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Abstract
There has been an ongoing controversy concerning the Casimir effect between metallic plates,

which has now broadened to include semiconductors and dielectrics including small, but nonzero,

conductivity. To help address such concerns, we here re-examine general issues involving the

temperature and dispersion effects in real materials. We begin by reconsidering the free energy

and internal energy for ideal metallic plates separated by a dielectric medium, and show that

the results agree with the nondispersive electromagnetic energy. This raises the question of how

properly to deal with dispersion, where the energy density should be described by the well-known

expression involving d[ωε(ω)]/dω. We show that the derivative of the permittivity with respect to

frequency should not appear in the expression for the Casimir energy. As a final topic, we go on to

consider an anomaly, associated with local surface divergences, encountered in the calculation of the

Casimir energy for higher spacetime dimensions, D > 4, essentially generalizing recent calculations

of Alnes et al. [J. Phys. A: Math. Theor. 40, F315 (2007)] to the case of a medium-filled cavity

between two hyperplanes.
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I. INTRODUCTION

For many years, the Casimir effect [1] was a theoretical curiosity, although it had evident
applications to van der Waals forces [2] and models of hadrons [3]. The Casimir formula
for the quantum vacuum force between conducting plates was generalized to dielectrics by
Lifshitz [4], which was verified at the 1% level by Sabisky and Anderson [5].

But the renaissance in studies of the Casimir effect began in 1997 with the work of
Lamoreaux [6]. He measured the Casimir force between a conducting plate and a spherical
lens, which through the proximity force approximation [7–9], agreed with expectations at
something like the 5% level. (The accuracy of this measurement remains under some dispute,
because various corrections, such as the effects of surface roughness, patch potentials, and
finite conductivity, were not adequately taken into account.) In subsequent years, a variety
of experiments were carried out, some of much greater accuracy and at considerably shorter
distances, down to less than 100 nm [10–19], which have incorporated various corrections
[20]. The zero-temperature Casimir-Lifshitz theory seems to have been confirmed to 1%
accuracy over a range from 100 nm to a few micrometers.

The major controversy in this subject lies in the temperature dependence of the Casimir
force between real metal surfaces. Although an ambiguity in the process of extracting
this dependence was recognized early, it was resolved with a prescription [21]. Because of
inaccessibility of the effect to precise experiments, it was not reconsidered until the modern
era, when Boström and Sernelius [22] recognized that this prescription could not be correct,
and that necessarily the transverse electric reflection coefficient at zero frequency must vanish
for metals. This led to a reduction by a factor of two in the prediction for the slope of the
linear high-temperature behavior (which would only be visible in experiments carried out
at several microns, where the Casimir force is very small), but it would predict a new linear
temperature term at low temperatures, resulting in a 15% correction to the result found by
Lamoreaux. Lamoreaux believes that his experiment could not be in error to this extent
[23]. More heatedly, Mostepanenko and collaborators have insisted that this behavior is
inconsistent with thermodynamics (the Nernst heat theorem), because it would predict, for
an ideal metal, that the free energy has a linear temperature term at low temperature, and
hence that the entropy would not vanish at zero temperature [24, 25]. Moreover, they assert
that the precision Purdue experiments, which claim better than 1% accuracy at distances
down to 60 nm, rule out the linear temperature term in the low temperature expansion [17].

We and others have responded that real metals do not exhibit this thermodynamic in-
consistency, and that most probably the experiments are not so accurate as claimed [26–28].
The situation is summarized in recent reviews [29, 30]. In particular, the lack of a ther-
modynamic inconsistency has been conclusively demonstrated [31, 32], by showing that the
free energy for a Casimir system made from real metal plates has a quadratic temperature
dependence at low temperature.

Further evidence for the validity of the notion of excluding the TE zero mode for met-
als comes from the recent work of Buenzli and Martin [33], corroborating earlier work by
these authors and others [34, 35], who show from a microscopic viewpoint that the high-
temperature behavior of the Casimir force is half that of an ideal metal, a rather conclusive
demonstration that the TE zero mode is not present.

Evidently, it is appropriate to review theoretical underpinnings. In this paper, we first
re-examine the temperature dependence of the Casimir energy for ideal metal plates, and
establish the connection between the free energy, internal energy, and the electromagnetic
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energy (Secs. II–IV). The question of dispersion is looked at anew (Sec. V). As a third point,
we discuss in Sec. VI an anomaly encountered in the calculation of the Casimir energy in
higher-dimensional spacetimes, D > 4, reflecting the breakdown of conformal symmetry
associated with surface divergences in the local energy density recently found by Alnes et

al. [36], here generalized to the case of a medium-filled cavity between two hyperplanes.

