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Abstract

A simplified higher dimensional Randall-Sundrum-like model in 6 dimensions is considered. It has
been observed previously by Goldberger and Wise that in such a self-interacting scalar theory on
the bulk with a conical singularity there is mixing of renormalization of 4d brane couplings with
that of the bulk couplings. We study the influence of the running bulk couplings on the running
of the 4d brane couplings. We find that bulk quantum effects may completely alter the running
of brane couplings. In particular, the structure of the Landau pole may be drastically altered and
non-asymptotically free running may turn into asymptotically safe (or free) behavior.
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I. INTRODUCTION

Recently Randall-Sundrum brane-world models [1] have attracted a great deal of interest
in particle physics and phenomenology. One reason is that such models may resolve the
hierarchy problem in a quite natural way. Moreover, they may lead to some interesting
changes in the phenomenology of the Standard Model and related theories.

A typical modern approach to quantum high energy theory is to consider quantum fields
on a higher dimensional manifold (the bulk) in the presence of extended defects (the bound-
aries). For example, we could consider a 3-brane localized in a 4-dimensional submanifold.
On the bulk manifold, as well as on the brane, there exist divergences which result in the
running of coupling constants in the standard way. However, it has been known for some
time that for spacetimes with boundaries there are not only the usual volume coupling con-
stants but also there are surface coupling constants [2]. Of course, these influence each other;
for example, volume interactions are reflected in surface terms, etc [3]. However, so far no
drastic consequences have been discovered. Nevertheless, it could be that the situation is
different in some brane-world models. For example, one may wonder how the running of
the bulk couplings influences the running on the brane and vice versa. With regard to this
issue, a very simple 6d model with a 4d brane has been proposed in Ref. [4]. However, only
renormalization of bulk and brane coupling constants has been investigated there. Here we
reconsider this model, making use of heat-kernel techniques and perform estimates of the
running of bulk and brane couplings. It will be seen that the bulk running couplings can sig-
nificantly influence the running of the 4d cosmological constant, 4d mass and 4d self-scalar
interaction. In particular, instead of a constant behavior of the cosmological constant (in the
sense of the renormalization group), we find a running, such that the cosmological constant
increases with energy. The Landau pole for the brane mass and the scalar self-interaction
is drastically altered by the bulk running couplings, and in general becomes a cut.

II. THE MODEL

Our toy model consists of a massive Euclidean self-interacting scalar in a 6-dimensional
space with a conical singularity, due to the presence of 3-brane. The metric is chosen to be

ds2
6 = dr2 + r2dθ2 + ds2

0 , (1)

where ds2
0 is the 4-dimensional flat metric, the brane is located at r = 0, and θ has a period

β, β being the deficit angle of the cone. When β = 2π/N , N a positive integer, one is
dealing with a less singular manifold, namely an orbifold, while for N = 1, β = 2π, one has
the smooth 2-dimensional plane. The action reads

S =

∫
d6x
√
g

[
φ

1

2
(−26 +m2)φ+ V (φ)

]
+

∫
d4xW (φ) , (2)

where V (φ) = g4

4!
φ4 + . . . denotes a series of scalar bulk couplings. We also introduce a

“surface” term which depends on surface scalar couplings

W (φ) =

[
λ0 +

λ2

2
φ2 +

λ4

4!
φ4 + . . .

]
, (3)



3

namely it may contain a brane tension λ0, a brane mass λ2, a φ4 coupling λ4, as well as
higher terms. As we will see, these surface terms are necessary because we are dealing with
a manifold with a conical singularity (see also Ref. [5]). We also assume that the brane is
not dynamical, namely we are dealing with a rigid brane, and therefore we neglect the brane
kinetic term.

The total one-loop action operator consists of a bulk part and a contact delta-function
singular potential. First, we discuss briefly the problems associated with this latter contact
term. For a nice discussion from a diagrammatic point of view, see the approach contained in
Ref. [4]. Here one may follow the standard and well-known argument used in nonrelativistic
quantum mechanics and put on a rigorous basis in Refs. [6, 7] (see also references cited
therein).

