R-Matrix Theory for Magnetotransport Properties in Semiconductor Devices

Thushari Jayasekera, Michael A. Morrison, and Kieran Mullen*
Department of Physics and Astronomy, The University of Oklahoma,
440 West Brooks Street, Norman, Oklahoma 73019-0225

Many problems in nano and molecular electronics require the solution of the Schrodinger equation
for scattering states. R-matrix theory, a technique first introduced in nuclear physics and widely
used in atomic and molecular physics has recently been adapted to calculate the transport properties
of solid-state devices. We have extended R-matrix theory to the general case of two dimensional
devices in the presence of an external perpendicular magnetic field. We apply this technique to
a particular device and calculate the magneto transport properties of a two-dimensional “cross”

junction.

PACS numbers:

I. INTRODUCTION

Modern experiments can fabricate semiconductor de-
vices so small that the electron motion is two dimensional
(2D) and the electron mean free path is larger than the
device size. The electron transport in these devices has
been a great interest both theoretically and experimen-
tally for several years. Studies of magnetotransport have
led to fundamental advances such as the discovery of the
quantum Hall effect,! to applied devices such as magnetic
field sensors, and novel spin based devices.?

Recent experiments in InSb 4-terminal devices® have
observed a significant bend resistance, Rg. In bend resis-
tance experiments (fig.1), a current I;4 is injected from
lead 4 and removed from lead 1. If the electrons travel
ballistically, they will overshoot lead 1 and travel to lead
3 until sufficient charge accumulates to deflect current to
lead 4. This leads to a negative voltage between leads
2 and 3. The ratio between this voltage, V23, and I14
defines the bend resistance Rp = Va3 /I14, which is also
negative. When a magnetic field, B, is applied perpen-
dicular to the device charge is deflected into lead 2 de-
creasing V23. The bend resistance therefore decreases as
a function of the applied magnetic field.

Similar experiments on GaAs devices have been ex-
plained using a semi-classical billiard ball model*. How-
ever the the effective mass in InSb is very small (m* =
0.0139mg), and experimental feature widths may con-
tain few transverse quantum states below the fermi en-
ergy. InSb devices also display ballistic transport at rel-
atively high temperatures.® Thus it is more reasonable
to model this experiment using quantum mechanics and
the Landauer-Butikker formula.® The Landauer-Butikker
(LB) formula states that the transport properties of a
quantum mechanical device can be obtained by the trans-
mission coefficients of charge carriers in the device. In
particular, the bend resistance can be obtained by,”
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FIG. 1: A schematic of a device used in a negative bend re-
sistance experiment. Current is injected from lead 4 and re-
moved from lead 1. This produces a voltage between the leads
2 and 3, V53 that is measured as a function of the applied per-
pendicular magnetic field B. The dotted lines indicate “soft
boundaries” , mathematical surfaces that serve to separate the
interior region from the leads in order to facilitate the solu-
tion.

where S is given by,
S = (To1 +Tunr) [(Tor + T51)> + (T + T51)°] . (2)

In the above equations, Tj; is the transmission coefficient
of electrons in the lead ¢ when the electron is injected
from the lead j. Thus we need to calculate the transmis-
sion coefficients of electrons in the device if we want to
analyze the device quantum mechanically.

Techniques like Green’s function method can calculate
the transmission coefficients of electrons in a device with
a simpler geometry, however when the geometry becomes
complicated, it is hard to use such techniques.

In this article, we discuss R-matrix theory, a method to
calculate the transmission coefficients of electrons in a de-
vice with a complicated geometry. R-matrix theory origi-
nated in studies of nuclear reactions in which the scatter-
ing regions have a spherical geometry®. Elsewhere®, we
discuss the extension of RMT for two-dimensional de-
vices. In this paper we present the extension of RMT to



calculate the scattering coefficients of a two-dimensional
device in the presence of an external perpendicular mag-
netic field. Even though the device made by Goel et.al
has a complicated geometry, here we only focus on a four-
terminal “cross” junction device in order to develop the
general formalism of device R-matrix theory in an exter-
nal magnetic field.