II. FREE ENERGY F

Consider the usual Casimir configuration, namely two infinitely large plates situated at
z = 0 and z = a, with a homogeneous and isotropic medium in between. We take this
intermediate medium to have permittivity ε and permeability µ. The medium to the left
(z < 0) is taken to have material constants ε1, µ1, and the medium to the right (z > a) is
taken to have material constants ε2, µ2. The free energy F per unit surface is

F =
1

2πβ

∞
∑

m=0

′

∫ ∞

nζm

κ3dκ3

[

ln(1 − r2
TEe−2κ3a) + ln(1 − r2

TMe−2κ3a)
]

, (2.1)

where n =
√

εµ is the refractive index of the intervening medium, β = 1/T, ζm =
2πm/β, and κ2

i = k2
⊥ + εiµiζ

2 for i = 1, 2, 3 (the index i = 3 refers to the intermediate
region). The prime on the summation sign means that the m = 0 term is counted with
half-weight. The squared reflection coefficients are

r2
TE =

(

κ1µ3 − κ3µ1

κ1µ3 + κ3µ1

)2

, (2.2a)

r2
TM =

(

κ1ε3 − κ3ε1

κ1ε3 + κ3ε1

)2

. (2.2b)

In the following we assume for simplicity the ideal metal (IM) model, for which r2
TE = r2

TM =
1 for all m, including m = 0. (The breakdown of this assumption for the rTE coefficient at
m = 0 is the crux of the temperature controversy for real metals.) Moreover, as mentioned,
ε3 ≡ ε, µ3 ≡ µ. The free energy thereby becomes

F =
1

πβ

∞
∑

m=0

′

∫ ∞

nζm

κ3dκ3 ln
(

1 − e−2κ3a
)

, (2.3)

for arbitrary T .

III. INTERNAL ENERGY U

The internal energy per unit area is constructed from the thermodynamical formula

U =
∂(βF )

∂β
. (3.1)

From Eq. (2.3) it is apparent that β appears only in the lower limit of the integral in the
expression for βF . Since ∂ζm/∂β = −2πm/β2, we get

U =
∑

m

∂ζm

∂β

δ(βF )

δζm
=

4πn2

β3

∞
∑

m=0

′m2 ln
(

1 − e−αm
)

, (3.2)
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where

α =
4πna

β
= 4πnaT. (3.3)

The m = 0 term does not contribute. One way of processing the expression (3.2) is to
expand the logarithm,

m2 ln
(

1 − e−αm
)

= −
∞

∑

k=1

1

k
m2e−αkm, (3.4)

and then sum over m,

∞
∑

m=1

m2e−αkm =
1

α2

∂2

∂k2

e−αk

1 − e−αk
=

coth(2πnkaT )

4 sinh2(2πnkaT )
. (3.5)

Then,

U = −πn2T 3
∞

∑

m=1

1

m

coth(2πnmaT )

sinh2(2πnmaT )
. (3.6)

When n = 1, this agrees with Eq. (18) of Ref. [37]. The expansion (3.6) is most convenient
at high temperatures, aT ≫ 1. By including only the m = 1 term, one gets

U = −4πn2T 3e−4πnaT , aT ≫ 1. (3.7)

It is apparent that U → 0 when T → ∞. This is as we should expect physically: The Casimir
energy measures the change in energy induced by the boundaries, and these constraints
decrease in importance when the classical thermal energy becomes high.

To get a convenient expression at low T one may perform a Poisson resummation, along
the same lines as discussed in Ref. [21]. Define the quantity b(m) by

b(m) = m2 ln
(

1 − e−α|m|
)

, (3.8)

for all m. In accordance with Eq. (3.2) we thus have

U = 2πn2T 3
∞

∑

m=−∞

b(m). (3.9)

Further, define c(q) as

c(q) =
1

2π

∫ ∞

−∞

b(x)e−iqxdx =
1

π

∫ ∞

0

x2 cos qx ln
(

1 − e−αx
)

dx. (3.10)