Briefly, the issue to be addressed is based on the following remarks. When one has to
evaluate the Green’s functions (i.e. two-point functions or correlation functions) related to
a Laplace operator “perturbed” by a delta-function potential, typically one is forced to deal
with the product of a delta-function distribution and a two point-function, which can have
singularities on the support of the delta function. Only in codimension 1 (RS-like models) is
this singularity absent, since then the two-point function is not singular at the coincidence
limit of the two points.

The method to be used [6] consists in the regularization of the delta function by means
of a sequence of smooth functions depending on a cutoff parameter. The key point is to
assume that the bare coupling constants (which can be thought of as strengths of the terms
in the delta-function potential) also depend on the regularization parameter. Then, one can
easily solve the functional equation for the two-point function within this regularization.
In order to remove the cutoff parameter dependence, one has to assume that the contact
divergence, present if the codimension is bigger than one, is cured by a suitable compensating
behavior of the coupling. If the codimension is two, the divergence is only logarithmic and,
for dimensional reasons, there is room for the appearance of an arbitrary renormalization
parameter µ. In general, this happens when the codimension is even. As a result, the
renormalized coupling constants will depend on µ and it is not difficult to demonstrate that
they must satisfy renormalization group equations.

III. ONE-LOOP CORRECTION AND RENORMALIZATION GROUP

The one-loop correction is determined by the total one-loop fluctuation operator, which
reads

L6 = −2β −24 +M2 +W ′′(Φ)δ(2)(x) , (4)

where 2β is the 2-dimensional Laplacian on the cone, Φ is the background field and M2 =
m2 + V ′′(Φ) is an effective mass.

We shall make use of zeta-function regularization and related heat-kernel techniques (see,
for example Refs. [8, 9]). Within the one-loop approximation, we have to evaluate the zeta-
function at zero, namely ζ(0|L6), since this quantity gives rise to the one-loop divergences
and governs the one-loop beta functions. There are also contributions due to the conical
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singularity and the brane delta-function contribution, which gives additive contributions to
ζ(0|L6), which have been diagrammatically evaluated in Ref. [4].

The zeta-function for the operator L6 is defined by

ζ(s|L6) =
1

Γ(s)

∫ ∞
0

dt ts−1Tre−tL6 . (5)

In the presence of the conical singularity and delta-function potential, one has for small t

Tre−tL6 =

∫
d6x

e−tM
2

(4π)3t3
[
1 + b2(x)t2 + b3(x)t3 +O(t4)

]
+

∫
d4x

e−tM
2

(4π)2t2
(Iβ + IW )

[
1 + b2(x)t2 + b3(x)t3 +O(t4)

]
, (6)

where b2(x) and b3(x) depend only on the derivative of the effective mass and are given by

b2(x) = −1

6
2M2 , (7a)

b3(x) = − 1

60
22M2 +

1

12
∂µM

2∂µM2 . (7b)

We also have included the boundary terms due to the conical singularity and the delta-
function contact term. The first depends on the numerical quantity [10]

Iβ =
1

12

(
2π

β
− β

2π

)
(8)

Of course, this boundary term is absent if β = 2π, Iβ = 0, namely in the absence of the
conical singularity.

The contact contribution depends on the quantity W ′′, and in the perturbative regime,
corresponding to W ′′ “small,” is, as a function of the background field, simply given by

W ′′(Φ) =

[
λ2Φ2 +

1

2
λ4Φ4 +

1

4!
λ6Φ6 + ....

]
, (9)

The analytic continuation of the zeta function to s = 0 is

ζ(0|L6) =

∫
d6x

1

(4π)3

[
−(M2)3

6
− b2(x)M2 + b3(x)

]
+

∫
d4x

1

(4π)2
(Iβ + IW )

[
(M2)2

2
+ b2(x)

]
. (10)

The heat kernel coefficients an are defined by the small-t expansion of the heat kernel, (d is
the dimension of the manifold, here d = 6)

Tre−tL6 ∼ 1

(4πt)d/2

∑
n

ant
n, t→ 0+, (11)
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so the integrand in the first term of the above expression is the a3(x) coefficient, which reads

a3,bulk(x) = −(M2)3

6
+
M22M2

6
+
∂µM

2∂µM2

12
− 22M2

60
. (12)

For the sake of completeness, we note that the a2(x) coefficient, which is relevant in four
dimensions, is

a2(x) =
(M2)2

2
− 2M2

6
. (13)