In section (II) below we set up the problem to be
solved, and define our notation. We then discuss the
problem in three steps: we first construct the lead so-
lutions (section ITA), then the interior region solutions
(section IIB) and in section (IIC) we put these two so-
lutions together to formulate the equations which can
be solved for the transmission coefficients of electrons
in the leads. As an application, in section (IILA), we
use the magnetic-field RMT to calculate the transmission
coefficients in a two-dimensional four-terminal “cross”
junction device (fig.1) and in section (IIIB) we use
these transmission coefficients to calculate the magneto-
transport properties of the device. We conclude with a
summary. The appendix reviews standard R-matrix the-
ory for the field-free case.

II. SETTING UP THE PROBLEM

In order to calculate the magnetotransport properties
of the electrons in the device (fig.1), we need to calculate
the transmission coefficients of electrons in the device.
In this model, we assume that the electron transport is
ballistic and we model the transport in a single electron
picture. We start with the time-independent Schrodinger
equation for an electron in an applied perpendicular mag-
netic field,
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where |\IIE,p0,np0> is the scattering wave function. The
subscript E is the total energy and n,, denotes the quan-
tum number of the incoming electron in the lead po; no
other incoming channel is occupied. The Hamiltonian H
is given by,
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where A is the vector potential. We have chosen V (7) = 0
inside the device, although this is not essential to the R-
matrix formalism.

We will first make the Hamiltonian dimensionless. We
measure the lengths in terms of a characteristic length in
the device (typically we choose wp,, the width of the in-

put lead), and energies in terms of Ey = h?/m*w? and

define ¢ = E/Ey and 1% = h/eB. This new quantity,
Ip has the units of length and is called the “magnetic
length.” It is the average radius of the lowest Landau
level of the system. Finally, we define the dimension-
less magnetic field, B = w2 /I% so that the Schrodinger

equation becomes,
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where z and y are the dimensionless coordinates, and A
is the dimensionless vector potential. In the symmetric
gauge, we have Asymm — (-y/2,2/2,0) and in the asym-
metric gauge, A®Y™™ = (—y 0,0). While both gauges
produce the same magnetic field, the choice of gauge is
important when we solve the problem approximately. We
have to choose the gauge such that the solution will sat-
isfy the boundary conditions of the system. An appropri-
ate choice of gauge will achieve faster convergence of the
results. Since the eigenstates in any gauge form a com-
plete basis set, we are free to choose whichever basis set
is more convenient when expanding the final scattering
wavefunction. We do not examine multiply connected
structures and thus do not enforce any global phase re-
lationships.

We use R-matrix theory to solve this equation for a
given system. The idea of R-matrix theory is to solve
for the scattering coefficients of electrons without solv-
ing for the total scattering wave function |\I!€7p07np0>.
We first divide the system into two parts: the interior
scattering region, and the exterior leads (see fig.1) and
solve the Schrodinger equation in each region. Next, we
match the solutions in the two types of regions on the
soft boundaries, S (where the interior region meets the
leads) to solve for the transmission coefficients using the
R-matrix.

A. Lead Solutions

In the present application, we assume that the leads
have a Cartesian symmetry and we use the same no-
tation as in zero field RMT (appendix.A). In the ab-
sence of a magnetic field, the lead eigenfunctions take
the form of sine functions with a wave vector propor-
tional to (e — ep,np)% where € is the total energy, €, ,, is
the subband energy of the ntph quantum channel of the
p'" lead. However, the applied magnetic field breaks the
reflection symmetry and the eigenfunctions are no longer
sine functions.

