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The effects of quantum fluctuations in fields confined by background configurations may
be simply and transparently computed using the Green’s function approach pioneered
by Schwinger. Not only can total energies and surface forces be computed in this way,
but local energy densities, and in general, all components of the vacuum expectation
value of the energy-momentum tensor may be calculated. For simple geometries this
approach may be carried out exactly, which yields insight into what happens in less
tractable situations. In this talk I will concentrate on the example of a scalar field in a
circular cylindrical delta-function background. This situation is quite similar to that of a
spherical delta-function background. The local energy density in these cases diverges as
the surface of the background is approached, but these divergences are integrable. The
total energy is finite in strong coupling, but in weak coupling a divergence occurs in third
order. This universal feature is shown to reflect a divergence in the energy associated
with the surface, the integrated local energy density within the shell itself, which surface
energy should be removable by a process of renormalization.
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1. Casimir Energies for Spheres and Cylinders

The calculation of Casimir self-energies of material objects has become controver-

sial,1 although these concerns are nearly as old as the subject itself.2–4 Although

it appears possible to extract unique self-energies, they may be overwhelmed by

terms which become divergent for ideal geometries.5,6 Our attitude is that these

terms may be uniquely removed by a process of renormalization, and that even the

divergences revealed by heat-kernel methods7,8 may be unambiguously isolated.

Table 1 summarizes the state of our knowledge concerning total Casimir self-

energies for different simple configurations. The first row of the table refers to the

Casimir energy of a perfectly conducting shell, either spherical or cylindrical, sub-

ject to electromagnetic fluctuations in the exterior and interior regions. The second

row refers to the same results for a scalar field subject to Dirichlet boundary con-

ditions on the surface. The remaining four rows describe small perturbations: Row

3 describes what happens for electromagnetic fluctuations when the interior of the

sphere or cylinder is a dielectric having a permittivity ε differing slightly from the

vacuum value of unity; Row 4 indicates the same when the speed of light is the same

1
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inside and outside the object, where ξ = (ε′−ε)/(ε′+ε) in terms of the permittivity

inside (ε) and outside (ε′) the object; Row 5 shows the effect for a perfect conduc-

tor of a small ellipticity δe (± refers to a prolate or oblate spheroid, respectively);

and Row 6 refers to a δ-function potential (semitransparent shell) of strength λ,

which will be described in this paper. In these four cases, what is shown in the

table is the coefficient of the second-order term in the relevant small quantity. One

of the ongoing challenges facing quantum field theorists attempting to understand

the quantum vacuum is to understand the pattern of signs and zeroes manifested

in the table.

Table 1. Casimir energy (E) for a sphere and Casimir en-
ergy per unit length (E) for a cylinder, both of radius a. The
signs indicate repulsion or attraction, respectively.

Type ESpherea ECylindera
2 References

EM +0.04618 −0.01356 9, 10
D +0.002817 +0.0006148 11, 12

(ε − 1)2 +0.004767 = 23
1536π

0 13, 14

ξ2 +0.04974 = 5
32π

0 15, 16

δe2 ±0.0009 0 17, 18

λ2 +0.009947 = 1
32π

0 19, 20

In this talk, we will illustrate the ideas for the interesting case of a circular

cylindrically symmetric annular potential. Most of the calculations will refer to a

δ-function potential.

2. Green’s Function

We consider a massless scalar field φ in a δ-cylinder background,

Lint = − λ

2a
δ(r − a)φ2, (1)

a being the radius of the “semitransparent” cylinder. We recall that the massive

case was earlier considered by Scandurra.21 Note that with this definition, λ is

dimensionless. The time-Fourier transform of the Green’s function,

G(x, x′) =

∫

dω

2π
e−iω(t−t′)G(r, r′), (2)

satisfies
[

−∇2 − ω2 +
λ

a
δ(r − a)

]

G(r, r′) = δ(r − r′). (3)

Adopting cylindrical coordinates, we write

G(r, r′) =

∫

dk

2π
eik(z−z′)

∞
∑

m=−∞

1

2π
eim(ϕ−ϕ′)gm(r, r′; k), (4)
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where the reduced Green’s function satisfies
[

−1

r

d

dr
r

d

dr
+ κ2 +

m2

r2
+

λ

a
δ(r − a)

]

gm(r, r′; k) =
1

r
δ(r − r′), (5)

where κ2 = k2 − ω2. Let us immediately make a Euclidean rotation,

ω → iζ, (6)

where ζ is real, so κ is always real and positive. Apart from the δ functions, Eq. (5)

is the modified Bessel equation.

