Chapter 16

Quantum Grand Canonical Ensemble

How do we proceed quantum mechanically? For fermions the wavefunction is antisymmetric. An N particle basis function can be constructed in terms of single-particle wavefunctions as follows:

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}} \sum_{P}(-1)^{P} P \phi_{1}\left(\mathbf{r}_{1}\right) \phi_{2}\left(\mathbf{r}_{2}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right) \tag{16.1}
\end{equation*}
$$

where P is the permutation operator, and $(-1)^{P}= \pm 1$ depending on whether P is an even or odd permutation. This result can be written as a (Slater) determinant

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N!}} \operatorname{det} \phi_{i}\left(\mathbf{r}_{j}\right) \tag{16.2}
\end{equation*}
$$

For bosons, the wavefunction must be symmetric:

$$
\begin{equation*}
\psi\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right)=\frac{1}{\sqrt{N_{1}!\cdots N_{l}!}} \frac{1}{\sqrt{N!}} \sum_{P} P \phi_{1}\left(\mathbf{r}_{1}\right) \cdots \phi_{N}\left(\mathbf{r}_{N}\right) \tag{16.3}
\end{equation*}
$$

where N_{j} is the number of occurrences of ϕ_{j}. The extra combinatorial factor comes from the fact that you get a distinct wavefunction $N_{1}!N_{2}!\cdots N_{l}!$ times.

A subsystem consists of N_{j} particles, with total energy E_{j}. It is described by a state vector $\left|E_{j}, N_{j}, k_{j}\right\rangle$, where k_{j} are the other quantum numbers necessary to specify the state. The system consists of subsystems which do not interact with each other. For fermions, the system is described by a state vector

$$
\begin{equation*}
|E, N, k\rangle=\sum_{P}(-1)^{P} P \frac{1}{\sqrt{N!}} \prod_{j=1}^{n}\left|E_{j}, N_{j}, k_{j}\right\rangle \sqrt{N_{j}!} \tag{16.4}
\end{equation*}
$$

where the outer product is over vectors in different Hilbert spaces, and P permutes particle between the different spaces. For bosons, the $(-1)^{P}$ factor would not be present.

The microcanonical distribution for the entire system is described by the density operator

$$
\begin{align*}
\rho_{\epsilon}(E) & =\frac{1}{\Omega_{\epsilon}(E, N)} \int_{E-\epsilon / 2}^{E+\epsilon / 2} d E^{\prime} \delta\left(E^{\prime}-H\right) \\
& =\frac{1}{\Omega_{\epsilon}(E, N)} \sum_{k}|E, N, k\rangle\langle E, N, k| \tag{16.5}
\end{align*}
$$

where the sum is over all states having energies beween $E-\epsilon / 2$ and $E+\epsilon / 2$. Here, as before, energies are measured in units of ϵ, so all these energies are considered the same. The averaged structure function is

$$
\begin{equation*}
\Omega_{\epsilon}(E, N)=\sum_{k}\langle E, N, k \mid E, N, k\rangle, \tag{16.6}
\end{equation*}
$$

which is the number of states in the energy interval $[E-\epsilon / 2, E+\epsilon / 2]$ and with occupation number N. The total degeneracy of the entire system is again given by the convolution law

$$
\begin{equation*}
\Omega_{\epsilon}(E, N)=\sum_{\left\{N_{j}\right\}\left\{E_{j}\right\}} \delta_{E, \sum_{j} E_{j}} \delta_{N, \sum_{j} N_{j}}^{\prod_{j} \Omega_{\epsilon j}\left(E_{j}, N_{j}\right) ~ . ~} \tag{16.7}
\end{equation*}
$$

Note that there are no $N!s$ because they are included in the definitions of the physical states.

The single-subsystem distribution function is

$$
\begin{equation*}
\mathcal{P}_{E_{1}, N_{1}}^{(1)}=\frac{\Omega_{\epsilon}^{(n-1)}\left(E-E_{1}, N-N_{1}\right)}{\Omega_{\epsilon}^{(n)}(E, N)}, \tag{16.8}
\end{equation*}
$$

which is the ratio of the number of states for which subsystem 1 has energy E_{1} and occupation number N_{1} to the total number of states. Again, there are no $N!$ s. The grand structure function is here defined by

$$
\begin{equation*}
\mathcal{W}_{\epsilon}(E, z)=\sum_{N=0}^{\infty} z^{N} \Omega_{\epsilon}(E, N) \tag{16.9}
\end{equation*}
$$

