
Chapter 16

Quantum Grand Canonical

Ensemble

How do we proceed quantum mechanically? For fermions the wavefunction is
antisymmetric. An N particle basis function can be constructed in terms of
single-particle wavefunctions as follows:

ψ(r1, r2, . . . , rN ) =
1√
N !

∑

P

(−1)PPφ1(r1)φ2(r2) · · ·φN (rN ), (16.1)

where P is the permutation operator, and (−1)P = ±1 depending on whether
P is an even or odd permutation. This result can be written as a (Slater)
determinant

ψ(r1, r2, . . . , rN ) =
1√
N !

detφi(rj). (16.2)

For bosons, the wavefunction must be symmetric:

ψ(r1, r2, . . . , rN ) =
1√

N1! · · ·Nl!

1√
N !

∑

P

Pφ1(r1) · · ·φN (rN ), (16.3)

where Nj is the number of occurrences of φj . The extra combinatorial factor
comes from the fact that you get a distinct wavefunction N1!N2! · · ·Nl! times.

A subsystem consists of Nj particles, with total energy Ej . It is described by
a state vector |Ej , Nj , kj〉, where kj are the other quantum numbers necessary
to specify the state. The system consists of subsystems which do not interact
with each other. For fermions, the system is described by a state vector

|E,N, k〉 =
∑

P

(−1)PP
1√
N !

n
∏

j=1

|Ej , Nj , kj〉
√

Nj !, (16.4)

where the outer product is over vectors in different Hilbert spaces, and P per-
mutes particle between the different spaces. For bosons, the (−1)P factor would
not be present.
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The microcanonical distribution for the entire system is described by the
density operator

ρǫ(E) =
1

Ωǫ(E,N)

∫ E+ǫ/2

E−ǫ/2

dE′δ(E′ −H)

=
1

Ωǫ(E,N)

∑

k

|E,N, k〉〈E,N, k|, (16.5)

where the sum is over all states having energies beween E − ǫ/2 and E + ǫ/2.
Here, as before, energies are measured in units of ǫ, so all these energies are
considered the same. The averaged structure function is

Ωǫ(E,N) =
∑

k

〈E,N, k|E,N, k〉, (16.6)

which is the number of states in the energy interval [E − ǫ/2, E+ ǫ/2] and with
occupation number N . The total degeneracy of the entire system is again given
by the convolution law

Ωǫ(E,N) =
∑

{Nj}{Ej}

δE,
∑

j
Ej
δN,

∑

j
Nj

∏

j

Ωǫj(Ej , Nj). (16.7)

Note that there are no N !s because they are included in the definitions of the
physical states.

The single-subsystem distribution function is

P(1)
E1,N1

=
Ω

(n−1)
ǫ (E − E1, N −N1)

Ω
(n)
ǫ (E,N)

, (16.8)

which is the ratio of the number of states for which subsystem 1 has energy E1

and occupation number N1 to the total number of states. Again, there are no
N !s. The grand structure function is here defined by

Wǫ(E, z) =

∞
∑

N=0

zNΩǫ(E,N). (16.9)

For the composite system

Wǫ(E, z) =
∑

N

∑

{Ej}

δE,
∑

j
Ej
δN,

∑

j
Nj

∏

j

∑

Nj

zNjΩǫ(Ej , Nj)

=
∑

{Ej}

δE,
∑

j
Ej

∏

j

Wǫj(Ej , z). (16.10)

The grand partition function is

Xǫ(α, z) =
∑

E

e−αEWǫ(E, z) =
∑

N

zNχ(α,N)

=
∏

j

Xǫj(α, z). (16.11)
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Once again, we do an asymptotic evaluation using

δE,E′ =
ǫ

2πi

∫

C

dα eα(E−e′), (16.12)

from which we deduce

P(1)
E1,N1

=
e−β(E1−µN1)

X1(β, µ)
, (16.13)

and in turn, by recognizing E1, N1 as the eigenvalues of the Hamiltonian and
number operator for the single subsystem, we deduce the density operator

ρ =
e−β(H−µN )

