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Abstract

The relativistic Coulomb resummation factor suggested by I.L. Solovtsov

is used to reanalyze the mass limits obtained for magnetic monopoles

which might have been produced at the Fermilab Tevatron. The limits

given by the Oklahoma experiment (Fermilab E882) are pushed close

to the unitary bounds, so that the lower limits on monopole masses are

increased from around 250 GeV to about 400 GeV.

1 Threshold resummation

In describing a charged particle-antiparticle system near threshold, it is well
known from QED that the so-called Coulomb resummation factor plays an
important role. This resummation, performed on the basis of the nonrel-
ativistic Schrödinger equation with the Coulomb potential V (r) = −α/r,
leads to the Sommerfeld-Sakharov S-factor [1]. In the threshold region one
cannot truncate the perturbative series and the S-factor should be taken into
account in its entirety. The S-factor appears in the parametrization of the
imaginary part of the quark current correlator, which can be approximated
by the Bethe-Salpeter amplitude of the two charged particles, χBS(x = 0)
[2]. The nonrelativistic replacement of this amplitude by the wave function,
which obeys the Schrödinger equation with the Coulomb potential, leads
to the appearance of the resummation factor in the parametrization of the
normalized e+e− to hadrons cross section ratio R(s).

For a systematic relativistic analysis of quark-antiquark systems, it is
essential from the very beginning to have a relativistic generalization of the
S-factor. A new form for this relativistic factor in the case of QCD was
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proposed by Solovtsov in 2001 [3].

S(χ) =
X(χ)

1 − exp [−X(χ)]
, X(χ) =

π α

sinhχ
, (1)

where χ is the rapidity which is related to s by 2m coshχ =
√
s, α→ 4αs/3

in QCD. The function X(χ) can be expressed in terms of v =
√

1 − 4m2/s:
X(χ) = πα

√
1 − v2/v. The relativistic resummation factor (1) reproduces

both the expected nonrelativistic and ultrarelativistic limits and corresponds
to a QCD-like Coulomb potential. Here we consider the vector channel for
which a threshold resummation S-factor for the s-wave states is used. For the
axial-vector channel the P -factor is required. The corresponding relativistic
factor has been found recently [4].

To incorporate the quark mass effects one usually uses the approximate
expression above the quark-antiquark threshold [5]

R(s) = T (v) [1 + g(v)r(s)] , (2)

where

T (v) = v
3 − v2

2
, g(v) =

4π

3

[

π

2v
− 3 + v

4

(

π

2
− 3

4π

)]

. (3)

The function g(v) is taken in the Schwinger approximation [1].
One cannot directly use the perturbative expression for r(s) in Eq. (2),

which contains unphysical singularities, to calculate, for example, the Adler
D-function. Instead, one can use the analytic perturbation theory (APT)
representation for r(s). The explicit three-loop form for rAPT(s) can be
found in Ref. [6]. Besides this replacement, one has to modify the expression
(2) in such a way as to take into account summation of an arbitrary number
of threshold singularities. Including the threshold resummation factor (1)
leads to the following modification of the expression (2) for a particular
quark flavor f [6, 7]

Rf (s) = [R0,f (s) +R1,f (s)] Θ(s− 4m2
f ), (4)

R0(s) = T (v)S(χ), R1(s) = T (v)

[

rAPT(s) g(v) − 1

2
X(χ)

]

.

The usage of the resummation factor (1) reflects the assumption that the
coupling is taken in the V renormalization scheme. To avoid double count-
ing, the function R1 contains the subtraction of X(χ). The potential term
corresponding to the R0 function gives the principal contribution to R(s),
as shown in Fig. 1, the correction R1 amounting to less than twenty percent
over the whole energy interval. For a recent account of some of the successes
of APT including Coulomb resummation see Ref. [8].
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Fig. 1: Behavior of R0(s) with relativistic and nonrelativistic S-factors.

2 Dirac Magnetic Monopoles

The relativistic interaction between an electric and a magnetic current is [9]

W (j, ∗j) =

∫

(dx)(dx′)(dx′′)∗jµ(x)ǫµνστ∂
νfσ

(

x− x′
)

D+

(

x′ − x′′
)

jτ
(

x′′
)

.