We define in each lead a coordinate system (z,,y,)
where y, is the transverse z,, is the longitudinal (positive,
outgoing) coordinate (fig.2). For that coordinate system
we write the gauge in asymmetric form, since this admits
solutions in the form of a traveling wave in the longitu-
dinal direction'®. Although the lead eigenfunctions are
still analytic for a non-zero magnetic field these forms
involve special functions that complicate the calculation.
Therefore we seek a numeric solution for them?!!.



We seek for a solution of the form,

Cﬁ (mp: yp) = ethrnpTe fp,np (yp)v (6)
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Tamura and Ando show!! how to calculate the expansion

coefficients C7, .~ such that,
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where xp m, (yp) are the transverse wave function of elec-
trons in the lead when there is no magnetic field. This
gives two sets of solutions for the eq.(6), half are left mov-
ing and half are right moving. The wave vector, k ,
(eq.6) can be real, imaginary, or complex. The real wave
vectors correspond to current carrying waves, where as
the complex and imaginary wave vectors produce evanes-
cent waves. While only the current carrying waves have
a physical meaning, we need to include the evanescent
waves for the mathematical completeness.

It is important to note that these lead eigenfunctions
are not orthogonal to each other. However they do make
a complete set so that we can use them to expand the
scattering wave function in the p* lead as,
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plitudes of interest. In particular, Tﬁ;}f%po
ing amplitude of the electron to the nth subband in the

pt" lead when the electron is injected from the n sub—
band in the pf* lead. We use these scattering amphtudes

to calculate the transmission coefficients as we describe
follows.

The flux in each outgoing lead can be calculated as'?
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where r, = (zp,yp). Since we have not normalized the
eigenfunctions to unit flux, the flux in the pt* lead is not
TP:Po

given by E LA
we can calculate the current going through each lead in
the device according to the equation (9). Even though
we use N subbands in the expansion of eq.(8), not all
of them are current carrying. We determine the value
of N such that the calculation gives the desired preci-
sion. This number is always larger than the number of
open channels at that energy. However, we use only the
open channels to calculate the flux going through the lead
according to the equation (9). The transmission coeffi-
cients, from lead ¢ to lead p is then equal to J,/J,.

)

. Once we solve for the TP-Po
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In order to calculate the flux, we substitute the equa-
tion (8) in equation (9). One might conclude that, due
to the non-orthogonality of the lead eigenfunctions, the
cross terms will not cancel out and we will end up having
a position dependent flux which would be puzzling. This
problem does not arise however, since two lead eigenfunc-
tions of the same energy satisfy!2

v
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Even though the lead eigenfunctions do not obey the
standard orthogonality relation, this relation (eq.10) will
cancel out the cross terms in the flux calculation.

B. Interior Region Solution

As Bloch first pointed out'?, the kinetic term in a
Hamiltonian in general is not Hermitian in a finite re-
gion (e.g.our interior region) for arbitrary boundary con-
ditions. If it is not Hermitian, its eigenfunctions do not
make a complete set. He defined the “Bloch Hamilto-
nian” of a system, adding a term £ to the original Hamil-
tonian so that the result is Hermitian in the finite inte-
rior region. The scattering wave function in the interior
region can then be expanded in terms of the Bloch eigen-
functions (see Appendix).

First we find the Bloch Hamiltonian corresponding to
the magnetic-Hamiltonian (eq.4). The form of the Hamil-
tonian depends on the gauge, so the Bloch term also will
be gauge dependent. We will first discuss the problem for
an arbitrary gauge and then give the form of the Bloch
operator for the symmetric and asymmetric gauges. In
the presence of a magnetic field, the Bloch operator takes
the form,

Hp = Ho + Hmag + L1 + Lo, (11)

Ho is the magnetic field independent (i.e. B = 0) part
of the Hamiltonian and £; is the magnetic field inde-
pendent Bloch operator (Appendix A) in traditional R-
matrix theory. The magnetic field dependent part of the
Hamiltonian, Hmag, is given by

2
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In order to make this Hermitian we must add to it a
second Bloch operator L5, which we now derive.

