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A multiple scattering formulation is used to calculate the force, arising from fluctuating scalar
fields, between distinct bodies described by δ-function potentials, so-called semitransparent bodies.
(In the limit of strong coupling, a semitransparent boundary becomes a Dirichlet one.) We obtain
expressions for the Casimir energies between disjoint parallel semitransparent cylinders and between
disjoint semitransparent spheres. In the limit of weak coupling, we derive power series expansions for
the energy, which can be exactly summed, so that explicit, very simple, closed-form expressions are
obtained in both cases. The proximity force theorem holds when the objects are almost touching,
but is subject to large corrections as the bodies are moved further apart.
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Multiple scattering methods for calculating Casimir
(quantum vacuum) energies between bodies date back to
the famous papers of Balian and Duplantier [1–3]. More
recently, Emig and collaborators [4, 5] have published a
series of papers, using closely related methods, to calcu-
late numerically forces between distinct bodies, starting
from periodically deformed ones [6]. The methods are
developed further in papers by Bulgac, Marierski, and
Wirzba [7], who obtain results for the interaction of two
spheres, or a sphere and a plate (for Dirichlet bound-
ary conditions), and by Bordag [8, 9], who has precisely
quantified the first correction to the proximity force ap-
proximation (PFA) both for a cylinder and a sphere near
a plane. Dalvit et al. [10, 11] use the argument princi-
ple to calculate the interaction between conducting cylin-
ders with parallel axes when one cylinder is inside the
other. Recently, there appeared papers concerning “ex-
act” methods of calculating Casimir energies or forces be-
tween arbitrary distinct bodies by Emig, Graham, Jaffe,
and Kardar [12, 13]. Most explicitly, an earlier drafted
paper by Kenneth and Klich [14] appeared which shows
that the basis of the latter approach lies in the Lippmann-
Schwinger formulation of scattering theory [15].

We will now proceed to restate the multiple scattering
technique, in a simple, straightforward way, and apply
it to various situations, all characterized by δ-function
potentials.

The general formula for the Casimir energy (for sim-
plicity here we restrict attention to a massless scalar field)
is [16]

E =
i

2τ
Tr lnG →

i

2τ
Tr lnGG−1

0 , (1)

where τ is the “infinite” time that the configuration ex-
ists, and G is the Green’s function in the presence of a
potential V satisfying (matrix notation)

(−∂2 + V )G = 1, (2)

subject to some boundary conditions at infinity. (Details
will be supplied elsewhere [17].) In the second form of
Eq. (1) we have subtracted the energy of the vacuum,
by inserting the free Green’s function G0, which satis-
fies, with the same boundary conditions as G, the free
equation

−∂2G0 = 1. (3)

Now we define the T -matrix (note that our definition of
T differs by a factor of 2 from that in Ref. [12])

T = S − 1 = V (1 + G0V )−1. (4)

We then follow standard scattering theory [15], as re-
viewed in Kenneth and Klich [14]. If the potential has
two disjoint parts, V = V1 + V2, it is easy to derive the
following general expression for the interaction between
two bodies (potentials):

E12 = −
i

2τ
Tr ln(1 − G0T1G0T2), (5)

where

Ti = Vi(1 + G0Vi)
−1, i = 1, 2. (6)

This form is exactly that given by Emig et al. [12], and
by Kenneth and Klich [14].

Elsewhere [17] we will show that this formulation al-
lows us to rederive the Casimir interaction between two
semitransparent plates, and the self-energy of the semi-
transparent sphere.