(5)
Here the electric and magnetic currents are

jµ = eψ̄γµψ and ∗jµ = gχ̄γµχ, (6)

for example, for spin-1/2 particles. The photon propagator is denoted by
D+(x − x′) and fµ(x) is the Dirac string function which satisfies the differ-
ential equation

∂µf
µ(x) = 4πδ(x). (7)

A formal solution of this equation is given by

fµ(x) = 4πnµ (n · ∂)−1 δ(x), (8)

where nµ is an arbitrary constant vector.
Dirac showed in 1931 [10] that quantum mechanics was consistent with

the existence of magnetic monopoles provided the quantization condition
holds,

eg = m′h̄c, (9)
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where m′ is an integer or an integer plus 1/2, which explains the quantization
of electric charge. This was generalized by Schwinger to dyons, particles
carrying both electric charge ea and magnetic charge ga [11]:

e1g2 − e2g1 = −m′h̄c. (10)

(Schwinger sometimes argued that m′ was an integer, or perhaps an even
integer.) For details on the derivation of these quantization conditions, see,
for example, Ref. [9]. In the following we write m′ = n/2.

3 OU Monopole Experiment: Fermilab E882

We now refer to the experiment conducted at the University of Oklahoma
from 1997–2004 [12], searching for low-mass monopoles which might have
been produced at the Tevatron and captured in the old CDF and D0 detec-
tors.

The best prior experimental limit on the direct accelerator production of
magnetic monopoles is that of Bertani et al. in 1990 [13]

σ ≤ 2 × 10−34cm2 for a monopole mass M ≤ 850GeV. (11)

(Such limits are complementary to searches for cosmic “intermediate mass”
magnetic monopoles, with masses between 105 and 1012 GeV, such as have
been recently reported in Ref. [14].) We are able to set much better limits
than Bertani et al. because the integrated luminosity is 104 times that of the
previous 1990 experiment:

∫

L = 172 ± 8 pb−1 (D0). (12)

The fundamental mechanism is supposed to be a Drell-Yan process,

p+ p̄→ q + q̄ +X →M + M̄ +X, (13)

where the cross section is given by

dσ

dM = (68.5n)2β3 8πα2

9s

∫

dx1

x1

∑

i

Q2
i qi(x1)q̄i

(

M2

sx1

)

. (14)

Here M is the invariant mass of the monopole-antimonopole pair, and we
have included a factor of β3 to reflect both phase space and the velocity
suppression of the magnetic coupling, as roughly implied by Eq. (5).
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Fig. 2: Arrangement of the D0 tracking and transition radiation detectors.

Any monopole produced at the Tevatron is trapped in the detector ele-
ments with 100% probability due to interaction with the magnetic moments
of the nuclei, based on the theory described in my review [9]. The experiment
consists of running samples obtained from the old D0 and CDF detectors
through a superconducting induction detector. Figure 2 is a sketch of the
D0 detector.

We use energy loss formula of Ahlen [15] to describe the interaction of
the monopoles with the detector elements.

Figure 3 is a diagram of the OU magnetic monopole induction detector.
It is a cylindrical detector, with a warm bore of diameter 10 cm, surrounded
by a cylindrical liquid N2 dewar, which insulated a liquid He dewar. The
superconducting loop detectors were within the latter, concentric with the
warm bore. Any current established in the loops was detected by a SQUID.
The entire system was mechanically isolated from the building, and magnet-
ically isolated by µ metal and superconducting lead shields. The magnetic
field within the bore was reduced with the help of Helmholtz coils to about
1% of the earth’s field. Samples were pulled vertically through the warm
bore with a computer-controlled stepper motor. Each traversal took about
50 s; every sample run consisted of some 20 up and down traversals. Most
samples were run more than once, and more than 660 samples of Be, Pb, and
Al from both the old CDF and D0 detectors were analyzed over a period of
7 years.
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Fig. 3: Sketch of the OU induction detector. Shown is a vertical cross section;
it should be imagined as rotated about the vertical axis labelled “centerline.”

A monopole passing through the superconducting loop would produce a
step in the current

LI =
4πg

c
− ∆Φ

c
=

4πg

c

(

1 − r2

a2

)

. (15)

where L is the inductance of the loop, r is the radius of the loop, and a is
the radius of the superconducting cylinder. The detector was calibrated with
a pseudopole, a long solenoid, and the resulting steps in the output of the
SQUID are seen in Fig. 4 to agree with theory.

Figure 5 shows the histogram of steps from data collected from D0 sam-
ples. Similar histograms were obtained from the CDF data.