The third term in the equation (12) is just a multiplica-
tive term that is Hermitian independent of the gauge,
thus there is no contribution to the Bloch operator from
the third term. We have to consider the Hermiticity of
the first two terms. We will consider the first term,

R . 0
h=iBAs-. (13)



We add a term £% to h such that the operator h + L2 is
Hermitian. In order to have the Hermiticity, two eigen-
functions of the operator h + L%, f and g, should satisfy
the relation,

(£,G+L5)9) = (b + £)109) . (9)
In order to satisfy the relation we find,
5 inB
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where 7 is positive for the upper integration boundaries
and negative for the lower integration boundaries. Essen-
tially n is the dot product of the outward going normal
to the soft boundary and the direction of the gradient.
Note that the Bloch operator has a different form when
compared to the zero field Bloch term. In the zero field
term the Bloch term equals to the boundary term, where
as in the magnetic field problem, the Bloch operator term
is the half of the boundary term.

Following the similar way, we can make the y depen-
dent part of the Hamiltonian to be Hermitian and we get
the total magnetic Bloch term as,
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where the first term runs over all the  boundaries and
the second term runs over all the y boundaries. When
solving for the interior region eigenfunctions, we use the
symmetric gauge and the magnetic Bloch term takes the
form,

m inB inB
=) e —spy =y =0y —spe. (A7)
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When solving for the lead eigenfunctions, we use the
asymmetric gauge and the magnetic Bloch term takes
the form,

asym Z B x
L3 :Z%é(m—sp)y. (18)
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The two Bloch terms, £ + £> makes Hp Hermitian
and we use its eigenfunctions ¢; to expand the scattering
wave functions in the interior region as,

)= >2Ci10). (19)

In the following section we explain how to relate the in-
terior region solution (eq.19) and the lead solution (eq.8)

to solve for the transmission amplitudes, (L

C. R-Matrix Formulation

Knowing the lead eigenfunctions and the interior re-
gion Bloch eigenfunctions, R-matrix theory allows us to
formulate an equation to solve for the unknown scattering
amplitudes in eq.(8). Following the zero field formulation
in the appendix, we note that our scattering wavefunc-
tion satisfies eq.(3) in all space while our interior Bloch
eigenfunctions satisfy:

(7‘1 + [:1 + [:2)¢j = €j¢j.

Thus, within the interior region and on its boundaries
we can expand the scattering wavefunction in terms of
the interior eigenstates. A small amount of algebra then
shows that we can write the scattering wave function in
the ¢** lead as,

= Re(24,Yq;Tp, Yp) L |‘I’6,po,np0 (l'pvyp»

(20)
where R matrix is defined in eq.(A7). In the presence of
a magnetic field the Bloch operator has two terms that
L = L1 + L. This equation (20) is true only inside the
interior region and we use that to write the scattering
wave function on the soft boundaries where the scattering
wave function can also be expanded in terms of the lead
eigenfunctions. The notation and the procedure remains
the same as in the zero-field RMT, however extra care
has to be taken since the transverse lead eigenfunctions,
fp.n, (yp) are not orthogonal.

In equation (20) the Bloch eigenfunctions ¢; are the
solutions to the Bloch Hamiltonian with the symmetric
gauge (since we have chosen the symmetric gauge for the
interior region). However the Bloch operator appears in
the right hand side of the equation (20) is £ = £1 +£3*™
as we have chosen the asymmetric gauge for each lead.