2.1. Reduced Green’s function

Because of the Wronskian satisfied by the modified Bessel functions,

Km(x)I ′m(x) − K ′

m(x)Im(x) =
1

x
, (7)

we have the general solution to the Green’s function equation (5) as long as r 6= a

to be

gm(r, r′; k) = Im(κr<)Km(κr>) + A(r′)Im(κr) + B(r′)Km(κr), (8)

where A and B are arbitrary functions of r′. Now we incorporate the effect of the

δ function at r = a in the Green’s function equation. It implies that gm must be

continuous at r = a, while it has a discontinuous derivative,

a
d

dr
gm(r, r′; k)

∣

∣

∣

∣

r=a+

r=a−

= λgm(a, r′; k), (9)

from which we rather immediately deduce the form of the Green’s function inside

and outside the cylinder:

r, r′ < a : gm(r, r′; k) = Im(κr<)Km(κr>)

− λK2
m(κa)

1 + λIm(κa)Km(κa)
Im(κr)Im(κr′), (10a)

r, r′ > a : gm(r, r′; k) = Im(κr<)Km(κr>)

− λI2
m(κa)

1 + λIm(κa)Km(κa)
Km(κr)Km(κr′). (10b)

Notice that in the limit λ → ∞ we recover the Dirichlet cylinder result, that is,

that gm vanishes at r = a.

3. Pressure and Energy

The easiest way to calculate the total energy is to compute the pressure on the

cylindrical walls due to the quantum fluctuations in the field. This may be computed,

at the one-loop level, from the vacuum expectation value of the stress tensor,

〈T µν〉 =

(

∂µ∂′ν − 1

2
gµν∂λ∂′

λ

)

1

i
G(x, x′)

∣

∣

∣

∣

x=x′

− ξ(∂µ∂ν − gµν∂2)
1

i
G(x, x). (11)
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Here we have included the conformal parameter ξ, which is equal to 1/6 for the

conformal stress tensor. The conformal term does not contribute to the radial-

radial component of the stress tensor, however, because then only transverse and

time derivatives act on G(x, x), which depends only on r. The discontinuity of the

expectation value of the radial-radial component of the stress tensor is the pressure

on the cylindrical wall:

P = 〈Trr〉in − 〈Trr〉out

= − 1

16π3

∞
∑

m=−∞

∫ ∞

−∞

dk

∫ ∞

−∞

dζ
λκ2

1 + λIm(κa)Km(κa)

×
[

K2
m(κa)I ′2m(κa) − I2

m(κa)K ′2
m(κa)

]

= − 1

16π3

∞
∑

m=−∞

∫ ∞

−∞

dk

∫ ∞

−∞

dζ
κ

a

d

dκa
ln [1 + λIm(κa)Km(κa)] , (12)

where we’ve again used the Wronskian (7). Regarding ka and ζa as the two Cartesian

components of a two-dimensional vector, with magnitude x ≡ κa =
√

k2a2 + ζ2a2,

we get the stress on the cylinder per unit length to be

S = 2πaP = − 1

4πa3

∫ ∞

0

dxx2
∞
∑

m=−∞

d

dx
ln [1 + λIm(x)Km(x)] , (13)

implying the Dirichlet limit as λ → ∞. By integrating S = − ∂
∂aE , we obtain the

energy per unit length

E = − 1

8πa2

∫ ∞

0

dxx2
∞
∑

m=−∞

d

dx
ln [1 + λIm(x)Km(x)] . (14)

This formal expression will be regulated, and evaluated in weak and strong coupling,

in the following.

3.1. Energy

Alternatively, we may compute the energy directly from the general formula22

E =
1

2i

∫

(dr)

∫

dω

2π
2ω2G(r, r). (15)

To evaluate the energy in this case, we need the indefinite integrals
∫ x

0

dy y I2
m(y) =

1

2

[

(x2 + m2)I2
m(x) − x2I ′2m

]

, (16a)

∫ ∞

x

dy y K2
m(y) = −1

2

[

(x2 + m2)K2
m(x) − x2K ′2

m

]

. (16b)

When we insert the above construction (10) of the Green’s function, and perform

the integrals as indicated over the regions interior and exterior to the cylinder, we

obtain

E = − a2

8π2

∞
∑

m=−∞

∫ ∞

−∞

dζ

∫ ∞

−∞

dk ζ2 1

x

d

dx
ln [1 + λIm(x)Km(x)] . (17)
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Again we regard the two integrals as over Cartesian coordinates, and replace the

integral measure by
∫ ∞

−∞

dζ

∫ ∞

−∞

dk ζ2 = π

∫ ∞

0

dκ κ3. (18)

The result for the energy (14) immediately follows.

4. Weak-coupling Evaluation

Suppose we regard λ as a small parameter, so let us expand the energy (14) in

powers of λ. The first term is

E(1) = − λ

8πa2

∞
∑

m=−∞

∫ ∞

0

dxx2 d

dx
Km(x)Im(x). (19)

The addition theorem for the modified Bessel functions is

K0(kP ) =
∞
∑

m=−∞

eim(φ−φ′)Km(kρ)Im(kρ′), ρ > ρ′, (20)

where P =
√

ρ2 + ρ′2 − 2ρρ′ cos(φ − φ′). If this is extrapolated to the limit ρ′ = ρ

we conclude that the sum of the Bessel functions appearing in E(1) is K0(0), that

is, a constant, so there is no first-order contribution to the energy, E(1) = 0.