For the composite system

$$
\begin{align*}
\mathcal{W}_{\epsilon}(E, z) & =\sum_{N} \sum_{\left\{E_{j}\right\}} \delta_{E, \sum_{j} E_{j}} \delta_{N, \sum_{j} N_{j}} \prod_{j} \sum_{N_{j}} z^{N_{j}} \Omega_{\epsilon}\left(E_{j}, N_{j}\right) \\
& =\sum_{\left\{E_{j}\right\}} \delta_{E, \sum_{j} E_{j}}^{\prod} \mathcal{W}_{\epsilon j}\left(E_{j}, z\right) \tag{16.10}
\end{align*}
$$

The grand partition function is

$$
\begin{align*}
\mathcal{X}_{\epsilon}(\alpha, z) & =\sum_{E} e^{-\alpha E} \mathcal{W}_{\epsilon}(E, z)=\sum_{N} z^{N} \chi(\alpha, N) \\
& =\prod_{j} \mathcal{X}_{\epsilon j}(\alpha, z) \tag{16.11}
\end{align*}
$$

Once again, we do an asymptotic evaluation using

$$
\begin{equation*}
\delta_{E, E^{\prime}}=\frac{\epsilon}{2 \pi i} \int_{C} d \alpha e^{\alpha\left(E-e^{\prime}\right)} \tag{16.12}
\end{equation*}
$$

from which we deduce

$$
\begin{equation*}
\mathcal{P}_{E_{1}, N_{1}}^{(1)}=\frac{e^{-\beta\left(E_{1}-\mu N_{1}\right)}}{\mathcal{X}_{1}(\beta, \mu)} \tag{16.13}
\end{equation*}
$$

and in turn, by recognizing E_{1}, N_{1} as the eigenvalues of the Hamiltonian and number operator for the single subsystem, we deduce the density operator

$$
\begin{equation*}
\rho=\frac{e^{-\beta(H-\mu \mathcal{N})}}{\mathcal{X}(\beta, \mu)} \tag{16.14}
\end{equation*}
$$

where H is the Hamiltonian operator, whose eigenvalues are the possible energy states of the system, and \mathcal{N} is the number operator, whose eigenvalues are the number of particles in the system. Again note, in contradistinction with the classical probability distribution, there is no N ! because the combinatorical factors are taken care of in the definition of the quantum state vectors. This holds whether the particles are bosons or fermions. Because

$$
\begin{equation*}
\operatorname{Tr} \rho=1 \tag{16.15}
\end{equation*}
$$

the grand partition function is

$$
\begin{align*}
\mathcal{X}(\beta, \mu) & =\operatorname{Tr} e^{-\beta(H-\mu \mathcal{N})} \\
& =\sum_{E, N, k}\langle E, N, k| e^{-\beta(H-\mu \mathcal{N})}|E, N, k\rangle \\
& =\sum_{E, N} e^{-\beta(E-\mu N)} g_{E, N} \tag{16.16}
\end{align*}
$$

where $g_{E, N}$ is the degeneracy of the state with energy E and number of particles N.

Now

$$
\begin{align*}
-\frac{\partial}{\partial \beta} \ln \mathcal{X}(\beta, \mu) & =\langle H-\mu \mathcal{N}\rangle \equiv U-\mu N \tag{16.17}\\
\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \mathcal{X}(\beta, \mu) & =\langle\mathcal{N}\rangle=N \tag{16.18}
\end{align*}
$$

where U and N are the thermodynamic quantities. The pressure is

$$
\begin{equation*}
p=\left\langle\mathcal{F}_{V}\right\rangle=-\left\langle\frac{\partial H}{\partial V}\right\rangle=\frac{1}{\beta} \frac{\partial}{\partial V} \ln \mathcal{X}(\beta, \mu) \tag{16.19}
\end{equation*}
$$

so therefore

$$
\begin{equation*}
d \ln \mathcal{X}(\beta, \mu, V)=-(U-\mu N) d \beta+\beta N d \mu+\beta p d V \tag{16.20}
\end{equation*}
$$

or from Eq. (14.26)

$$
\begin{align*}
d[\beta(U-\mu N)+\ln \mathcal{X}] & =\beta(d U-d(\mu N))+\beta N d \mu+\beta p d V \\
& =\beta[d U+p d V-\mu d N]=\beta \delta Q=\frac{d S}{k} \tag{16.21}
\end{align*}
$$

so, up to a constant,

$$
\begin{equation*}
\frac{S}{k}=\beta(U-\mu N)+\ln \mathcal{X} \tag{16.22}
\end{equation*}
$$

or

$$
\begin{equation*}
T S=U-\mu N+k T \ln \mathcal{X} \tag{16.23}
\end{equation*}
$$