Now the scattering wave function in the interior region
relates to the M-matrix as,

|‘I’e,po,np0 (zq, yq)>
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|Xq,nq (yq)> <Xp,np (yp)| (vzp + ZByp |‘I’e,po,np0 (zp, yp)>(21)

where the M matrix is defined in eq.(A10) and the index
p runs through all the soft boundaries. Since we con-
sider this equation on the soft boundaries (z, = 0), the
scattering wave function can be written as,
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Combining the equations (21) and (22) gives a set of



linear equations as,
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where 1 and Ko are defined as,

Ky = Me(‘]v My, Po, mp) (ZB <ymp,m;,> - ikpmnpo 6mpvm;>)
)
and,

Ky = Mc(q,mq,p,m,,) (z’B <ymp’m;> + ikp,npémp’m;) .
In the above equations,

(25)

Xp,m;,> :

Note the difference between the eq. (A9) and the eq.(23).
The extra complexity in the magnetic-field RMT is due
to the non-orthogonality of the lead eigenfunctions and
the additional term in the Bloch operator. This equation
(eq.23) can be solved for the unknown scattering coeffi-
cients, 7,02 . We will calculate the M matrix elements
using a variational basis set. In order to explain the pro-
cedure, we will calculate the scattering coefficients of a
4-terminal “cross” junction.

<ymp,m;> = <Xp7mp | yp

III. APPLICATIONS: 4-TERMINAL “CROSS”

JUNCTION.

A. Transmission Coefficients

In this section we show how to apply eq.(23) to cal-
culate the transmission coefficients for the electrons in-
jected into the device shown in the figure (1). In order
to ease the expalination, we draw a detailed diagram of
the device as shown in the figure (2). This device has a
symmetric geometry that all the leads are same in width.
However the technique does not require such a symmetry
in the device.

In order to calculate the transmission coefficients of
the electrons in this system, we need to simultaneously
solve the set of equations given by eq.(23), which requires
the matrix elements of M. The M matrix elements are
defined by the interior region eigenfunctions |¢;). We
use a variational basis function to calculate those interior
region eigenfunctions. We briefly explain the variational
approach below.

The interior region eigenfunctions are solutions to the
equation,

He o) = € 19)) - (26)
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FIG. 2:
“cross” junction device. A local coordinate system is defined

A detailed schematic digram of a four-terminal

to each lead (z4,y4) and the interior region (z,y). For each
lead, x4 is the longitudinal coordinate and y, is the trans-
verse coordinate. We set the lead coordinate systems such

that £, = 0 where lead meets the interior region.

We choose the symmetric gauge for the interior region for
which the field dependent Bloch Hamiltonian term takes
the form,

__wB wiy  WyBs w
Lo = 1 (z + 5 )+ 1 (z 5 )+ (27)
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We use a set of basis functions,

1
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and a similar
direction.

Note that, if we set A\, = 1 and A, = 1, these basis
functions make an orthonormal set which satisfy the log-
arithmic derivative boundary conditions. However, we
choose A; and A, not equal to 1 and larger than 1, which
makes this set a non-orthonormal set. But it is complete
inside the interior region.

The importance of using such a variational basis func-
tions is that those basis functions do not have any specific
boundary conditions (such as zero value or zero deriva-
tive) on the soft boundaries s,. Having different values
and different derivatives on the boundaries achieves a
faster convergence in expanding the scattering wave func-
tion |\Il€,p0,np0> since the scattering wave function does
not have any particular condition on these boundaries.

Since the basis set is not orthonormal, we need to solve
the generalized eigenvalue problem to calculate the eigen-
values, €; and the corresponding eigenvectors, |¢;) with

set & (y) for the basis functions in the y



the expansion coefficients which is defined as,

|Grm (2:9)) = Y dnm,ap 110 () [66(y)) - (28)
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We calculate the M matrix elements and then solve the
linear algebra equations (eq.23) to find the scattering
amplitudes, ., In the interior region calculation,
we use 10 x 10 basis functions to diagonalize the Bloch
Hamiltonian. We use the same number of basis func-
tions, 10 basis functions to expand the lead eigenfunc-
tions. This makes sure that we have enough basis func-
tions. However we have not optimized the code to use the
least required number of evanescent functions. Once we
know the scattering amplitudes, Tg;’j%po , we can calculate
the transmission coefficients in each lead as we explained
in the section ITA.