Then the Poisson formula says

∞
∑

m=−∞

b(m) = 2π

∞
∑

m=−∞

c(2πm) = 2

∫ ∞

0

x2 ln
(

1 − e−αx
)

dx

+ 4
∞

∑

m=1

∫ ∞

0

x2 cos(2πmx) ln
(

1 − e−αx
)

dx. (3.11)
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The first term is evaluated as
∫ ∞

0

x2 ln
(

1 − e−αx
)

dx = − π4

45α3
= − π

2880(naT )3
. (3.12)

In the second term in Eq. (3.11) we may perform a partial integration,

∫ ∞

0

x2 cos(2πmx) ln
(

1 − e−αx
)

dx = − α

2πm

∫ ∞

0

x2 sin(2πmx)

eαx − 1
dx

+
2α

(2πm)3

∫ ∞

0

sin(2πmx)

eαx − 1
dx − 2α

(2πm)2

∫ ∞

0

x cos(2πmx)

eαx − 1
dx. (3.13)

We may here use the following formulas (Ref. [38], sec. 3.951), which hold for b > 0,

∫ ∞

0

x2m sin bx

ex − 1
dx = (−1)m ∂2m

∂b2m

[

π

2
coth πb − 1

2b

]

, (3.14a)

∫ ∞

0

x2m+1 cos bx

ex − 1
dx = (−1)m ∂2m+1

∂b2m+1

[

π

2
cothπb − 1

2b

]

, (3.14b)

and so we get

U = 2πn2T 3

[

− π

1440(naT )3
+

naT

π3

∞
∑

m=1

1

m4

{

− 3 +
πm

2naT
coth

πm

2naT

+

(

πm
2naT

)2

sinh2
(

πm
2naT

)

[

1 +
πm

2naT
coth

πm

2naT

]

}

]

. (3.15)

This expression, in principle valid for all temperatures, is most convenient to use when
aT → 0. Then, the expression between curly braces becomes approximately

{ } → −3 +
πm

2naT
, (3.16)

where the corrections are exponentially small. Now using that
∑∞

1 m−4 = π4/90,
∑∞

1 m−3 =
ζ(3), we get

U = − π2

720na3

[

1 − 720

(

naT

π

)3

ζ(3) + 48(naT )4

]

, aT ≪ 1. (3.17)

Again, this agrees with the low-temperature expression obtained earlier, for instance in
Ref. [26], when n = 1. It is to be noted that U , as well as the corresponding low-temperature
expression for F ,

F = − π2

720na3

[

1 + 360

(

naT

π

)3

ζ(3) − (2naT )4

]

, (3.18)

up to exponentially small corrections, contain a term that is independent of a, which means
that this term does not contribute to the force between the plates.
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IV. ELECTROMAGNETIC ENERGY W—NONDISPERSIVE CASE

Now consider first the electromagnetic energy density w in the intermediate region 0 <
z < a. In this section we take the medium to be nondispersive. The classical expression for
the energy density w is

w =
1

2
ε(E2

z + E2
⊥) +

1

2
µ(H2

z + H2
⊥). (4.1)

Obviously it is the electromagnetic energy per unit area W = wa that is to be compared
with the thermodynamical energy U calculated above. (In this case it will turn out that
w is independent of position between the two media 1 and 2.) Quantum mechanically, the
product E2

z (r) is to be replaced by the expectation value 〈Ez(r)Ez(r
′)〉 in the limit when

r′ → r. Similarly for the other components. We assume first that T = 0. According to the
fluctuation-dissipation theorem in Fourier space we have

i〈Ei(r)Ek(r
′)〉ω = Im Γik(r, r

′; ω), (4.2a)

i〈Hi(r)Hk(r
′)〉ω =

1

µ2ω2
curlij curl′kl Im Γjl(r, r

′; ω), (4.2b)

where curlik ≡ ǫijk∂j , ǫijk being the Levi-Cività symbol. Further, Γ is the Green’s function
as defined by Schwinger et al. [21], in terms of a polarization source P,

E(x) =

∫

d4x′ Γ(x, x′) · P(x′), (4.3)

with

Γ(x, x′) =

∫ ∞

−∞

dω

2π
e−iωτ Γ(r, r′; ω), (4.4)

and τ = t − t′. Introducing a transverse Fourier transform,

Γ(r, r′; ω) =

∫

d2k⊥

(2π)2
eik⊥·(r−r′) gE(z, z′;k⊥, ω), (4.5)

we can write

gE
xx = −κ

ε

1

d
cosh κ(z − z′), (4.6a)

gE
yy =

µω2

κ

1

d
cosh κ(z − z′), (4.6b)

gE
zz =

k2
⊥

κε

1

d
cosh κ(z − z′), (4.6c)

where
d = e2κa − 1, κ2 = k2

⊥ − n2ω2. (4.7)

(Details are given in Ref. [39].) (Note that the notation is slightly different than that given
in Ref. [40].)