4.1. Regulated numerical evaluation of E(1)

Given that the above argument evidently formally omits divergent terms, it may

be more satisfactory to offer a regulated numerical evaluation of E(1). We can very

efficiently do so using the uniform asymptotic expansions (m → ∞):

Im(x) ∼
√

t

2πm
emη

(

1 +

∞
∑

k=1

uk(t)

mk

)

, (21a)

Km(x) ∼
√

πt

2m
e−mη

(

1 +
∞
∑

k=1

(−1)k uk(t)

mk

)

, (21b)

where x = mz, t = 1/
√

1 + z2, and dη
dz = 1

zt . The polynomials in t appearing here

are generated by

u0(t) = 1, uk(t) =
1

2
t2(1 − t2)u′

k−1(t) +

∫ t

0

ds
1 − 5s2

8
uk−1(s). (22)

Thus the asymptotic behavior of the products of Bessel functions appearing in

Eq. (19) is obtained from

I2
m(x)K2

m(x) ∼ t2

4m2

(

1 +

∞
∑

k=1

rk(t)

m2k

)

. (23)
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The first three polynomials occurring here are

r1(t) =
t2

4
(1 − 6t2 + 5t4), (24a)

r2(t) =
t4

16
(7 − 148t2 + 554t4 − 708t6 + 295t8), (24b)

r3(t) =
t6

16
(36 − 1666t2 + 13775t4 − 44272t6

+ 67162t8 − 48510t10 + 13475t12). (24c)

We regulate the sum and integral by inserting an exponential cutoff, δ → 0+:

E(1) = − λ

4πa2

∞
∑

m=0

′

∫ ∞

0

dxx2 d

dx
Im(x)Km(x)e−xδ, (25)

where the prime on the summation sign means that the m = 0 term is counted with

one-half weight. We break up this expression into five parts,

E(1) = − λ

8πa2
(I + II + III + IV + V). (26)

The first term is the m = 0 contribution, suitably subtracted to make it convergent

(so the convergence factor may be omitted),

I =

∫ ∞

0

dxx2 d

dx

[

I0(x)K0(x) − 1

2
√

1 + x2

]

= −1. (27)

The second term is the above subtraction,

II =
1

2

∫ ∞

0

dxx2

(

d

dx

1√
1 + x2

)

e−xδ ∼ − 1

2δ
+ 1, (28)

as may be verified by breaking the integral in two parts at Λ, 1 ≪ Λ ≪ 1/δ. The

third term is the sum over the mth Bessel function with the two leading asymptotic

approximants in Eq. (23) subtracted:

III = 2

∞
∑

m=1

∫ ∞

0

dxx2 d

dx

[

Im(x)Km(x) − t

2m

(

1 +
t2

8m2
(1 − 6t2 + 5t4)

)]

= 0.

(29)

Numerically, each term in the sum seems to be zero to machine accuracy. This is

verified by computing the higher-order terms in that expansion, in terms of the

polynomials in Eq. (24):

Im(x)Km(x) − t

2m

(

1 +
t2

8m2
(1 − 6t2 + 5t4)

)

∼ t

4m5

[

r2(t) −
1

4
r2
1(t)

]

+
t

4m7

[

r3(t) −
1

2
r1(t)r2(t) +

1

8
r3
1(t)

]

+ . . . , (30)

which terms are easily seen to integrate to zero. The fourth term is the leading

subtraction which appeared in the third term:

IV =

∞
∑

m=1

m

∫ ∞

0

dz z2

(

d

dz
t

)

e−mzδ. (31)
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If we first carry out the sum on m we obtain

IV = −1

4

∫ ∞

0

dz z3 1

(1 + z2)3/2

1

sinh2 zδ/2
∼ − 1

δ2
+

1

2δ
− 1

6
, (32)

as verified by breaking up the integral. The final term, due to the subleading sub-

traction, if unregulated, is the form of infinity times zero:

V =
1

8

∞
∑

m=1

1

m

∫ ∞

0

dz z2 d

dz
(t3 − 6t5 + 5t7)e−mzδ. (33)

Here the sum on m gives

∞
∑

m=1

1

m
e−mzδ = − ln

(

1 − e−zδ
)

, (34)

and so we can write

V =
1

16

d

dα

∫ 1

0

du (1 − u)αu−2−α(u3/2 − 6u5/2 + 5u7/2)

∣

∣

∣

∣

α=0

=
1

6
. (35)

Adding together these five terms we obtain

E(1) =
λ

8πa2δ2
+ 0, (36)

that is, the 1/δ and constant terms cancel. The remaining divergence may be inter-

preted as an irrelevant constant, since δ = τ/a, τ being regarded as a point-splitting

parameter. This thus agrees with the result stated at the beginning of this section.