This suggests defining still another kind of free energy, the grand potential,

$$
\begin{equation*}
J=F-\mu N=U-T S-\mu N=-k T \ln \mathcal{X} \tag{16.24}
\end{equation*}
$$

which is analogous to $F=-k T \ln \chi$. Note that

$$
\begin{align*}
d J & =T d S-p d V+\mu d N-d(T S)-d(\mu N) \\
& =-p d V-S d T-N d \mu \tag{16.25}
\end{align*}
$$

which says that $J(T, \mu, V)$ is a function of the indicated variables, that is,

$$
\begin{equation*}
\left(\frac{\partial J}{\partial T}\right)_{\mu, V}=-S, \quad\left(\frac{\partial J}{\partial \mu}\right)_{T, V}=-N, \quad\left(\frac{\partial J}{\partial V}\right)_{T, \mu}=-p \tag{16.26}
\end{equation*}
$$

The last two equations are just those given in Eqs. (16.19) and (16.18), while the last is

$$
\begin{align*}
\frac{\partial J}{\partial T} & =-k \ln \mathcal{X}-k T \frac{\partial}{\partial T} \ln \mathcal{X} \\
& =-k \ln \mathcal{X}+\frac{1}{T} \frac{\partial}{\partial \beta} \ln \mathcal{X} \\
& =\frac{1}{T}[-U+\mu N-k T \ln \mathcal{X}]=-S \tag{16.27}
\end{align*}
$$

16.1 Bose-Einstein and Fermi-Dirac Distributions

The grand structure function for a gas of noninteracting particles is (no N !)

$$
\begin{equation*}
\mathcal{X}=\sum_{N} z^{N} \chi(\alpha, N) \tag{16.28}
\end{equation*}
$$

where

$$
\begin{equation*}
\chi(\alpha, N)=\sum_{\left\{n_{j}\right\}} \delta_{N, \sum_{j} n_{j}} \prod_{j} e^{-\beta n_{j} \varepsilon_{j}} \tag{16.29}
\end{equation*}
$$

16.1. BOSE-EINSTEIN AND FERMI-DIRAC DISTRIBUTIONS93 Version of April 26, 2010
where n_{j} is the number of particles in the single-particle energy state ε_{j}. Thus

$$
\begin{align*}
\mathcal{X} & =\sum_{\left\{n_{j}\right\}} \prod_{j} z^{n_{j}} e^{-\beta n_{j} \varepsilon_{j}} \\
& =\prod_{j} \sum_{n_{j}} e^{\beta\left[\mu n_{j}-n_{j} \varepsilon_{j}\right]} \tag{16.30}
\end{align*}
$$

which also immediately follows from

$$
\begin{equation*}
\mathcal{X}=\sum_{N, E} e^{-\beta(E-\mu N)}=\sum_{\left\{n_{j}\right\}} e^{-\beta \sum_{j} n_{j} \varepsilon_{j}+\beta \mu \sum_{j} n_{j}} \tag{16.31}
\end{equation*}
$$

For particles obeying Bose-Einstein statistics, bosons, the sum on n_{j} ranges from 0 to ∞, so

$$
\begin{equation*}
\sum_{n_{y}=0}^{\infty} z^{n_{j}} e^{-\beta n_{j} \varepsilon_{j}}=\frac{1}{1-z e^{-\beta \varepsilon_{j}}} \tag{16.32}
\end{equation*}
$$

while for particles obeying Fermi-Dirac statistics, fermions, the sum on n_{j} ranges only from 0 to 1 :

$$
\begin{equation*}
\sum_{n_{j}=0}^{1} z^{n_{j}} e^{-\beta n_{j} \varepsilon_{j}}=1+z e^{-\beta \varepsilon_{j}} \tag{16.33}
\end{equation*}
$$

so in general

$$
\begin{equation*}
\sum_{n_{j}} z^{n_{j}} e^{-\beta n_{j} \varepsilon_{j}}=\left(1 \pm z e^{-\beta \varepsilon_{j}}\right)^{ \pm 1} \tag{16.34}
\end{equation*}
$$

where the upper sign refers to fermions, and the lower to bosons. Thus the grand partition function is

$$
\begin{equation*}
\mathcal{X}=\prod_{j}\left(1 \pm z e^{-\beta \varepsilon_{j}}\right)^{ \pm 1} \tag{16.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\ln \mathcal{X}= \pm \sum_{j} \ln \left(1 \pm z e^{-\beta \varepsilon_{j}}\right)= \pm \sum_{j} \ln \left(1 \pm e^{\beta \mu} e^{-\beta \varepsilon_{j}}\right) \tag{16.36}
\end{equation*}
$$