The graph (fig.3) shows the transmission coefficients
of the electrons in the 4-terminal square junction de-
vice for different values of magnetic fields. The plot-
ted values are the lead to lead transmission coefficients,

= 4,P0 0,0 i issi
Topo = Enq’nm TEs,,» where TIE0 | i the transmission

coefficient of electrons to the n!" channel in the ¢'" lead
when the electron is injected from the nf,’; channel in the

pi lead. We have considered an electron injected from
the lead 1 so that pg = 1. As a check for the method, we
set B = 0 and calculate the transmission coefficients. The
transmission coefficients for the left and right directions,
Ty, and Ty, lie atop of each other. That is because of the
symmetry when there is no magnetic field. The results
show that the magnetic-field RMT correctly recovers the
zero-field result. Note that the forward transmission, T3
is always higher than the left and right transmission when
there is no magnetic field. That means that even though
the current source drives electrons from lead 1 to lead 4,
electrons are more likely to travel ballistically to lead 3
(the forward lead). If electrons moved diffusively, they
would pile up equally in the leads 2 and 4. In contrast,
ballistic electrons will accumulate in the forward lead giv-
ing a negative voltage V53 which results in a negative
bend resistance.

As the magnetic field is increased, electrons experience
the Lorentz force and tend to deflect to the lead 2. The
transmission coefficient T5; is higher than the transmis-
sion coefficient T3; as we observe from the transmission
coefficients at B = 6 and B = 12. Also the transmission
coefficients at B = 6 and B = —6 show that the direction
of the electron path changes as you change the direction
of the magnetic field which again proves the accuracy of
the calculation. Knowing the transmission amplitudes,
we can calculate scattering wave function. We have plot-
ted the probability density of a positively charged particle
traveling in the 4-terminal junction at energy, £ = 25.
We show (fig.4) both the zero field scattering wave func-
tion and the wave function at B = 10. We can see the
symmetry of the scattering wave function when there is
no magnetic field and how the electron deflects towards

the side arm when there is a magnetic field perpendicular
to the system.
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FIG. 3: Transmission Coefficients for the electron injected
to the 4-terminal “cross” junction device (fig.1) for B = 0,
B =6, B = —6, and B = 12. The solid line is (T31), the
dotted line (T%1), and dashed line is T51).



@ B=0

(b) B=10

FIG. 4: (Color online) The probability density of a posi-
tively charged particle injected to the 4-terminal junction.
Figure (a) is the probability density of the particle when
there is no magnetic field and the figure (b) is the proba-
bility density when the applied perpendicular magnetic field
B = wj /I3 = 10. Both the probabilities are calculated when
the scattering energy, e = 25. Note that the sidearms have
similar probabilities for the left figure, but not for the right
figure.
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FIG. 5: The bend reistance, Rp of a four-terminal “cross”
junction device as calculated using the magnetic field R-
matrix theory. We have calculated the bend resistance at
different Fermi energies er equals 35 (solid), 40 (dash-dot),
60 (dash) and 75 (dot). These different lines correspond to

different deivce sizes as shown in the Table (I).

B. Calculating the Magneto-Transport Properties

In the previous section we calculated the transmission
coefficients of the 4-terminal device at different energies.
Now we use these transmission coefficients to calculate
the transport properties according to the LB theory. At
zero temperature, only the transmission coefficient at
the Fermi energy contributes to the transport properties.
The Fermi energy is represented by a certain point in the

x axis of graphs in figure (3). Note that the x axis of the
graphs is the dimensionless energy measured relative to
the ground state energy of the input lead, i.e. (e — €p)
where € = E/Ey and ¢y = 72/2, ground state energy
in the input lead in the dimensionless units. Since the
energy unit Ey depends on the width of the input lead
Wp,, for a given Fermi energy, the energies in the differ-
ent points in the x axis represent devices with different
widths wp,. The Fermi energy of a system is set by the
electron concentration of the system so that,

wh?