2 + 1 SPATIAL DIMENSIONS

We now proceed to apply this method to the interac-
tion between bodies, starting with a 2 + 1 dimensional
version, which allows us to describe, for example, cylin-
ders with parallel axes. Let the distance between the
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centers of the bodies be R. Then we perform a Fourier
analysis of the reduced Green’s function, defined by

G0(R + r
′ − r) =

∫

dkz

2π
eikz(z−z′)g0(R⊥ + r

′
⊥ − r⊥),

(7)
where the reduced Green’s function has the expansion
(as long as the two potentials do not overlap)

g0 =
∑

m,m′

Im(κr)eimφIm′(κr′)e−im′φ′

g̃0
m,m′(κR), (8)

where ω = iζ and κ2 = k2
z + ζ2. The Fourier-Bessel

transform of the reduced Green’s function is

g̃0
m,m′(κR) =

(−1)m′

2π
Km−m′(κR). (9)

Thus we can derive an expression for the interaction be-
tween two bodies, in terms of discrete matrices,

Eint

L
=

1

8π2

∫

dζ dkz ln det
(

1 − g̃0t1g̃
0⊤t2

)

, (10)

where ⊤ denotes transpose, and where the t matrix ele-
ments are given by

tmm′ =

∫

(dr⊥)

∫

(dr′⊥)Im(κr)e−imφIm′(κr′)eim′φ′

T.

(11)
Consider, as an example, two parallel semitransparent

cylinders, of radii a and b, respectively, lying outside each
other, described by the potentials

V1 = λ1δ(r − a), V2 = λ2δ(r
′ − b), (12)

with the separation R between the axes satisfying R >
a + b. It is easy to work out the scattering matrix:

(t1)mm′ = 2πλ1aδmm′

I2
m(κa)

1 + λ1aIm(κa)Km(κa)
. (13)

Then the Casimir energy E per unit length L is

E

L
=

1

4π

∫ ∞

0

dκ κ tr ln(1 − A), (14)

where A = B(a)B(b), in terms of the matrices

Bmm′(a) = Km+m′(κR)
λ1aI2

m′(κa)

1 + λ1aIm′(κa)Km′(κa)
. (15)

As a check, it is easy to reproduce the result derived
by Bordag [8] for a cylinder in front of a plane, using an
evident image method.

In weak coupling, the formula (14) for the interaction
energy between the cylinders is

E

L
= −

λ1λ2ab

4πR2

∞
∑

m,m′=−∞

×
∫ ∞

0

dxxK2
m+m′(x)I2

m(xa/R)I2
m′(xb/R).(16)
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FIG. 1: Plotted is the ratio of the exact interaction energy
(19) of two weakly-coupled cylinders to the proximity force
approximation (20) as a function of the cylinder radius a for
a = b.

It is straightforward to develop a power series in a/R
for the interaction between semitransparent cylinders.
One merely exploits the small argument expansion for
the modified Bessel functions Im(xa/R) and Im′(xb/R).
The result is amazingly simple:

E

L
= −

λ1aλ2b

4πR2

1

2

∞
∑

n=0

( a

R

)2n

Pn

(

b

a

)

, (17)

where in terms of the binomial coefficients

Pn

(

b

a

)

=
n
∑

k=0

(

n
k

)2 (
b

a

)2k

. (18)

Remarkably, it is possible to perform the sums [18], so
we obtain the following closed form for the interaction
between two weakly-coupled cylinders:

E

L
= −

λ1aλ2b

8πR2

[(

1 −
(

a + b

R

)2
)(

1 −
(

a − b

R

)2
)]−1/2

.

(19)
We note that in the limit R− a− b = d → 0, d being the
distance between the closest points on the two cylinders,
we recover the proximity force theorem in this case,

V (d) = −
λ1λ2

32π

√

2ab

R

1

d1/2
, d ≪ a, b. (20)

In Figs. 1–2 we compare the exact energy (19) with the
proximity force approximation (20). Evidently, the for-
mer approach the latter when the sum of the radii a + b
of the cylinders approaches the distance R between their
centers. The rate of approach is linear (with slope 3/2)
for the equal radius case, but with slope b/4a when a ≪ b.