Defining the Fourier components 〈..〉ωk of the energy density according to

w =
1

2

∫ ∞

−∞

dω

2π

∫

d2k⊥

(2π)2
[ε〈E2〉ωk + µ〈H2〉ωk], (4.8)
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we first obtain for the electric part, letting z′ → z,

1

2
ε〈E2〉ωk =

1

i

ε

2
(gE

xx + gE
yy + gE

zz) =
n2ω2

iκ

1

d
. (4.9)

Then defining the magnetic counterpart gH
ik to the electric part gE

ik according to

gH
ik =

1

ω2
curlil curl′km gE

lm, (4.10)

we obtain

gH
xx = −µκ

d
cosh κ(z − z′), (4.11a)

gH
yy =

n2µω2

κ

1

d
cosh κ(z − z′), (4.11b)

gH
zz =

µk2
⊥

κ

1

d
cosh κ(z − z′). (4.11c)

Thus in the limit when z′ → z,

1

2
µ〈H2〉ωk =

1

i

1

2µ
(gH

xx + gH
yy + gH

zz) =
n2ω2

iκ

1

d
. (4.12)

The electric and magnetic contributions to the energy are equal, as we would expect. Now
adding the expressions (4.9) and (4.12) we obtain for the electromagnetic energy W = wa
per unit surface area, at zero temperature,

W = −n2a

π2

∫ ∞

0

dζ ζ2

∫ ∞

0

k⊥dk⊥

κd
. (4.13)

Here a standard frequency rotation ω → iζ has been performed. This expression can be
further processed by introducing new coordinates X = k⊥ = κ cos θ, Y = nζ = κ sin θ, with
κ =

√

k2
⊥ + n2ζ2. The integral over θ from 0 to π/2 is elementary, and we get

W = − 1

48π2na3

∫ ∞

0

z3dz

ez − 1
= − π2

720na3
, (4.14)

in accordance with Eqs. (3.17) and (3.18).
At arbitrary temperature T we replace ζ → ζm = 2πmT , and make the conventional

substitution
∫ ∞

0

dζ

2π
→ T

∞
∑

m=0

′, (4.15)

whereby we get

W = −8πn2aT 3
∞

∑

m=1

m2

∫ ∞

0

k⊥dk⊥

κd
, (4.16)

with κ =
√

k2
⊥ + (2πnmT )2. Alternatively, we may write

W = −4πn2T 3

∞
∑

m=1

m2

∫ ∞

αm

dz

ez − 1
, (4.17)
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where α = 4πnaT as before.
At high temperature, aT ≫ 1, it is easy to check that W agrees with U calculated

previously. We approximate the integral in Eq. (4.17) by
∫ ∞

αm
e−zdz = e−αm, and so get

W → −4πn2T 3e−4πnaT (4.18)

when m = 1, in agreement with Eq. (3.7).
We shall not delve further into a detailed study of the equality between W and U in the

case of arbitrary T . The equality should be clear on physical grounds, since we are dealing
with a closed thermodynamical system.

V. REMARKS ON THE DISPERSIVE CASE

Assume now that the medium in the region 0 < z < a is frequency dispersive, ε =
ε(ω), µ = µ(ω). The total energy density wdisp is known to be [41, 42]

wdisp =
1

2

∫ ∞

−∞

dω

2π

∫

d2k⊥

(2π)2

[

d(εω)

dω
〈E2〉ωk +

d(µω)

dω
〈H2〉ωk

]

. (5.1)

We can write this as a sum of two parts wI and wII , where wI is the same expression as in
Eq. (4.8) with ε → ε(ω), µ → µ(ω), and where

wII =
1

2

∫ ∞

−∞

dω

2π
ω

∫

d2k⊥

(2π)2

[

dε

dω
〈E2〉ωk +

dµ

dω
〈H2〉ωk

]

. (5.2)

Correspondingly, for the surface densities, Wdisp = WI + WII .
The first property to be noted in connection with Eq. (5.1) is that it is derived under

the assumption of negligible dissipation. Some dissipation is always present—this being a
consequence of Kramers-Kronig’s relations—but it is a legitimate approximation to neglect
it except in the neighborhood of eigenfrequencies in the cavity. This assumption means that
the relaxation frequency in the dispersion relation can be set equal to zero, and we may
adopt the usual dispersion relation for a dielectric,

ε(ω) = 1 +
ε0 − 1

1 − ω2/ω2
0

, µ = 1. (5.3)

In the case of a general dissipative medium, neither the energy nor the stress tensor are
derivable in terms of permittivity/permeability alone, and therefore cannot be given in a
general form using macroscopic methods. (This point is discussed in detail by Ginzburg
[43].)