4.2. λ
2 term

We can proceed the same way to evaluate the second-order contribution to Eq. (14),

E(2) =
λ2

16πa2

∫ ∞

0

dxx2 d

dx

∞
∑

m=−∞

I2
m(x)K2

m(x). (37)

By squaring the sum rule (20), and again taking the formal singular limit ρ′ → ρ,

we evaluate the sum over Bessel functions appearing here as

∞
∑

m=−∞

I2
m(x)K2

m(x) =

∫ 2π

0

dϕ

2π
K2

0 (2x sin ϕ/2). (38)

Then changing the order of integration, we can write the second-order energy as

E(2) = − λ2

64π2a2

∫ 2π

0

dϕ

sin2 ϕ/2

∫ ∞

0

dz z K2
0 (z), (39)

where the Bessel-function integral has the value 1/2. However, the integral over ϕ

is divergent. We interpret this integral by adopting an analytic regularization based

on the integral (Re s > −1)
∫ 2π

0

dϕ
(

sin
ϕ

2

)s

=
2
√

πΓ
(

1+s
2

)

Γ
(

1 + s
2

) . (40)
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Taking the right-side of this equation to define the ϕ integral for all s, we conclude

that the ϕ integral, and hence the second-order energy E(2), is zero.

The vanishing of the energy in order λ and λ2 may be given a quite rigorous

derivation in the zeta-function approach to Casimir energies—See Ref. 20.

4.2.1. Alternative numerical evaluation

Again we provide a numerical approach to bolster our argument. Subtracting and

adding the leading asymptotic behaviors, we now write the second-order energy as

(z = x/m)

E(2) = − λ2

8πa2

{

∫ ∞

0

dxx

[

I2
0 (x)K2

0 (x) − 1

4(1 + x2)

]

+
1

2
lim
s→0

∞
∑

m=0

′m−s

∫ ∞

0

dz
z1−s

1 + z2
+ 2

∫ 2

0

dz z
t2

4

∞
∑

m=1

3
∑

k=1

rk(t)

m2k

+ 2
∞
∑

m=1

∫ ∞

0

dxx

[

I2
m(x)K2

m(x) − t2

4m2

(

1 +
3
∑

k=1

rl(t)

m2k

)]}

. (41)

The successive terms are evaluated as

E(2) ≈ − λ2

8πa2

[

1

4
(γ + ln 4) − 1

4
ln 2π − ζ(2)

48
+

7ζ(4)

1920
− 31ζ(6)

16128

+0.000864 + 0.000006

]

= − λ2

8πa2
(0.000000), (42)

where in the last term in the energy (41) only the m = 1 and 2 terms are significant.

Therefore, we have demonstrated numerically that the energy in order λ2 is zero to

an accuracy of better than 10−6.

4.2.2. Exponential regulator

The astute listener will note that we used a standard, but possibly questionable,

analytic regularization in defining the second term in energy above. Alternatively,

as in Sec. 4.1 we could insert there an exponential regulator in each integral of e−xδ,

with δ to be taken to zero at the end of the calculation. For m 6= 0 x becomes mz,

and then the sum on m becomes

∞
∑

m=1

e−mzδ =
1

ezδ − 1
. (43)

Then when we carry out the integral over z we obtain for that term

π

8δ
− 1

4
ln 2π. (44)
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Thus we obtain the same finite part as above, but in addition an explicitly divergent

term

E(2)
div = − λ2

64a2δ
. (45)

Again, if we think of the cutoff in terms of a vanishing proper time τ , δ = τ/a,

this divergent term is proportional to 1/a, so the divergence in the energy goes like

L/a, if L is the (very large) length of the cylinder. This is of the form of the shape

divergence encountered in Ref. 14.

4.3. Divergence in O(λ3)

Although the first two orders in λ identically vanish, a divergence in the energy (14)

does occur in O(λ3).

E(3) = − 1

8πa2

∞
∑

m=−∞

∫ ∞

0

dxx2−s d

dx

1

3
λ3K3

m(x)I3
m(x)

∼ λ3

96πa2s
, s → 0. (46)

That such a divergence does occur generically in third order was proved in Ref. 20,

using heat-kernel techniques. As we shall see, this divergence entirely arises from

the surface energy.