3-DIMENSIONAL FORMALISM

The three-dimensional formalism is very similar.
Again, details will be supplied in Ref. [17]. Let us proceed



3

0.000 0.002 0.004 0.006 0.008 0.010
0.0

0.2

0.4

0.6

0.8

1.0

a�R

E
M

S
�P

FA

FIG. 2: Plotted is the ratio of the exact interaction energy
(19) of two weakly-coupled cylinders to the proximity force
approximation (20) as a function of the cylinder radius a for
b/a = 99.

to write down the expression for the interaction between
two semitransparent cylinders:

E =
1

4π

∫ ∞

0

dζ tr ln(1 − A), (21)

where the matrix

Alm,l′m′ = δm,m′

∑

l′′

Bll′′m(a)Bl′′l′m(b) (22)

is given in terms of the quantities [the three-j symbols
(Wigner coefficients) here vanish unless l+ l′+ l′′ is even]

Bll′m(a) =
i
√

π√
2ζR

i−l−l′
√

(2l + 1)(2l′ + 1)
∑

l′′

(2l′′ + 1)

(

l l′ l′′

0 0 0

)(

l l′ l′′

m −m 0

)

Kl′′+1/2(ζR)λ1aI2
l′+1/2(ζa)

1 + λ1aIl′+1/2(ζa)Kl′+1/2(ζa)
. (23)

For strong coupling, this result reduces to that found by Bulgac et al. [7] for Dirichlet spheres, and recently generalized
by Emig et al. [13] for Robin boundary conditions.

For weak coupling, a major simplification results because ot the orthogonality property (l ≤ l′),

l
∑

m=−l

(

l l′ l′′

m −m 0

)(

l l′ l′′′

m −m 0

)

= δl′′l′′′
1

2l′′ + 1
. (24)

Then the formula for the energy of interaction between the two spheres is

E = −
λ1aλ2b

4R

∫ ∞

0

dx

x

∑

ll′l′′

(2l + 1)(2l′ + 1)(2l′′ + 1)

(

l l′ l′′

0 0 0

)2

K2
l′′+1/2(x)I2

l+1/2(xa/R)I2
l′+1/2(xb/R). (25)

There is no infrared divergence because for small x the
product of Bessel functions goes like x2(l+l′−l′′)+1, and
l′′ ≤ l + l′ because of the triangle property of the 3j-
symbols.

Again, it is straightforward to carry out a power series
expansion in a/R, which turns out to have a simple form

E = −
λ1aλ2b

8R

ab

R2

∞
∑

n=0

1

n + 1

n
∑

m=0

(

2n + 2
2m + 1

)

×
( a

R

)2n
(

b

a

)2m

. (26)

Once more, it can be recognized as the following closed
form:

E =
λ1aλ2b

16πR
ln

(

1 −
(

a
R + b

R

)2

1 −
(

a
R − b

R

)2

)

. (27)

Again, when d = R − a − b ≪ a, b, the proximity force
theorem is reproduced:

V (d) ∼
λ1λ2ab

16πR
ln(d/R), d ≪ a, b. (28)

However, as Figs. 3, 4 demonstrate, the approach is not
very smooth, even for equal-sized spheres. The ratio of
the energy to the PFA is

E

V
= 1 +

ln[(1 + α)2/2α]

ln d/R
, d ≪ a, b, (29)

for b/a = α. Truncating the power series (26) at n = 100
would only begin to show the approach to the PFA limit.
The error in using the PFA between spheres can be very
substantial.
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FIG. 3: Plotted is the ratio of the exact interaction energy
(27) of two weakly-coupled spheres to the proximity force ap-
proximation (28) as a function of the cylinder radius a for
a = b. Shown also is the power series expansion (26), trun-
cated at n = 100, indicating that it is necessary to include
very high powers to capture the proximity force limit.
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FIG. 4: Plotted is the ratio of the exact interaction energy
(27) of two weakly-coupled spheres to the proximity force ap-
proximation (28) as a function of the cylinder radius a for
b/a = 49.

CONCLUSION

We have used standard multiple scattering techniques
to calculate the Casimir interaction between two semi-
transparent (δ-function) spheres and between two semi-
transparent parallel cylinders. When the coupling con-
stant is weak, we are able to sum the power series ex-
pansion in a/R exactly, and obtain a closed form for the
Casimir interaction energy. This energy reduces to the
proximity force limit when the bodies are very close to-
gether, but in general, the PFA does a poor job in describ-
ing the interaction. These exact results represent the first
known exact closed-form results for the Casimir interac-
tion between two bodies which are not plane surfaces.

More details and examples will be given in Ref. [17].
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