Second, it is clear that the expression (5.1) is not intimately related to the Casimir effect
as such. It is more natural to consider the problem as belonging to classical electrodynamics,
namely a system of two conducting plates between which there are stationary electromag-
netic oscillations. The expression (5.1) is actually obtained from the energy balance equation

∇ · (E ×H) + E · Ḋ + H · Ḃ = 0. (5.4)

(See, for example, Eq. (7.5) in Ref. [42].) In order to accumulate electromagnetic energy,
one has to consider oscillations that are not purely monochromatic, but distributed within
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a band of frequencies around each eigenfrequency. In this way external agencies, outside of
the plates, are called for. It is natural here to regard the system to be a capacitor, linked
to an external appropriately adjusted self-inductance L such that stationary oscillations
become possible (external resistances are forbidden since we omit dissipation). That means,
the plates with the intervening medium is thermodynamically a non-closed system. From
this we can draw the important conclusion that the full dispersive energy Wdisp is not to
be identified with the thermodynamical energy W = U calculated earlier. The laws of
thermodynamics are applicable to closed systems only.

The mentioned model of a classical electromagnetic non-dissipative circuit is studied in
Ref. [41]. It is instructive to consider the salient features of the argument also here:

Let the charges Q be supplied and withdrawn from the plates with frequency ω. The
self-inductance of the circuit is L, as mentioned, and the electromotive force we call E . The
potential φ across the plates is determined from the equation

φ = E − LJ̇, (5.5)

where J = Q̇. The frequency of the circuit is

ω = 1/
√

LC(ω), (5.6)

where the capacitance C(ω) of the capacitor is determined by φ = Q/C(ω). By considering
almost monochromatic quantities [the same kind of argument that led to Eq. (5.1)], we get,
when taking the average over a period,

EJ =
d

dt

{

1

2
LJ2 +

1

2

d(ωC)

dω
φ2

}

. (5.7)

The expression between brackets is the circuit energy. From J = −iωQ and Eq. (5.6) we

get 1
2
LJ2 = 1

2
C φ2 and so the circuit energy may be written

W circ =
1

2ω

d(ω2C)

dω
φ2. (5.8)

This expression, because of the derivative with respect to ω, is seen to be related to Eq. (5.1).
Now consider a small adiabatic displacement of the capacitor plates. As W circ/ω is an

adiabatic invariant,
δW circ = W circδω/ω. (5.9)

By means of Eq. (5.6),
δω

ω
= −1

2

δC

C
. (5.10)

The change in C consists of two parts,

δC = (δC)st +
dC

dω
δω, (5.11)

where the first term is the static part and the second term depends on the frequency change.
From Eqs. (5.10) and (5.11),

δCst = − 1

ω2

d(ω2C)

dω
δω. (5.12)
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When Eq. (5.8) is substituted in Eq. (5.9) and (5.12) is used, dC/dω disappears, and we get

δW circ = −1

2
φ2(δC)st = −1

2

Q2

C2
(δC)st. (5.13)

This is the same expression as one obtains by taking the variation of the average of the
energy Q2/2C of a thermally insulated capacitor. It means that when dispersion is present,
the electromagnetic stress tensor contains no derivatives with respect to the frequency. The
argument is general, and is not critically dependent on our choice of a capacitor model.

When applied to our case, we can thus conclude as follows:

1. The dispersive energy Wdisp whose density is given in Eq. (5.1) refers thermodynam-
ically to a non-closed system, and is therefore not to be identified with the internal
energy U calculated in Sec. II starting from the free energy F , or the electromagnetic
energy W calculated in Sec. III in the nondispersive case. As was demonstrated, when
ε and µ are constants, W = U .

2. As for the electromagnetic stress tensor, the derivatives with respect to ω are not to
be included. That is, the electromagnetic force can be calculated from Eq. (4.8) with
ε → ε(ω), µ → µ(ω).