*’I’L,

Ep = (29)
where m™* is the effective mass of electrons in the device.
Threefore, we can convert the values of the x axis in
the transmission coefficient graphs to the device width
according to,

12 12
F———=""p (30)

m*wf,0 m*

where ep is the Fermi energy in dimensionless units.
Given the electron concentration of the sample, we can
convert the dimensionless Fermi energy, er graphs in to
the width of the device as,

€r
Wpy = % (31)

Table (I) shows the conversion of the Fermi energies
that we have considered in the Rp calculation (fig.5) to
the width of the device for a electron concentration n =
1.90 x 10 em=2.

Dimensionless width
Fermi Energy nm
35 76
40 82
60 100
75 112
TABLE [: Dimensionless fermi energy values (i.e. energy

measured in units of Ep) are converted into corresponding
widths for a sample with the electron concentration n =
1.90 x 10" em 2.

Knowing the transmission coefficients at the Fermi en-
ergy, we calculate the bend resistance Rp according to
the equation (1) at different intensities of the external
magnetic field. Also note that, in the calculation, we use
the dimensionless units to measure the magnetic fields,
B = w? /l%. For a given wy,, we can convert the units of
the magnetic field to Tesla according to this relation. We
calculate the Rp at different dimensionless Fermi ener-
gies (this means for devices with different widths) and the



result is shown in the figure (5). The Fermi energy de-
creases means the width of the device decreases as shown
in the table (I).

According to our result, the bend resistance is neg-
ative at zero magnetic field which qualitatively agrees
with the experimental observation made by Goel et al..
However, the details of their device geometry is different
from ours that it is hard to compare the results quan-
titatively. This result also shows that the variation of
the bend resistance as a function of the magnetic field
is not monotonic with the width of the sample. This is
clear when we look at the transmission coefficients graphs
(fig.5). The transmission coefficients have a considerable
effect on the threshold energies. It is not just the width of
the sample matters for the result, but the position of the
Fermi energy with respect to the threshold energies. If
the width of the sample is such that the Fermi energy lies
close to a threshold energy, then the difference between
T31 and T»; is large and we will get a large negative bend
resistance. There are not enough experimental results to
prove this hypothesis.

The experiments® reported Rp ~ 4k{) when the width
of the sample equals to 0.2um. According to our results
this high bend resistance can be seen only for a narrower
device. However, the reported width is that lithographic
width, and the actual channel width can be much lower
due to depletion. This is supported by the fact that many
devices were found to be close to the threshold of pinch-
off.

IV. DISCUSSION AND CONCLUSION

In conclusion, we have improved upon the existing
zero-field R-matrix theory to calculate the transmission
coefficients of electrons in a two-dimensional device in the
presence of an external magnetic field. Using the mag-
netic field RMT, we show how to calculate the magneto-
transport properties of a 4-terminal device in a full quan-
tum mechanical fashion.

R-matrix theory provides a fast way to analyze these
devices. However, its true advantage comes in analyzing
many-electron systems. Future work will involve apply-
ing the formalism to calculating the magnetoresistance
of molecular wire systems.

APPENDIX A: ZERO FIELD R-MATRIX
THEORY FOR A 2-D SYSTEM

We consider the two-dimensional system in Fig. 6.
This system has a central region A connected to N ex-
ternal regions or “leads.” The leads and the interior
region meet at a set of boundary mathematical sur-
faces we denote by Sy, Sz, ..., Sny. We treat the
boundaries between the shaded and unshaded regions as
“hard walls” (infinite potential) so electron wave func-
tions are non-zero only in the shaded regions. The sur-

FIG. 6: Schematic of a two-dimensional device for the present
scattering calculations. The mathematical surfaces Si, Sa,
.. S~ separate the interior region A from the N leads, but

do not correspond to physical interfaces.

faces, s1,82,...,sn are called the “soft boundaries”. We
denote the input lead by py and all other leads by posi-
tive integer, p. We measure all distances in units of wp,
and energies in terms of Ey = h?/m*w? . We seek an
analytic solution for the amplitudes of outgoing states in
the leads when only one incoming state is occupied.