These expressions actually define the structure of the one-loop bulk and surface divergences.
It is already clear that the theory under consideration is not renormalizable at the one-loop
level! In such a situation, we will be interested in obtaining the one-loop renormalization for
“renormalizable” bulk interactions which will appear also in the renormalization of brane
couplings. These are the mass and four-scalar bulk couplings. They are actually defined by
the term in a3,bulk cubic in the effective mass. The corresponding one-loop renormalization
group (RG) equations have the form

dm2

dt
= c1m

4g4 , (14a)

dg4

dt
= c2m

2g2
4 , (14b)

where

c1 =
1

2

1

(4π)3
, c2 =

3

(4π)3
, (15)

and t stands for ln µ
µ0

. The solutions of these equations are not difficult to find, since their

product p(t) = g4(t)m2(t) satisfies (c = c1 + c2)

dp

dt
= cp2 . (16)

As a result, (p0 = p(0))

p(t) =
p0

1− cp0t
, (17a)

m2(t) = m2(0)(1− cp0t)
−c1/c , (17b)

g4(t) = g4(0)(1− cp0t)
−c2/c . (17c)

As p0 is positive, we have to consider the regime 1 > cp0t. When the denominator in above
equations becomes zero we see the appearance of a Landau pole in p(t) in terms of the initial
mass and self-interaction. (In m2 and g4 the singularity is a branch point.) As one sees, the
infrared (IR) (t→ −∞) behavior of above RG couplings is asymptotically free (AF).

A more interesting scenario emerges if we recognize that our observable physics is defined
on a 4d brane. Whatever the physics is in six dimensions, we require that it be sensible
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for a 4d-brane observer. For example, let us imagine that we could take the wrong sign for
the scalar self-interaction in six dimensions. Then, the RG equation for g4 appears with
the opposite sign. In other words, the RG solution for g4 appears with a positive sign in
the denominator and becomes asymptotically free in the UV. The same occurs with the RG
mass. Thus, we may search for consequences on the brane of both AF and non-AF RG
solutions.

Proceeding onwards, we see that the regularized one-loop effective action reads

ln det
L6

µ2
(ε) = −µ

2ε

2

∫ ∞
0

dt tε−1Tre−tL6 = −µ
2ε

2
Γ(ε)ζ(ε|L6) , (18)

where an arbitrary mass scale µ has been introduced to keep each expression dimensionless.
Thus, for small ε,

ln det
L6

µ2
(ε) = −1

2

[
ζ(0|L6)

ε
+ (lnµ2 + γ)ζ(0|L6) + ζ ′(0|L6) +O(ε)

]
. (19)

One can see that due to the presence of the conical singularity, there are “brane” surface
and contact contributions in the divergence as well as in the finite part depending on the
scale µ2. These surface contributions have to be added to the bulk counterterm in order to
remove the additional ultraviolet divergences related to the conical singularity and contact
term. These additional terms also modify the one-loop renormalization group equations and
depend on the bulk potential V (φ) and the brane potential W (φ).

Let us now write the RG equations for the surface (brane) couplings which were derived
in Ref. [4]. For the special choice of the deficit angle β = π (a Z2 orbifold), they read at
one-loop,

dλ0

dt
=

m4

256π2
− m4λ2

64π3
, (20a)

dλ2

dt
=
λ2

2

π
+
m2g4

128π2
− m4λ4

64π3
. (20b)

We also include the renormalization group equation for the coupling constant related to the
brane four-point function, the last term of which was not given explicitly in Ref. [4]:

dλ4

dt
=

4λ2λ4

π
+

3g2
4

128π2
− m4λ6

64π3
. (20c)

In the above equations the last terms have their origin in the delta-function contribution
(9).

First, let us find the solutions of these RG equations when the one-loop corrections are
not included, i.e., we drop the bulk terms involving m and g4. Note that λ0 is then a
constant. The other two couplings are:

λ2(t) =
λ2(0)

1− λ2(0)
π
t
. (21a)

λ4(t) = λ4(0)

(
1− λ2(0)t

π

)−4

. (21b)
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As one can see, we find non-asymptotically free behavior for these coupling constants. At
high energies there is a Landau pole defined by the initial RG mass. At the same time, as
usual, in the IR limit we have AF behavior for both coupling constants.