5. Strong Coupling

The strong-coupling limit of the energy (14), that is, the Casimir energy of a Dirich-

let cylinder,

ED = − 1

8πa2

∞
∑

m=−∞

∫ ∞

0

dxx2 d

dx
ln Im(x)Km(x), (47)

was worked out to high accuracy by Gosdzinski and Romeo,12

ED =
0.000614794033

a2
. (48)

It was later redone with less accuracy by Nesterenko and Pirozhenko.23 For com-

pleteness, let us sketch the evaluation here. Again subtracting and adding the lead-
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ing asymptotics, we find for the energy per unit length

ED = − 1

8πa2

{

− 2

∫ ∞

0

dxx

[

ln (2xI0(x)K0(x)) − 1

8

1

1 + x2

]

+ 2
∞
∑

m=1

∫ ∞

0

dxx2 d

dx

[

ln (2xIm(x)Km(x)) − ln

(

xt

m

)

− 1

2

r1(t)

m2

]

− 2

∞
∑

m=0

′

∫ ∞

0

dxx2 d

dx
ln 2x + 2

∞
∑

m=1

∫ ∞

0

dxx2 d

dx
lnxt

+

∞
∑

m=1

∫ ∞

0

dxx2 d

dx

[

r1(t)

m2
− 1

4

1

1 + x2

]

− 1

2

∞
∑

m=0

′

∫ ∞

0

dx
x

1 + x2

}

. (49)

In the first two terms we have subtracted the leading asymptotic behavior so the

resulting integrals are convergent. Those terms are restored in the fourth, fifth, and

sixth terms. The most divergent part of the Bessel functions are removed by the

insertion of 2x in the corresponding integral, and its removal in the third term.

(Elsewhere, such terms have been referred to as “contact terms.”) The terms in-

volving Bessel functions are evaluated numerically, where it is observed that the

asymptotic value of the summand (for large m) in the second term is 1/32m2. The

fourth term is evaluated by writing it as

2 lim
s→0

∞
∑

m=1

m2−s

∫ ∞

0

dz
z1−s

1 + z2
= 2ζ′(−2) = −ζ(3)

2π2
, (50)

while the same argument, as anticipated, shows that the third “contact” term is

zero.a The sixth term is

−1

2
lim
s→0

[

ζ(s) +
1

2

]

1

s
=

1

4
ln 2π. (51)

The fifth term is elementary. The result then is

ED =
1

4πa2
(0.010963− 0.0227032 + 0 + 0.0304485 + 0.21875− 0.229735)

=
0.0006146

a2
, (52)

which agrees with Eq. (48) to the fourth significant figure.

5.1. Exponential regulator

As in the weak-coupling calculation, it may seem more satisfactory to insert an

exponential regulator rather than use analytic regularization. Now it is the third,

fourth, and sixth terms in the above expression that must be treated. The latter is

aThis argument is a bit suspect, since the analytic continuation that defines the integrals has no
common region of existence. Thus the argument in the following subsection may be preferable.
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just the negative of the term (44) encountered in weak coupling. We can combine

the third and fourth terms to give

− 1

δ2
+

2

δ2

∫ ∞

0

dz z3

z2 + δ2

d2

dz2

1

ez − 1
. (53)

The latter integral may be evaluated by writing it as an integral along the entire z

axis, and closing the contour in the upper half plane, thereby encircling the poles

at iδ and at 2inπ, where n is a positive integer. The residue theorem then gives for

that integral

−2π

δ3
− ζ(3)

2π2
, (54)

so once again, comparing with Eq. (50), we obtain the same finite part as in Eq. (52).

In this way of proceeding, then, in addition to the finite part found before in

Eq. (52), we obtain divergent terms

ED
div =

1

64a2δ
+

1

8πa2δ2
+

1

4a2δ3
, (55)

which, with the previous interpretation for δ, implies terms in the energy propor-

tional to L/a (shape), L (length), and aL (area), respectively, and are therefore

renormalizable. Had a logarithmic divergence occurred (as does occur in weak cou-

pling in O(λ3)) such a renormalization would be impossible. However, see below!

6. Local Energy Density

We compute the energy density from the stress tensor (11), or

〈T 00〉 =
1

2i

(

∂0∂0′ + ∇ · ∇′
)

G(x, x′)

∣

∣

∣

∣

x′=x

− ξ

i
∇2G(x, x)

=
1

16π3i

∫ ∞

−∞

dk

∫ ∞

−∞

dω
∞
∑

m=−∞

[

(

ω2 + k2 +
m2

r2
+ ∂r∂r′

)

g(r, r′)

∣

∣

∣

∣

r′=r

− 2ξ
1

r
∂rr∂rg(r, r)

]

. (56)

We omit the free part of the Green’s function (10), since that corresponds to the

vacuum energy in the absence of the cylinder. When we insert the remainder of the

Green’s function, we obtain the following expression for the energy density outside

the cylindrical shell:

u(r) = − λ

16π3

∫ ∞

−∞

dζ

∫ ∞

−∞

dk

∞
∑

m=−∞

I2
m(κa)

1 + λIm(κa)Km(κa)

×
[

(

2ω2 + κ2 +
m2

r2

)

K2
m(κr) + κ2K ′2

m(κr)

− 2ξ
1

r

∂

∂r
r

∂

∂r
K2

m(κr)

]

, r > a. (57)
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The factor in square brackets can be easily seen to be, from the modified Bessel

equation,

2ω2K2
m(κr) +

1 − 4ξ

2

1

r

∂

∂r
r

∂

∂r
K2

m(κr). (58)

For the interior region, r < a, we have the corresponding expression for the energy

density with Im ↔ Km.