Then, the total number of particles is

$$
\begin{align*}
N & =\frac{1}{\beta} \frac{\partial}{\partial \mu} \ln \mathcal{X}=\sum_{j} \frac{e^{\beta\left(\mu-\varepsilon_{j}\right)}}{1 \pm e^{\beta\left(\mu-\varepsilon_{j}\right)}} \\
& =\sum_{j} \frac{1}{e^{\beta\left(\varepsilon_{j}-\mu\right)} \pm 1} \tag{16.37}
\end{align*}
$$

and

$$
\begin{equation*}
U-\mu N=-\frac{\partial}{\partial \beta} \ln \mathcal{X}=\sum_{j} \frac{\varepsilon_{j}-\mu}{e^{\beta\left(\varepsilon_{j}-\mu\right)} \pm 1} \tag{16.38}
\end{equation*}
$$

which implies that the thermodynamic energy is

$$
\begin{equation*}
U=\sum_{j} \frac{\varepsilon_{j}}{e^{\beta\left(\varepsilon_{j}-\mu\right)} \pm 1} . \tag{16.39}
\end{equation*}
$$

The mean number of particles in the l energy level is

$$
\begin{align*}
\left\langle n_{l}\right\rangle & =-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{l}} \ln \mathcal{X}=\frac{e^{\beta\left(\mu-\varepsilon_{l}\right)}}{1 \pm e^{\beta\left(\mu-\varepsilon_{l}\right)}} \\
& =\frac{1}{e^{\beta\left(\varepsilon_{l}-\mu\right)} \pm 1} \tag{16.40}
\end{align*}
$$

so as expected

$$
\begin{equation*}
N=\sum_{l}\left\langle n_{l}\right\rangle, \quad U=\sum_{l}\left\langle n_{l}\right\rangle \varepsilon_{l} . \tag{16.41}
\end{equation*}
$$

These results coincide with those found in Sec. 12.1, with $\zeta_{0}=e^{\beta \mu}$.

16.2 Photons

For photons, there is no restriction on the number of particles, so we can set $z=1$ or $\mu=0$:

$$
\begin{align*}
\mathcal{X} & =\sum_{\left\{n_{j}\right\}} \prod_{j} e^{-\beta n_{j} \varepsilon_{j}}=\prod_{j}\left(1-e^{-\beta \varepsilon_{j}}\right)^{-1}, \tag{16.42}\\
U & =-\frac{\partial}{\partial \beta} \ln \mathcal{X}=\sum_{j} \frac{\varepsilon_{j}}{e^{\beta \varepsilon_{j}}-1}, \tag{16.43}\\
\left\langle n_{j}\right\rangle & =-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{j}} \ln \mathcal{X}=\frac{1}{e^{\beta \varepsilon_{j}}-1} . \tag{16.44}
\end{align*}
$$

The fluctuation in the individual level occupation numbers is

$$
\begin{align*}
\left\langle\left(n_{l}-\left\langle n_{l}\right\rangle\right)^{2}\right\rangle & =\left\langle n_{l}^{2}\right\rangle-\left\langle n_{l}\right\rangle^{2} \\
& =\frac{1}{\beta^{2}} \frac{1}{\mathcal{X}} \frac{\partial^{2}}{\partial \varepsilon_{l}^{2}} \mathcal{X}-\frac{1}{\beta^{2}}\left(\frac{1}{\mathcal{X}} \frac{\partial}{\partial \varepsilon_{l}} \mathcal{X}\right)^{2} \\
& =\frac{1}{\beta^{2}} \frac{\partial^{2}}{\partial \varepsilon_{l}^{2}} \ln \mathcal{X}=-\frac{1}{\beta} \frac{\partial}{\partial \varepsilon_{l}}\left\langle n_{l}\right\rangle \\
& =\frac{e^{\beta \varepsilon_{l}}}{\left(e^{\beta \varepsilon_{l}}-1\right)^{2}}=\left\langle n_{l}\right\rangle+\left\langle n_{l}^{2}\right\rangle \\
& =\left\langle n_{l}\right\rangle\left(1+\left\langle n_{l}\right\rangle\right) . \tag{16.45}
\end{align*}
$$