In order to investigate the role of the one-loop quantum corrections, let us consider only
the surface terms and neglect the contact terms. That is, we consider the truncated equations
(with p = m2g4)

dλ0

dt
=

m4

256π2
, (22a)

dλ2

dt
− λ2

2

π
=

p

128π2
, (22b)

dλ4

dt
− 4λ2λ4

π
=

3g2
4

128π2
. (22c)

The first of these equations can be easily integrated,

λ0(t)− λ0(0) =
m4(0)

256π2

1

(c2 − c1)p0

[
1− (1− cp0t)

c2−c1
c

]
. (23)

This reveals a very interesting running behavior for the effective cosmological constant. In
the absence of the bulk contribution the cosmological constant was unchanged from its
initial RG value. However, after taking into account the bulk running, the evolution of the
cosmological constant is completely altered. As long as (c2 − c1)/c is not an integer, which
is the case here, this solution still possesses a branch point at a suitably large value of t;
moreover, it is not asymptotically free in either the IR nor in the UV, but for small t grows
linearly with t. Because c2 > c1, it becomes large in both the IR and UV limits.

The third equation can be integrated once a solution of the second is known. Although
the latter is a nonlinear inhomogeneous differential equation belonging to the Riccati class,
the general solution of which is not known, in our specific case, one can find an explicit and
exact solution (see Appendix).

Let us first consider two limits. For small t we can develop a perturbative (power series)
solution in t,

λ2(t) = λ2(0) +
∞∑
n=1

dnt
n, (24)

where from Eqs. (22b) and (17a) we easily find

d1 = b+
λ2(0)2

π
, (25a)

d2 =
αb2

2π
+
b

π
λ2(0) +

1

π2
λ2(0)3, (25b)

d3 =
α2b3

3π2
+
b2

3π
+
αb2

3π2
λ2(0) +

4b

3π2
λ2(0)2 +

λ2(0)4

π3
, (25c)

and so on. Here we have defined

b =
p0

128π2
, α =

π

b
p0c, (26)
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where in our case α = 7.
The other interesting limit is large t, that is t→ −∞ if p0 > 0 or t→∞ if p0 < 0. Then

because

p(t) ∼ − 1

ct
, p0t→ −∞, (27)

we find by achieving the only balance possible in Eq. (22b) that

λ2(t) ∼ ±

√
|b|π

1 + |b|αt/π
, p0 < 0, t→∞. (28)

As one sees the Landau pole found in Eq. (21a) seems to disappear from our running
behavior. The mass is decreasing with the RG scale.

Finally, the solution of Eq. (22c) reads

λ4(t) =
3

128π2
e

4
π

∫ t
0 dt
′λ2(t′)

[∫ t

0

dt′ e−
4
π

∫ t′
0 dt1λ2(t1)g2

4(t′)

]
+ λ4(0)e

4
π

∫ t
0 dt
′ λ2(t′). (29)

We can easily insert the perturbative solution (24) into this expression to obtain the small
t behavior of λ4. The leading term is

λ4(t) = λ4(0) +

[
3

128π2
g4(0) +

4

π
λ2(0)λ4(0)

]
t+O(t2). (30)

This, of course, immediately follows from Eq. (22c).
More interesting again is the large t behavior. The leading behavior can be readily

determined from Eq. (22c) by seeing, when the large t behavior coming from Eq. (17c) is
inserted, which two terms in the differential equation can balance. It is clear that the only
balance possible is between the second and third terms, so we immediately find

λ4(t) ∼ 3

32
√

2π|p0|
g4(0)2(1− cp0t)

1
2
− 2c2

c , p0 < 0, t→∞. (31)

Since 1
2
− 2c2

c
= − 5

14
< 0, this says that in the UV the four-scalar coupling constant decreases.

This is in the contrast with the non-AF behavior seen in Eq. (21b) without taking into
account the bulk running!