From this, we can obtain limits on cross sections for the production
of monopole–antimonopole pairs, and then, model dependent limits on
monopole masses, as shown in Fig. 6.

Table 1 shows the limits we obtained for different sample sets, and dif-
ferent charges m′, for various assumed production distributions. Our best
mass limits are (assuming isotropic distribution)

• m′ = 1
2 : µ > 265 GeV

• m′ = 1: µ > 355 GeV
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Fig. 4: Typical step plots: D0 aluminum, CDF lead, and CDF aluminum.
The experimental data was collected from pseudopole simulations; the steps
shown are for the difference between the results with reversed polarizations
of the pseudopole. Data agrees well with the SC theory, which incorporates
the effect of the shielded superconducting loops. The theory without the
shield, given by Barger and Ollson [16] is also shown.
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Fig. 5: Steps from D0 samples. A Dirac pole would appear as a step at 2.46
mV.

Table 1: Alternative interpretations for different production angular distri-
butions of the monopoles, comparing 1 and 1 ± cos2 θ (90% CL). Here the
upper cross section limits σa corresponds to the distribution 1+a cos2 θ, and
similarly for the lower mass limits µ (all at 90% confidence level).

Set 2m′ σ+1 µ+1 σ0 µ0 σ−1 µ−1

(pb) (GeV/c2) (pb) (GeV/c2) (pb) (GeV/c2)

1 Al 1 1.2 250 1.2 240 1.4 220
1 Al RM 1 0.6 275 0.6 265 0.7 245
2 Pb 1 9.9 180 12 165 23 135
2 Pb RM 1 2.4 225 2.9 210 5.9 175
1 Al 2 2.1 280 2.2 270 2.5 250
2 Pb 2 1.0 305 0.9 295 1.1 280
3 Al 2 0.2 365 0.2 355 0.2 340
1 Be 3 3.9 285 5.6 265 47 180
2 Pb 3 0.5 350 0.5 345 0.5 330
3 Al 3 0.07 420 0.07 410 0.06 405
1 Be 6 1.1 330 1.7 305 18 210
3 Al 6 0.2 380 0.2 375 0.2 370
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Fig. 6: Cross section vs. mass limits. The three graphs show three different
assumptions about the angular distribution, since even if we knew the spin
of the monopole, we cannot at present predict the differential cross section.
Shown in the second figure are the Bertani (1990) [13] and lunar (1973) [17]
limits.
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• m′ = 3
2 : µ > 410 GeV

• m′ = 3: µ > 375 GeV.

4 Reanalysis of Monopole Mass Limits Using Coulomb Re-

summation

We will now use the Solovtsov Coulomb threshold correction (4) in the form

R = T (v)[S(χ) − 1

2
X(χ)], (16)

with T (v) given in (3) and S(χ) given in (1), or

X(χ) = πα

√
1 − v2

v
, S(χ) =

X(χ)

1 − e−X(χ)
. (17)

We have simply neglected the perturbative term, as uncalculable.
This is a small correction in QED, but here from Eq. (9)

α→ 137

(

n

2

)2

, n = 1, 2, 3, . . . . (18)

Figure 7 shows the substantial resulting increase in the cross section. This
essentially pushes the cross section to the unitarity limit,

σ ≤ π(2J + 1)

s
∼ 3π

s
. (19)

As a result, for all charge states, our limits become

µ > 400GeV. (20)

5 Conclusions

The relativistic Coulomb resummation factor plays an important role in anal-
ysis of QCD experiments. Because the coupling is strong, it also plays a
significant role in the theory of the production of magnetic monopole–anti-
monopole pairs. Of course, because of the strong coupling, and even more
because of the nonperturbative aspects of the Dirac string, there are poten-
tially other effects which are just as strong but uncalculable. Our estimates
of production rates were therefore extremely conservative, and a realistic as-
sessment of the situation suggests that the limits on monopole masses from
the Oklahoma experiment are at least as strong as the published limit from
the very different CDF experiment [18]:

µCDF ≥ 360GeV, (21)
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Fig. 7: Enhancement factor R for the theoretical monopole cross section due
to Coulomb resummation, as a function of monopole mass µ = M

2 m, where
M is the invariant mass of the monopole-antimonopole pair in TeV, and µ
and m are in GeV. The bottom curve shows R given in Eq. (16), while in
the top curve this factor is divided by the monopole velocity, since that is
already included in the analysis, see Eq. (14).
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