X (β, µ)
, (16.14)

where H is the Hamiltonian operator, whose eigenvalues are the possible energy
states of the system, and N is the number operator, whose eigenvalues are
the number of particles in the system. Again note, in contradistinction with
the classical probability distribution, there is no N ! because the combinatorical
factors are taken care of in the definition of the quantum state vectors. This
holds whether the particles are bosons or fermions. Because

Tr ρ = 1, (16.15)

the grand partition function is

X (β, µ) = Tr e−β(H−µN )

=
∑

E,N,k

〈E,N, k|e−β(H−µN )|E,N, k〉

=
∑

E,N

e−β(E−µN)gE,N , (16.16)

where gE,N is the degeneracy of the state with energy E and number of particles
N .

Now

− ∂

∂β
lnX (β, µ) = 〈H − µN〉 ≡ U − µN, (16.17)

1

β

∂

∂µ
lnX (β, µ) = 〈N〉 = N, (16.18)

where U and N are the thermodynamic quantities. The pressure is

p = 〈FV 〉 = −〈∂H
∂V

〉 =
1

β

∂

∂V
lnX (β, µ), (16.19)

so therefore

d lnX (β, µ, V ) = −(U − µN)dβ + βN dµ+ βp dV, (16.20)
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or from Eq. (14.26)

d[β(U − µN) + lnX ] = β(dU − d(µN)) + βN dµ+ βp dV

= β[dU + p dV − µdN ] = βδQ =
dS

k
, (16.21)

so, up to a constant,
S

k
= β(U − µN) + lnX , (16.22)

or

TS = U − µN + kT lnX . (16.23)

This suggests defining still another kind of free energy, the grand potential,

J = F − µN = U − TS − µN = −kT lnX , (16.24)

which is analogous to F = −kT lnχ. Note that

dJ = T dS − p dV + µdN − d(TS) − d(µN)

= −p dV − S dT −N dµ, (16.25)

which says that J(T, µ, V ) is a function of the indicated variables, that is,

(

∂J

∂T

)

µ,V

= −S,
(

∂J

∂µ

)

T,V

= −N,
(

∂J

∂V

)

T,µ

= −p. (16.26)

The last two equations are just those given in Eqs. (16.19) and (16.18), while
the last is

∂J

∂T
= −k lnX − kT

∂

∂T
lnX

= −k lnX +
1

T

∂

∂β
lnX

=
1

T
[−U + µN − kT lnX ] = −S. (16.27)

16.1 Bose-Einstein and Fermi-Dirac Distributions

The grand structure function for a gas of noninteracting particles is (no N !)

X =
∑

N

zNχ(α,N), (16.28)

where

χ(α,N) =
∑

{nj}

δN,
∑

j
nj

∏

j

e−βnjεj , (16.29)
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where nj is the number of particles in the single-particle energy state εj. Thus

X =
∑

{nj}

∏

j

znje−βnjεj

=
∏

j

∑

nj

eβ[µnj−njεj ], (16.30)

which also immediately follows from

X =
∑

N,E

e−β(E−µN) =
∑

{nj}

e
−β

∑

j
njεj+βµ

∑

j
nj . (16.31)

For particles obeying Bose-Einstein statistics, bosons, the sum on nj ranges
from 0 to ∞, so

∞
∑

ny=0

znje−βnjεj =
1

1 − ze−βεj
, (16.32)

while for particles obeying Fermi-Dirac statistics, fermions, the sum on nj ranges
only from 0 to 1:

1
∑

nj=0

znje−βnjεj = 1 + ze−βεj . (16.33)

so in general
∑

nj

znje−βnjεj = (1 ± ze−βεj)±1, (16.34)

where the upper sign refers to fermions, and the lower to bosons. Thus the
grand partition function is

X =
∏

j

(1 ± ze−βεj)±1, (16.35)

and

lnX = ±
∑

j

ln(1 ± ze−βεj) = ±
∑

j

ln(1 ± eβµe−βεj ). (16.36)

Then, the total number of particles is

N =
1

β

∂

∂µ
lnX =

∑

j

eβ(µ−εj)

1 ± eβ(µ−εj)