6.1. Total and surface energy

We first need to verify that we recover the expression for the energy found before.

So let us integrate the above expression over the region exterior of the cylinder,

and the corresponding interior expression over the inside region. The second term

in Eq. (58) is a total derivative, while the first may be integrated according to the

integrals given in Eq. (16). In fact that term is exactly that evaluated above. The

result is
∫

(dr)u(r) = − 1

8πa2

∞
∑

m=−∞

∫ ∞

0

dxx2 d

dx
ln [1 + λIm(x)Km(x)]

− (1 − 4ξ)
λ

4πa2

∫ ∞

0

dxx
∞
∑

m=−∞

Im(x)Km(x)

1 + λIm(x)Km(x)
. (59)

The first term is the total energy (14), but what do we make of the second term?

In strong coupling, it would represent a constant that should have no physical

significance (a contact term—it is independent of a if we revert to the physical

variable κ as the integration variable).

In general, however, there is another contribution to the total energy, residing

precisely on the singular surface. This surface energy is given in general by22,24–28

E = −1 − 4ξ

2i

∮

S

dS · ∇G(x, x′)

∣

∣

∣

∣

x′=x

, (60)

which turns out to be the negative of the second term in
∫

(dr)u(r) given in Eq. (59).

This is an example of the general theorem
∫

(dr)u(r) + E = E, (61)

that is, the total energy E is the sum of the integrated local energy density and the

surface energy. A consequence of this theorem is that the total energy, unlike the

local energy density, is independent of the conformal parameter ξ.

6.2. Surface divergences

We now turn to an examination of the behavior of the local energy density as r

approaches a from outside the cylinder. To do this we use the uniform asymptotic
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expansion (21). Let us begin by considering the strong-coupling limit, a Dirich-

let cylinder. If we stop with only the leading asymptotic behavior, we obtain the

expression (z = κr/m)

u(r) ∼ − 1

8π3

∫ ∞

0

dκ κ
∞
∑

m=−∞

e−mχ

[

−κ2 πt

2m
+ 2(1 − 4ξ)κ2 π

2mt

1

z2

]

, (λ → ∞)

(62)

where

χ = −2
[

η(z) − η
(

z
a

r

)]

, (63)

and we have carried out the “angular” integral as in Eq. (18). Here we ignore the

difference between r and a except in the exponent, and we now replace κ by mz/a.

Close to the surface,

χ ∼ 2

t

r − a

r
, (64)

and we carry out the sum over m according to

2

∞
∑

m=1

m3e−mχ ∼ −2
d3

dχ3

1

χ
=

12

χ4
∼ 3

4

t4r4

(r − a)4
. (65)

Then the energy density behaves, as r → a+,

u(r) ∼ − 1

16π2

1

(r − a)4
(1 − 6ξ). (66)

This is the universal surface divergence first discovered by Deutsch and Candelas.2

It therefore occurs, with precisely the same numerical coefficient, near a Dirich-

let plate19 or a Dirichlet sphere.29 It is utterly without physical significance (in

the absence of gravity), and may be eliminated with the conformal choice for the

parameter ξ, ξ = 1/6.

6.3. Conformal surface divergence

We will henceforth make this conformal choice. Then the leading divergence depends

upon the curvature. This was also worked out by Deutsch and Candelas;2 for the

case of a cylinder, that result is

u(r) ∼ 1

720π2

1

r(r − a)3
, r → a+, (67)

exactly 1/2 that for a Dirichlet sphere of radius a. To get this result, we keep the

1/m corrections in the uniform asymptotic expansion, and the next term in χ:

χ ∼ 2

t

r − a

r
+ t

(

r − a

r

)2

. (68)
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6.4. Weak coupling

Let us now expand the energy density (57) for small coupling,

u(r) = − λ

16π3

∫ ∞

−∞

dζ

∫ ∞

−∞

dk

∞
∑

m=−∞

I2
m(κa)

∞
∑

n=0

(−λ)nIn
m(κa)Kn

m(κa)

×
{

[

−κ2 + (1 − 4ξ)

(

κ2 +
m2

r

)]

K2
m(κr) + (1 − 4ξ)κ2K ′2

m(κr)

}

. (69)

If we again use the leading uniform asymptotic expansions for the Bessel functions

we obtain the expression for the leading behavior of the term of order λn,

u(n)(r) ∼ 1

8π2r4

(

−λ

2

)n ∫ ∞

0

dz z
∞
∑

m=1

m3−ne−mχtn−1(t2 + 1 − 8ξ). (70)

The sum on m is asymptotic to

∞
∑

m=1

m3−ne−mχ ∼ (3 − n)!