These results are generalized by using the results of the analysis given in Appendix.
According to the general solution it follows that if we started from non-AF bulk running
coupling (the case p0 > 0) then the structure of the Landau singularity for the brane mass
(and here also for the brane four-coupling) is completely changed! Previously in Eq. (21a),
it was defined by the initial RG value of the brane mass λ2(0). Now, there are an infinite
number of singularities defined by the initial RG values of the bulk mass and the bulk
four-scalar coupling! That is, there is a singularity (in general, a branch point) at t = t0,
where

t0 =
1

cp0

=
π

αb
, (32a)
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and poles at t = tn,

tn = t0 −
α

4
z2
n, (32b)

where zn is the nth zero of a Bessel function. Consequently, if one starts from the AF
behavior for the bulk couplings (case p0 < 0), there are no singularites for t > 0. That
is, the Landau pole of the brane couplings has been eaten by bulk quantum effects. The
running behavior of the brane couplings becomes completely asymptotically safe! Of course
one could present corresponding numerical results for all couplings. We will not do this as
the model under discussion is over-simplified and hardly realistic.

The important lesson which follows from our discussion is follows. Even though the brane
observer does not know much about the bulk wherein his brane is embedded, there exists a
clear influence of bulk quantum physics on the quantum physics on the brane. In particular,
one may conjecture that there may be the realistic (Standard Model-like) theories where
observable running effects like asymptotic freedom are provided by bulk running couplings.
It is now a challenge to construct such brane-world models.
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APPENDIX A: SOLUTION OF RICCATI EQUATION

In this Appendix, we show how the Riccati equation (22b) can be solved. According to
the general theory of ordinary differential equations (see, for example, Ref. [11]), it is known
that solutions of the Riccati equation can be found as soon as one is able to find solutions
of a related linear second order differential equation. In our case, we may rewrite Eq. (22b)
in the form

λ′2(x) +
λ2

2(x)

πcp0

+
1

128π2cx
= 0 . (A1)

with ′ = d
dx

and x = 1− cp0t. The associated linear second order equation simply reads

d2u

d2x
+
Bu

x
= 0 , (A2)

with B = π
α2b

. The corresponding solution of the Riccati equation is

λ2(x) = αb
d

dx
lnu(x). (A3)
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Fortunately, Eq. (A2) can be reduced to a Bessel equation. In fact, putting z = 2
√
Bx and

u(x(z)) =
z

2
√
B
Z1(z) , (A4)

a simple computation leads to

d2Z1

d2z
+

1

z

dZ1

dz
+

(
1− 1

z2

)
Z1 = 0, (A5)

which is the Bessel equation of order ν = 1.
The solution to Eq. (A5) is

Z1(z) = J1(z) + AN1(z), (A6)

where J1 is the Bessel function of the first kind of order 1, and N1 is the Neumann function
of order 1. The arbitrary constant of integration is A. λ2 is now given by Eq. (A3) with

u(x) =
√
xZ1

(
2
√
Bx
)
. (A7)

The constant A is determined by the initial value of λ2:

λ2(t = 0) = αb
d

dx
lnu(x)

∣∣∣∣
x=1

. (A8)

What are the singularities of λ? If A = 0, Z1 has a zero at z = 0; otherwise it has a
branch point there. This means that there is a singularity at x = 0 or at

t0 =
1

cp0

. (A9)

This is the reflection of the Landau pole in p(t), Eq. (17a). But there an an infinite num-
ber of other singularites of λ2, occurring where Z1 possesses zeros; call these zeroes zn.
(Asymptotically,

zn = arctan
1 + A

1− A
+ nπ, (A10)

where the arctangent is the principal value and n is an integer.) The corresponding values
of tn are

tn = t0 −
α

4
z2
n. (A11)

Thus, if p0 > 0, to the right of t = 0 there are a finite number of singularities, but an infinite
number to the left; for p0 < 0 all the singularities occur for t < 0. So let us examine the
latter situation. If p0 < 0, B < 0, so we write the solution in terms of modified Bessel
functions (Bessel functions of imaginary argument),

Z1(iz) = I1(z) + AK1(z), (A12a)

u(x) =
√
x
[
I1

(
2
√
|B|x

)
+ AK1

(
2
√
|B|x

)]
. (A12b)
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Up to a constant factor, asymptotically,

u(x) ∼ e2
√
|B|x + Ae−2

√
|B|x, x→∞. (A13)

Thus we find the leading behavior

λ2(t) ∼ −

√
π|b|

1− cp0t
, p0 < 0, t→∞. (A14)

This is consistent with the asymptotic result (28), and therefore also implies the behavior
seen in Eq. (31).
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