-Adler-Bell-Jackiw anomaly

[9].

2.7. Schwinger mass generation

Combine the current conservation and axial-current non-conservation:

∂1[∂0j
0 + ∂1j

1 = 0] (42a)

∂0[∂0j
1 + ∂1j

0 =
ie2

π
E], (42b)

together with the Maxwell equation (22) to obtain (∂2 = −∂2
0 + ∂2

1)
(

∂2 +
e2

π

)

j1 = 0. (43)

This corresponds to a spacelike singularity, a pole at

k2 = −∂2 =
e2

π
, (44)

implying complex energies!
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µ, k ν, k

p

−k − p

Figure 1. Lowest-order vacuum polarization graph

2.8. Perturbation theory

This result is consistent with perturbation theory, where in general we expect all we

have to do is replace

e→ ie. (45)

In fact, the Schwinger mass comes from one-loop vacuum polarization. In particular, the

C operator appears to have no effect on the weak-coupling expansion [10]. In general,

it appears only ephemerally in the functional integral formulation [11].

Let us sketch the Feynman diagrammatic argument for the mass generation

mechanism in the modified Schwinger model. That is, we calculate the vacuum

polarization operator for massless QED in lowest order as shown in figure 1. This

corresponds to

Πµν = −(ie)2 tr
∫

(ddp)

(2π)d
γµ

−γp
p2

γν
γ(k − p)

m2 + (p− k)2
, (46)

where we have regulated the integral by working in d dimensions. The trace is evaluated

as

trγαγβγγγδ = d
(

gαβgγδ + gαδgβγ − gαγgβδ
)

. (47)

The denominators are combined according to

1

p2(p− k)2
=
∫ ∞

0
ds s

∫ 1

0
du e−isχ, (48)

with

χ = (1 − u)p2 + u(p− k)2 = (p− ku)2 + k2u(1 − u). (49)

Now the integration variable is shifted, p → p + ku, and odd terms disappear upon

symmetric integration, leaving us with

Πµν = −(ie)2d
∫ ∞

0
ds s

∫ ∞

0
du
∫

ddp

(2π)d

[

2pµpν − 2kµkνu(1 − u)

− gµν
(

p2 − k2u(1 − u)
)

]

e−sp
2

e−su(1−u)k2

. (50)

Note that in d = 2 dimensions, the contraction (trace) of the tensor, Πµ
µ, vanishes,

which indicates that, apparently, the only gauge-invariant result could be zero. That

this is incorrect is the result of the quantum anomaly, which appears only by setting
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d = 2 at the end of the calculation. Proceeding onward, we use the following momentum

integrals:
∫

ddp e−sp
2

=
(
∫

dp e−sp
2

)d

=
(

π

s

)d/2

, (51a)

∫

ddp pµpνe−sp
2

= −gµν 1

d

d

ds

∫

ddp e−sp
2

=
1

2s

(

π

s

)d/2

gµν. (51b)

When the s integrals are now carried out, we obtain an explicitly gauge-invariant form:

Πµν = −21−d(ie)2π−d/2dΓ(2 − d/2)
∫ 1

0
du
[

k2u(1 − u)
]d/2−1

(

gµν − kµkν

k2

)

, (52)

which is divergent for d = 4, but finite for d = 2:

Πµν = −(ie)2

π

(

gµν − kµkν

k2

)

. (53)

We can similarly calculate the correction to the fermion propagator, given by the

mass operator, using the covariant photon propagator,

Σ = (ie)2
∫

ddk

(2π)d
γµγ(p− k)γν

k2(p− k)2

(

gµν −
kµkν
k2

)

. (54)

The gamma matrix structures are reduced as

γλγ(p− k)γλ = (d− 2)γ(p− k), (55a)

γk γ(p− k) γk = k2γ(p− k) + γk[(p− k)2 + k2 − p2], (55b)

and so the integral, after the substitution k → k + pu, can be evaluated as

γp
∫ ∞

0
ds s

∫ 1

0
du
(

π

s

)d/2
[

(d− 3)(1 − u) − u− p2 d

dp2

]

e−su(1−u)p2

= γp
∫ 1

0
du

(

d

2
− 1

)

(1 − 2u)πd/2Γ(2 − d/2)[p2u(1 − u)]d/2−2

= γp πd/2Γ(2 − d/2)(p2)d/2−2

(

Γ(d/2)
√

2π

Γ(d/2 − 1/2)2d−5/2
− 2

Γ(d/2)2

Γ(d− 1)

)

→ 0, (56)

as d→ 2, that is, the mass operator vanishes.