It may finally be noted that by inserting the simple form (5.3) for ε(ω) for a dielectric, we
obtain for the dispersive correction WII = awII a divergent expression,

WII =
2a(ε0 − 1)

ω2
0

∫ ∞

0

dω

2π

ω2

(1 − ω2/ω2
0)

2

∫

d2k⊥

(2π)2
〈E2〉ωk; (5.14)

cf. Eq. (5.2).
Another way to to see that the dispersive medium should be treated without the frequency

derivative of the permittivity is to recognize that the Casimir energy may be derived by a
variation expression

δE

A
=

i

2

∫

dω

2π

d2k⊥

(2π)2
dz δε(z)gE

kk(z, z,k⊥, ω), (5.15)

which is Eq. (2.26) of Ref. [21]. This starting point is equivalent to the variational argument
recounted in this section.

VI. AN ANOMALY IN THE CASIMIR ENERGY FOR HIGHER DIMENSIONS

The last topic that we shall consider is an anomaly encountered in the case of higher
spacetime dimensions, D > 4, reflecting the breaking of conformal symmetry. Let us assume
two parallel hyperplanes with separation a, when the region 0 < z < a is filled with an
isotropic medium of refractive index n =

√
εµ. The medium to the left (z < 0) is taken

to be an ideal metal, as is the medium to the right (z > a). That is, we assume the same
configuration as earlier, in Secs. II-IV, except that we allow now the number of spatial
dimensions d = D − 1 to be greater than 3. Casimir forces in spacetimes with dimensions
D > 4 were first extensively studied by Ambjørn and Wolfram [44], whereas the anomaly of
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the type considered below was studied recently by Alnes et al. [36]; cf. also Refs. [45, 46].
These works assumed a vacuum in the intermediate region. The new development below is
that we allow for a dielectric in this region. The anomaly is present also in the case of zero
temperature, so that we shall assume T = 0 in the following.

The appropriate electromagnetic energy-momentum tensor is the Minkowski expression,
called SM

µν ,

SM
µν = FµαHνα − 1

4
δµνFαβHαβ; (6.1)

cf., for instance, Refs. [47–49]. (We make use of the Euclidean time coordinate, x4 = it.)
Here Fµν = ∂µAν − ∂νAµ with µ, ν = 1, 2, ...D is the field tensor, whereas F4k = iEk

with k = 1, 2, ...d are the components of the d-dimensional electric field vector E. The
magnetic induction (B in the three-dimensional case) does not constitute a vector in the
higher-dimensional case, but is given by the d(d − 1)/2 components of the antisymmetric
spatial tensor Fik. Analogously, the second D-dimensional tensor Hµν occurring in Eq. (6.1)
is given by the vector components H4k = iDk, D being the d-dimensional induction vec-
tor, and by the d(d − 1)/2 components of the spatial magnetic field tensor Hik (H in the
three-dimensional case). In analogy with three-dimensional theory, we assume constitutive
relations in the form H4k = εF4k and Fik = µHik also when D > 4.

Turning now to the calculation of physical quantities in the higher-dimensional theory,
we shall start with the surface pressure P on the hyperplane z = 0. We then first observe
that the usual expression for F (cf. Eq. (2.3)) can easily be generalized to the case of d
spatial dimensions. Taking into account that there are (D − 2) physical degrees in the field
in the cavity, we have, for T = 0,

F = (D − 2)

∫ ∞

0

dζ

2π

∫

dd−1k⊥

(2π)d−1
ln(1 − e−2κa), (6.2)

where
κ2 = k2

⊥ + n2ζ2, k2
⊥ ≡ k2

x + k2
y + ... + k2

D−2. (6.3)

The volume element in momentum space is dd−1k⊥ = Ωd−2 kd−2
⊥ dk⊥, where the solid angle

is determined by

Ωd−1 =
2πd/2

Γ(d/2)
. (6.4)

The pressure P = −∂F/∂a can now be written

P = −2(D − 2)

(2π)d
Ωd−2

∫ ∞

0

dζ

∫

κkd−2
⊥ dk⊥

e2κa − 1
. (6.5)

Here the double integral over ζ and k⊥ can be further processed by introducing polar co-
ordinates; cf. Ref. [21]. As in Sec. IV, we introduce X = κ cos θ = k⊥, Y = κ sin θ = nζ ,
satisfying X2+Y 2 = κ2. The area element in the XY plane is κdκdθ = ndk⊥dζ . The double
integral therewith becomes