The time-independent Schroedinger equation for the
scattering function is

(ﬁ — e) |\Il6,p0,np0> =0.

where |\Ifeyp0,np0> represents the state of an electron with
total energy e incident in input-lead subband n,,. Note
that |¥g py.n,, ) is well-defined in all leads. In a finite

region, the Hamiltonian H is not Hermitian. We can, in
general, produce a Hermitian operator by adding to H
the so-called Bloch operator L;.'® Usually in zero field
RMT, we use Lp for the Bloch operator, however we save
the symbol B for the magnetic field in this paper. We
denote the eigenfunctions of the sum of these operators in
the interior region by |¢;) and write the so-called Bloch
eigenvalue equation as

(A1)

(A + 1) 165) = €5 165) (A2)
Inserting the Bloch operator into the Schroedinger equa-
tion we get

(A + L1 =€) [Wepumy) = L1 [Wepom,,) - (A3)
For a free particle system, the Bloch operator takes the
form,

1 -
Li=) 0@ —sp)V i, (A4)
p

where 7 is the perpendicular norm to the boundary. We
now expand the scattering wave function |\IlE p07np0> in
the set of orthonormal Bloch eigenfunctions



(A5)

Zc 167)

Inserting this expansion into the Schroedinger equation
and using the properties of the Bloch eigenfunctions, we
can write the scattering function on the ¢** lead as,

1¥e.po.n0 (Tgs Ya)) = Re(Tq, Yg5 Tpy Yp) L1 e pg,no)  (AD)

where

,po,npo

Re(x%yq;xl)ayl) Z |¢] xq,yqe»_((be] (mp,yp)| (A7)
J

This expansion is valid throughout the interior re-
gion A and on its surface (see Fig. 6).

We now apply this expansion of the scattering state
on each boundary S;. At each such boundary we can
expand the scattering function in either lead eigenfunc-
tions or Bloch eigenfunctions in the interior region. To
be specific, we introduce a local Cartesian coordinate sys-
tem for each lead: z, and y,, the longitudinal and trans-
verse coordinates of the nflh lead, respectively. We choose
x4 = 0 on each boundary. (One can easily choose any or-
thonormal coordinate system, mutatis mutandis). Each
lead eigenfunction is then a product of a plane wave in
the z, direction and a transverse bound-state eigenfunc-
tion |Xg,n, (¥¢))- The scattering wave function in the nf"
lead therefore becomes

ik

|\I’6,P0,n0 (mlh yp)) = eil ro:mpo TP0 XpOynPO (ypo) 61071?0

(A8)

79°P0 k ng T
+ Z n;rnpo ora e Xqvnq (yQ) 6?;‘1’
q,ng=1

where kg, and 7275 are the wave vector and scattering
amplitude for the channel with quantum number n, in
lead ¢. Finally, 0, 4 is the Kroniker delta-function, which
ensures that each wave function is defined only in one
lead. We can express energy conservation in lead ¢ as
e=k, ng T€q,nq, Where €q , is the energy associated with
the n!" subband in the ¢** lead. We use this relation to
determine the wave vector ky ;.

After some algebra we get a set of linear algebraic equa-
tions that we can solve for the transmission amplitudes:

7 P Po
np,npo

P,np M. (Q7 Ng, D, np) (6) - qul;lf%po (6)

p,np

= dg,po 6”(17”170 + ik’po,npg M(q, 14, D0, Npy)-
(A9)

In writing these equations we have defined

M. ((L g, D, np) =

/ / Xg,ny W) Be (Y, Yp) Xp,n,, (Yp) dYq dyp. (A10)
Finally, the R-matrix is given by

oy (zq = 0,y4) ¢5(

ej—e

zp = 0,yp)

R(€,yp,Yq) = Z

J

(A1)

This equation is general in that we can easily adapt it to
any number of leads and to different choices of input lead.
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