16.3 Planck Distribution

For a photon gas in a volume V, the number of states in a wavenumber interval $(d \mathbf{k})$ is

$$
\begin{equation*}
\frac{2 V(d \mathbf{k})}{(2 \pi)^{3}}, \quad \hbar \mathbf{k}=\mathbf{p}, \quad E=p c, \tag{16.46}
\end{equation*}
$$

where the factor of 2 emerges because photons are helicity 2 particles; that is, there are two polarization states for each momentum state. Then the logarithm of the grand partition function is

$$
\begin{align*}
\ln \mathcal{X} & =-\sum_{j} \ln \left(1-e^{-\beta \varepsilon_{j}}\right) \\
& =-\frac{8 \pi V}{(2 \pi)^{3}} \int_{0}^{\infty} d k k^{2} \ln \left(1-e^{-\beta \hbar c k}\right) \\
& =-\frac{V}{\pi^{2}}\left[\left.\frac{1}{3} k^{3} \ln \left(1-e^{-\beta \hbar c k}\right)\right|_{0} ^{\infty}-\frac{1}{3} \int_{0}^{\infty} d k k^{3} \frac{e^{-\beta \hbar c k}}{1-e^{-\beta \hbar k c}} \beta \hbar c\right] \\
& =\frac{V \beta \hbar c}{3 \pi^{2}} \int_{0}^{\infty} d k k^{3} \frac{1}{e^{\beta \hbar c k}-1}=-\frac{F}{k T} \tag{16.47}
\end{align*}
$$

where F is either the Helmholtz free energy or the grand potential (the distinction disappears when $\mu=0$).

The internal energy is

$$
\begin{equation*}
U=-\frac{\partial}{\partial \beta} \ln \mathcal{X}=\sum_{l} \frac{\varepsilon_{l}}{e^{\beta \varepsilon_{l}}-1}=\frac{V}{\pi^{2}} \hbar c \int_{0}^{\infty} \frac{d k k^{3}}{e^{\beta \hbar c k}-1} \tag{16.48}
\end{equation*}
$$

We see here the characteristic Planck distribution. In the classical limit, $\hbar \rightarrow 0$,

$$
\begin{equation*}
V \rightarrow \frac{V}{\pi^{2}} k T \int_{0}^{\infty} d k k^{2} \tag{16.49}
\end{equation*}
$$

which exhibits the Rayleigh-Jeans law, and exhibits the famous ultraviolet catastrophe. This breakdown of classical physics led Planck to the introduction of the quantum of light, the photon.

Note that here

$$
\begin{equation*}
F=-\frac{1}{3} U \tag{16.50}
\end{equation*}
$$

and so the pressure is

$$
\begin{equation*}
p=-\frac{\partial F}{\partial V}=\frac{1}{3} \frac{U}{V} \tag{16.51}
\end{equation*}
$$

the characteristic law for a radiation gas.
To determine the total energy, recall that from Eq. (7.16)

$$
\begin{equation*}
\int_{0}^{\infty} d x \frac{x^{n-1}}{e^{x}-1}=\Gamma(n) \zeta(n) \tag{16.52}
\end{equation*}
$$

where $\zeta(n)$ is the Riemann zeta function. For integer argument the zeta function may be expressed as a Bernoulli number,

$$
\begin{equation*}
\zeta(2 n)=\frac{(2 \pi)^{2 n}}{2(2 n)!} B_{n} \tag{16.53}
\end{equation*}
$$

In this way we find

$$
\begin{equation*}
\int_{0}^{\infty} d x \frac{x^{3}}{e^{x}-1}=\frac{\pi^{4}}{15} \tag{16.54}
\end{equation*}
$$

96 Version of April 26, 2010CHAPTER 16. QUANTUM GRAND CANONICAL ENSEMBLE
and then we recover Stefan's law:

$$
\begin{equation*}
U=-3 F=\frac{\pi^{2}}{15} \frac{k^{4}}{(\hbar c)^{3}} T^{4} V \tag{16.55}
\end{equation*}
$$

and the specific heat for the photon gas,

$$
\begin{equation*}
c_{v}=\frac{\partial U}{\partial T}=\frac{4 \pi^{2}}{15} \frac{k^{4}}{(\hbar c)^{3}} T^{3} V \tag{16.56}
\end{equation*}
$$