∫ ∞

0

dζ

∫

κkd−2
⊥ dk⊥

e2κa − 1
=

1

n

∫ π/2

0

cosd−2 θdθ

∫ ∞

0

κddκ

e2κa − 1
. (6.6)

We now make use of the formulas
∫ π/2

0

cosd−2 θdθ =
1

2

√
π

Γ
(

d−1
2

)

Γ
(

d
2

) , (6.7)
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∫ ∞

0

κddκ

e2κa − 1
=

Γ(D)ζ(D)

(2a)D
, (6.8)

Γ(D) =
2D−1/2

√
2π

Γ

(

D

2

)

Γ

(

D + 1

2

)

, (6.9)

and insert the expression for Ωd−2, to get

P = −(D − 2)(D − 1)

n

Γ(D/2)ζ(D)

(4π)D/2aD
. (6.10)

This expression is quite simple; no regularization procedure was required to achieve it. The
presence of the medium is apparent only in the factor n in the denominator. If n = 1,
including the case of a vacuum as well as the case of a “relativistic” medium satisfying
ε = 1/µ, the expression reduces to that derived earlier [44]. This result parallels that
obtained in the T = 0 parts of the energy, cf. Eqs. (3.17) and (3.18). It is nearly identical to
the result found in Ref. [40] for the scalar case in D dimensions [Eq. (2.35) there], differing
only in the evident factor (D − 1)/n.

Considering now the electromagnetic field energy density w in the cavity, we find that
the situation becomes more delicate. The natural way to calculate w is via the energy-
momentum tensor. This procedure - carried out by Alnes et al. in the case of a vacuum
cavity [36, 46] - led in the case of metallic boundary conditions to the result

w = −(D − 2)Γ(D/2)

(4π)D/2aD

[

ζ(D) +

(

D

2
− 2

)

fD

(z

a

)

]

≡ w1 + w2, (6.11)

where
fD

(z

a

)

= ζH

(

D,
z

a

)

+ ζH

(

D, 1 − z

a

)

, (6.12)

ζH being the Hurwitz zeta function. Note that the first term yields the pressure (6.10),

− ∂

∂a
aw1 = P, (6.13)

so that the second term in the energy density, w2, which diverges like z−D close to the
surface when D > 4, does not contribute to the force between the plates. It can explicitly
seen that written in physical variables this term is independent of the separation between
the plates and hence does not contribute to the force. This anomaly can actually be seen to
manifest itself in another way if we go back to the expression (6.1) for the energy-momentum
tensor: its trace SM

µµ is nonvanishing when D > 4. Physically, as emphasized in Ref. [36], the
divergent self energy of a single surface is related to the lack of conformal invariance of the
electromagnetic Lagrangian for D > 4. All of this is exactly as seen in Ref. [40], Chap. 11,
for the scalar field.

It turns out that the anomaly can be regularized away by subtracting off the self energy
for both plates. Then, the second term in Eq. (6.11) is absent, and only the first, finite,
terms in w remains.

As mentioned, these calculations of w were made for the case of a vacuum cavity. The
result was found via a combination of dimensional and zeta function regularizations [50].
The result could be recalculated for a medium cavity, but such a detailed calculation is
hardly justified in view of the simple occurrence of n in the expression (6.10). In fact, since

12



in physical units, w = h̄c/aD times a function of D, it is clear (for example, Ref. [42],
Eq. (36.12)) that all we have to do to insert a uniform medium between the plates is replace
c by c/n; this shows that the same factor n will appear in the denominator of the expression
for w as it did in W or P . Thus, after regularization, we obtain the relationship

P = (D − 1)w1, (6.14)

which is the same connection as for a vacuum.

VII. CONCLUSIONS

The purpose of this paper is to review the conventional theory of the interaction between
metallic and dielectric plates, with the purpose of illuminating those points where anomalies
might be present. Thus, a question might arise about the incorporation of dispersion into
the Lifshitz formula, which we address in Sec. V. The interplay between local surface energy
divergences and the breaking of conformal symmetry is revisited in Sec. VI, with the new ele-
ment in our analysis being the inclusion of a refractive index between the planes. The clarity
brought to bear by these analyses will now allow us to understand more fully the physical
controversies surrounding both temperature dependence in metals and semiconductors, and
in the question of surface energies and their significance.
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