(

tr

2(r − a)

)4−n

, r → a+, (71)

so the most singular behavior of the order λn term is, as r → a+,

u(n)(r) ∼ (−λ)n (3 − n)! (1 − 6ξ)

96π2rn(r − a)4−n
. (72)

This is exactly the result found for the weak-coupling limit for a δ-sphere29 and for

a δ-plane,22 so this is a universal result, without physical significance. It may be

made to vanish by choosing the conformal value ξ = 1/6.

6.5. Conformal weak coupling

With this conformal choice, once again we must expand to higher order. Besides

the corrections noted in Sec. 6.3, we also need

t̃ ≡ t(za/r) ∼ t + (t − t3)
r − a

r
, r → a, (73)

Then a quite simple calculation gives

u(n) ∼ (−λ)n (n − 1)(n + 2)Γ(3 − n)

2880π2rn+1(r − a)3−n
, r → a+, (74)

which is analytically continued from the region 1 ≤ Ren < 3. Remarkably, this

is exactly one-half the result found in the same weak-coupling expansion for the

leading conformal divergence outside a sphere.29 Therefore, like the strong-coupling

result, this limit is universal, depending on the sum of the principal curvatures of the

interface. Note this vanishes for n = 1, so in every case this divergence is integrable.
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7. Cylindrical Shell of Finite Thickness

We now regard the shell (annulus) to have a finite thickness δ. We consider the

potential

Lint = − λ

2a
φ2σ(r), (75)

where

σ(r) =







0, r < a−,

h, a− < r < a+,

0, a+ < r.

(76)

Here a± = a±δ/2, and we set hδ = 1. In the limit as δ → 0 we recover the δ-function

potential. As for the sphere29 it is straightforward to find the Green’s function for

this potential. In fact, the result may be obtained from the reduced Green’s function

given in Ref. 29 by an evident substitution. Here, we content ourselves by stating

the result for the Green’s function in the region of the annulus, a− < r, r′ < a+:

gm(r, r′) = Im(κ′r<)Km(κ′r>) + AIm(κ′r)Im(κ′r′)

+ B[Im(κ′r)Km(κ′r′) + Km(κ′r)Im(κ′r′)] + CKm(κ′r)Km(κ′r′),

(77)

where κ′ =
√

κ2 + λh/a. The coefficients appearing here are

A = − 1

Ξ
[κI ′m(κa−)Km(κ′a−) − κ′Im(κa−)K ′

m(κ′a−)]

×[κK ′

m(κa+)Km(κ′a+) − κ′Km(κa+)K ′

m(κ′a+)], (78a)

B =
1

Ξ
[κI ′m(κa−)Im(κ′a−) − κ′Im(κa−)I ′m(κ′a−)]

×[κK ′

m(κa+)Km(κ′a+) − κ′Km(κa+)K ′

m(κ′a+)], (78b)

C = − 1

Ξ
[κI ′m(κa−)Im(κ′a−) − κ′Im(κa−)I ′m(κ′a−)]

×[κK ′

m(κa+)Im(κ′a+) − κ′Km(κa+)I ′m(κ′a+)], (78c)

where the denominator is

Ξ = [κI ′m(κa−)Km(κ′a−) − κ′Im(κa−)K ′

m(κ′a−)]

×[κK ′

m(κa+)Im(κ′a+) − κ′Km(κa+)I ′m(κ′a+)]

− [κI ′m(κa−)Im(κ′a−) − κ′Im(κa−)I ′m(κ′a−)]

×[κK ′

m(κa+)Km(κ′a+) − κ′Km(κa+)K ′

m(κ′a+)]. (79)
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7.1. Energy within the shell

The general expression for the energy density within the shell is given in terms of

these coefficients by

u(r) =
1

8π2

∫ ∞

0

dκ κ

[

−κ2 + (1 − 4ξ)
1

r

∂

∂r
r

∂

∂r

]

×
∞
∑

m=−∞

[AI2
m(κ′r) + CK2

m(κ′r) + 2BKm(κ′r)Im(κ′r)]. (80)

7.2. Leading surface divergence

The above expressions are somewhat formidable. Therefore, to isolate the most di-

vergent structure, we replace the Bessel functions by the leading uniform asymptotic

behavior (21). A simple calculation implies

A ∼ t+ − t′+
t+ + t′+

e−2mη′

+ , (81a)

B ∼ t+ − t′+
t+ + t′+

t− − t′−
t− + t′−

e2m(η′

−
−η′

+), (81b)

C ∼ t− − t′−
t− + t′−

e2mη′

− , (81c)

where t+ = t(z+), η′
− = η(z′−), z′− = κ′a−/m, etc. If we now insert this approxima-

tion into the form for the energy density, we find

u = 〈T 00〉 =
1

8π2a4
+

2

∞
∑

m=1

m

∫ ∞

0

dz+ z+t′r

×
{[

t+ − t′+
t+ + t′+

e2m(η′

r
−η′

+) +
t− − t′−
t− + t′−

e2m(−η′

r
+η′

−
)