In the conventional theory, the vacuum polarization, iterated, yields the boson mass

generated in the Schwinger model:

D(k) =
1

k2
− 1

k2

e2

π

1

k2
+ . . . =

1

k2 + e2/π
, (57)

while there is no correction to the fermion propagator,

iG(p) =
1

γp
. (58)

The corresponding iterated one-loop propagators in coordinate space are

D(x) =
1

2π
K0(mx), (59a)

G(x) = − 1

2π

γµxµ
x2

, (59b)
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where in the conventional theory m2 = e2/π, while the mass-squared is reversed in

sign in the PT theory. These propagators are given in terms of the Euclidean distance

x =
√
x2. Of course, in other gauges, there are corrections to the fermion propagator.

However, in Schwinger’s words [6], “the detailed physical interpretation of the Green’s

function is rather special and apart from our main purpose.”

3. Conclusions

Perturbation theory evidently fails to give a positive spectrum to the massless PT -

symmetric electrodynamics in 2 dimensions. More generally, this reflects the lack of

unitarity of the S-matrix for the theory. This phenomenon has already been noticed

by other authors: For example, Jones [12] shows for localized non-Hermitian potentials

probability is not conserved, unless the Hilbert space metric is changed; and Smilga

[13] shows that the S-matrix of a non-Hermitian theory defined in terms of “transition

amplitudes between conventional asymptotic states is not unitary.”

Therefore, it seems that nonperturbative effects (strong field effects) presumably

resolve this issue. It is necessary to do more than merely compute the Q operator in

field theory, which as we have seen makes no explicit appearance in the functional or

perturbative formulation of the theory, but we must determine the asymptotic states,

presumably defined dynamically. This is a formidable problem.

Previous work on these questions has concentrated on quantum-mechanical and

scalar-field theory examples. Clearly there are issues unsolved relating to fermions and

gauge theories in the PT -context. In particular, the formal technique of Grassmann

integration needs to be redeveloped. One must find ways to reformulate usual field

theoretic tricks, such as bosonization.

Another illustration of the failure of perturbation theory to capture the essence of

a PT theory is discussed in the Appendix.

Appendix A. Zero-Dimensions

We contrast the zero-dimensional partition functions for a conventional and a PT -

symmetric x2+N theory:

Zc
N(K) =

∫ ∞

−∞

dx e−x
2−gx2+N−Kx, (1.1a)

ZN(K) =
∫

C
dx e−x

2−gx2(ix)N−Kx. (1.1b)

Such examples were discussed earlier in [14]. The contour C in the latter integral is

taken in the lower half plane, along Stokes wedges centered on the lines

θ = − Nπ

4 + 2N
, θ = π − Nπ

4 + 2N
, (1.2)

which have width 2π/(4 + 2N), so that the integrand decays exponentially fast.
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Note that the PT -symmetric theory has a perturbation series that doesn’t appear

to know about the path of integration:

ZN(K) =
√
π exp



g

(

−i
d

dK

)N+2


 eK
2/4

=
√
πeK

2/8
∞
∑

n=0

(

(−1)Ng

21+N/2

)n
1

n!
Dn(N+2)

(

iK√
2

)

, (1.3)

where Dm(x) is the parabolic cylinder function.

When we set N = 2 and K = 0 we get the −x4 theory without sources, for which

we have the closed form for the vacuum amplitude

Z2(0) =
π

4
√
g
e−1/8g

[

I1/4

(

1

8g

)

+ I−1/4

(

1

8g

)]

. (1.4)

The conventional theory in the same situation has the closed form

Zc
2(0) =

1

2
√
g
e1/8gK1/4

(

1

8g

)

. (1.5)

Directly from (1.4), or from the previous expansion (1.3), we find the weak-coupling

expansion (g → 0)

Z2(0) ∼
√
π
(

1 +
3

4
g +

105

32
g2 + . . .

)

; (1.6)

the expansion of Zc
2 differs only in the sign of g. The conventional theory is Borel

summable, while the PT series is not.

However, the correspondence is not so simple in strong-coupling. Even the leading

prefactors in the strong-coupling expansions are different: (g → ∞)

Zc
2(0) ∼

√
2π

2g1/4Γ(3/4)

[

1 − 1

4
√
g

Γ(3/4)

Γ(5/4)
+ . . .

]

, (1.7a)

Z2(0) ∼ π

2g1/4Γ(3/4)

[

1 +
1

4
√
g

Γ(3/4)

Γ(5/4)
+ . . .

]

. (1.7b)
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