=
∑

j

1

eβ(εj−µ) ± 1
, (16.37)

and

U − µN = − ∂

∂β
lnX =

∑

j

εj − µ

eβ(εj−µ) ± 1
, (16.38)
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which implies that the thermodynamic energy is

U =
∑

j

εj

eβ(εj−µ) ± 1
. (16.39)

The mean number of particles in the l energy level is

〈nl〉 = − 1

β

∂

∂εl
lnX =

eβ(µ−εl)

1 ± eβ(µ−εl)

=
1

eβ(εl−µ) ± 1
, (16.40)

so as expected

N =
∑

l

〈nl〉, U =
∑

l

〈nl〉εl. (16.41)

These results coincide with those found in Sec. 12.1, with ζ0 = eβµ.

16.2 Photons

For photons, there is no restriction on the number of particles, so we can set
z = 1 or µ = 0:

X =
∑

{nj}

∏

j

e−βnjεj =
∏

j

(1 − e−βεj )−1, (16.42)

U = − ∂

∂β
lnX =

∑

j

εj

eβεj − 1
, (16.43)

〈nj〉 = − 1

β

∂

∂εj
lnX =

1

eβεj − 1
. (16.44)

The fluctuation in the individual level occupation numbers is

〈(nl − 〈nl〉)2〉 = 〈n2
l 〉 − 〈nl〉2

=
1

β2

1

X
∂2

∂ε2l
X − 1

β2

(

1

X
∂

∂εl
X

)2

=
1

β2

∂2

∂ε2l
lnX = − 1

β

∂

∂εl
〈nl〉

=
eβεl

(eβεl − 1)2
= 〈nl〉 + 〈n2

l 〉

= 〈nl〉(1 + 〈nl〉). (16.45)

16.3 Planck Distribution

For a photon gas in a volume V , the number of states in a wavenumber interval
(dk) is

2V (dk)

(2π)3
, h̄k = p, E = pc, (16.46)
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where the factor of 2 emerges because photons are helicity 2 particles; that is,
there are two polarization states for each momentum state. Then the logarithm
of the grand partition function is

lnX = −
∑

j

ln
(

1 − e−βεj
)

= − 8πV

(2π)3

∫ ∞

0

dk k2 ln
(

1 − e−βh̄ck
)

= − V

π2

[

1

3
k3 ln

(

1 − e−βh̄ck
)

∣

∣

∣

∣

∞

0

− 1

3

∫ ∞

0

dk k3 e−βh̄ck

1 − e−βh̄kc
βh̄c

]

=
V βh̄c

3π2

∫ ∞

0

dk k3 1

eβh̄ck − 1
= − F

kT
, (16.47)

where F is either the Helmholtz free energy or the grand potential (the distinc-
tion disappears when µ = 0).

The internal energy is

U = − ∂

∂β
lnX =

∑

l

εl

eβεl − 1
=
V

π2
h̄c

∫ ∞

0

dk k3

eβh̄ck − 1
. (16.48)

We see here the characteristic Planck distribution. In the classical limit, h̄→ 0,

V → V

π2
kT

∫ ∞

0

dk k2. (16.49)

which exhibits the Rayleigh-Jeans law, and exhibits the famous ultraviolet catas-

trophe. This breakdown of classical physics led Planck to the introduction of
the quantum of light, the photon.

Note that here

F = −1

3
U, (16.50)

and so the pressure is

p = −∂F
∂V

=
1

3

U

V
, (16.51)

the characteristic law for a radiation gas.
To determine the total energy, recall that from Eq. (7.16)

∫ ∞

0

dx
xn−1

ex − 1
= Γ(n)ζ(n), (16.52)

where ζ(n) is the Riemann zeta function. For integer argument the zeta function
may be expressed as a Bernoulli number,

ζ(2n) =
(2π)2n

2(2n)!
Bn. (16.53)

In this way we find
∫ ∞

0

dx
x3

ex − 1
=
π4

15
, (16.54)
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and then we recover Stefan’s law:

U = −3F =
π2

15

k4

(h̄c)3
T 4V, (16.55)

and the specific heat for the photon gas,

cv =
∂U

∂T
=

4π2

15

k4

(h̄c)3
T 3V. (16.56)