]

×
[

m2z2
+

2
(1 − 8ξ) +

(

λha2
+

a
+

m2a2
+

r2

)

(1 − 4ξ)

]

− m2z2
+

t+ − t′+
t+ + t′+

t− − t′−
t− + t′−

e2m(η′

−
−η′

+)

}

. (82)

If we are interested in the surface divergence as r approaches the outer radius

a+ from within the annulus, the dominant term comes from the first exponential

factor only. Because we are considering the limit λha ≪ m2, we have

t′+ ≈ t+

(

1 − λh

2m2

a2
+

a
t2+

)

, (83)

and we have

u ∼ − λh/a

32π2a2
+

∞
∑

m=1

m

∫ ∞

0

dz zt(1 − 8ξ + t2)e2m(η′

r
−η′

+). (84)
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The sum over m is carried out according to Eq. (71), or

∞
∑

m=1

me2m(η′

r
−η′

+) ∼
(

rt′r
2(r − a+)

)2

, (85)

and the remaining integrals over z are elementary. The result is

u ∼ λh

96π2a

1 − 6ξ

(r − a+)2
, r → a+, (86)

the expected universal divergence of a scalar field near a surface of discontinuity,30

without significance, which may be eliminated by setting ξ = 1/6.

7.3. Surface energy

Now we want to establish that the surface energy E (60) is the same as the integrated

local energy density in the annulus when the limit δ → 0 is taken. To examine this

limit, we consider λh/a ≫ κ2. So we apply the uniform asymptotic expansion for the

Bessel functions of κ′ only. We must keep the first two terms in powers of κ ≪ κ′:

Ξ ∼ −κ′2 Im(κa−)Km(κa+)

mz′−z′+
√

t′−t′+
sinhm(η′

− − η′

+)

−κ′κ

m

[

1

z′+

√

t′−
t′+

I ′m(κa−)Km(κa+) − 1

z′−

√

t′+
t′−

Im(κa−)K ′

m(κa+)

]

× coshm(η′

− − η′

+). (87)

Because we are now regarding the shell as very thin,

η′

− − η′

+ ≈ − δ

a

1

t′
, (88)

where

t′ ∼ 1

z′
∼ m√

λha
, (89)

using the Wronskian (7) we get the denominator

Ξ ∼ − 1

a2
[1 + λIm(κa)Km(κa)]. (90)

Then we immediately find the interior coefficients:

A ∼ π

2

√
λha

Im(κa)Km(κa)

1 + λIm(κa)Km(κa)
e−2mη′

, (91a)

B ∼ 1

2

√
λha

Im(κa)Km(κa)

1 + λIm(κa)Km(κa)
, (91b)

C ∼ 1

2π

√
λha

Im(κa)Km(κa)

1 + λIm(κa)Km(κa)
e2mη′

. (91c)
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7.4. Identity of shell energy and surface energy

We now insert this in the expression for the energy density (80) and keep only the

largest terms, thereby neglecting κ2 relative to λh/a. This gives a leading term

proportional to h, which when multiplied by the area of the annulus 2πaδ gives for

the energy in the shell

Eann ∼ (1 − 4ξ)
λ

4πa2

∞
∑

m=−∞

∫ ∞

0

dκa κa
Im(κa)Km(κa)

1 + λIm(κa)Km(κa)
, (92)

which is exactly the form of the surface energy E given by the negative of the second

term in the integrated energy density (59).

7.5. Renormalizability of surface energy

In particular, note that the term in E of order λ3 is, for the conformal value ξ = 1/6,

exactly equal to that term in the total energy E in Eq. (46):

E
(3) = E(3). (93)

This means that the divergence encountered in the global energy is exactly ac-

counted for by the divergence in the surface energy, which would seem to provide

strong evidence in favor of the renormalizablity of that divergence.

8. Conclusion

The work reported here and in Refs. 20,29 represents a significant advance in under-

standing the divergence structure of Casimir self-energies. We have shown that the

surface energy of a δ-function shell potential is in fact the integrated local energy

density contained within the shell when the shell is given a finite thickness. That

surface energy contains the entire third-order divergence in the total Casimir energy.

The local Casimir energy diverges as the shell is approached, but that divergence is

integrable, so it yields a finite contribution to the total energy. The identification of

the divergent part of the total energy with that associated with the surface strongly

suggests that this divergence can be absorbed in a renormalization of parameters

describing the background potential.

Challenges yet remain. This renormalization procedure needs to be made precise.

Further, we must make more progress in understanding the sign (and for cylindrical

geometries, the vanishing) of the total Casimir self-energy. And, of course, we must

understand the implications of surface divergences on the coupling to gravity. Work

is proceeding in all these directions.
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