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Recent experiments on strongly correlated bilayer quantum Hall systems strongly suggest that,
contrary to the usual assumption, the electron spin degree of freedom is not completely frozen
either in the quantum Hall or in the compressibles states that occur at filling factor ν = 1. These
experiments imply that the quasiparticles at ν = 1 could have both spin and pseudospin textures
i.e. they could be CP3 skyrmions. Using a microscopic unrestricted Hartree-Fock approximation,
we compute the energy of several crystal states with spin, pseudospin and mixed spin-pseudospin
textures around ν = 1 as a function of interlayer separation d for different values of tunneling
(ΔSAS) , Zeeman (ΔZ), and bias (Δb) energies. We show that in some range of these parameters,
crystal states involving a certain amount of spin depolarization have lower energy than the fully spin
polarized crystals. We study this depolarisation dependence on d, ΔSAS, ΔZ and Δb and discuss
how it can lead to the fast NMR relaxation rate observed experimentally.

PACS numbers: 73.21.-b,73.40.-c, 73.20.Qt

I. INTRODUCTION

It is now well established that the two-dimensional
electron gas (2DEG) in a double-quantum-well system
(DQWS) at filling factor ν = 1 has a broken symmetry
ground state that can be described as either an easy-
plane pseudospin ferromagnet or as an excitonic super-
fluid. The ferromagnetic state (in the pseudospin lan-
guage) has finite interlayer coherence even in the absence
of tunneling if the interlayer separation d is lower than
a critical layer separation dc ≈ 1.2� where � =

√
�c/eB

is the magnetic length. This is an incompressible state
supporting a quantum Hall effect (QHE). The phase dia-
gram and physical properties of this state have been ex-
tensively studied over the past fifteen years (for a review,
see Refs. 1,2).

In most studies of the bilayer coherent states at or near
filling factor ν = 1, it is generally assumed that, due to
the strong magnetic field, the ground state is fully spin
polarized. The spin degrees of freedom could thus be left
out of the analysis. Recent experiments, however, cast
some doubt on the validity of this assumption. These
experiments include the measurement3 of the dependence
of the activation energy of the bilayer quantum Hall state
at ν = 1 on an in-plane field, and the measurement4,5
of the nuclear magnetic relaxation (NMR) time T1 near
ν = 1.

The monolayer quantum Hall state at ν = 1 is a spin
ferromagnet. In the absence of Zeeman coupling, the
lowest-energy charged excitation is a spin-textured topo-
logical object called a Skyrmion6–8. Measurement of the
activation energy shows an increase of the energy gap
when the magnetic field is tilted away from the z axis at
ν = 1. This is easily understood since keeping the fill-
ing factor constant means increasing the magnetic field,
so the increase in activation energy reflects the increase

in the Zeeman energy cost of the skyrmions. By con-
trast, measurement9 of the activation energy in the bi-
layer quantum Hall state at ν = 1 shows a strong de-
crease of this energy with tilting until some critical angle
θc above which the activation energy ceases to depend
on θ. This anomalous behaviour of the activation energy
was interpreted as a change in the ground state of the
system at θc due to a the occurence of a commensurate-
incommensurate transition.10 The lowest-energy charged
excitation of the spin-polarized bilayer system at ν = 1
is a bimeron, i.e. a skyrmion in the pseudospin field. A
Hartree-Fock calculation of the behavior of the bimeron
energy in tilted magnetic field reproduces qualitatively
the features found in the experiment.11

Sawada et al.3 measured the activation energy of the
2DEG in a DQWS as a function of a parallel magnetic
field and electrical bias between the layers. They define
the imbalance parameter σ = (nf − nb)/(nf + nb) where
nf(b) is the density in the front (back) layer of the DQWS.
At σ = 0, the activation energy showed the behavior ex-
pected for pseudospin-skyrmions (i.e., bimerons) while
at σ = 1, where all electrons reside in one well, the be-
havior was that expected for a spin-skyrmion. Sawada
et al. found a continuous evolution from pseudospin-
skyrmion to spin-skyrmion as the imbalance parameter
was increased in various samples with tunneling energies
ranging from ΔSAS = 1K to ΔSAS = 33K. They con-
cluded that the excited quasiparticles must contain both
spin and pseudospin flips in order to explain their results.
In particular, the behavior of the activation energy could
not be explained by a level crossing between skyrmion
and a bimeron excitations. Instead, the bimeron exci-
tation, at the balance point, continuously transformed
into a spin-skyrmion at high bias. This suggests the
quasiparticles at these biases may be some object that
interpolates between the two types of skyrmions. Such
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objects have been studied in the field theoretic litera-
ture by Ghosh and Rajaraman12, and more recently by
Ezawa and Tsitsishvili13, who dubbed these objects CP3

skyrmions. In this last work, good agreement between
theoretical calculations and the measurements of Sawada
et al. were obtained.

Another set of experiments confirming the necessity
to take into account spin depolarization in the ground
state of the 2DEG around ν = 1 are those of Spielman
et al.4 and by Kumada et al.5. In these experiments,
the NMR relaxation time T1 is measured as a function
of filling factor. (In Ref. 5, this is also done as a func-
tion of an electrical bias.) The behavior of T1 seen in
these experiments is reminescent of that measured14 in
monolayer quantum Hall systems where the relaxation
rate T−1

1 increases when ν deviates from 1. A possible
explanation15 involves the inclusion of skyrmions in the
groundstate when the system is doped away from ν = 1.
A single skyrmion has it spin aligned with the Zeeman
field at infinity, reversed at at the center of the skyrmions,
and has nonzero XY spin components at intermediate
distances in a vortex-like configuration. For |ν − 1| > 0,
the finite density of these objects is expected to condense
into a crystal16. The quantum mean-field energy of this
crystal is independent of the angle ϕ which defines the
global orientation of the XY spin components. Côté et
al.15 showed that this extra U(1) degree of freedom leads
to broken symmetry and hence to a spin wave mode that
remains gapless in the presence of the Zeeman field. It
is the existence of this extra gapless spin mode in the
crystal phase (and possibly in some overdamped form in
a Skyrme liquid state) that is believed to be responsi-
ble for the rapid nuclear spin relaxation observed in the
experiments.

Our goal in this paper is to show that crystal states
with some amount of spin depolarization due either to
spin-skyrmions or CP3 skyrmions exist around ν = 1,
with lower energy than crystal states with maximal spin
polarization. We show this by comparing the energy
of several crystal states in the Hartree-Fock approxima-
tion. We study the spin and pseudospin textures of these
states as the interlayer separation, the Zeeman, tunnel
coupling or the electrical bias are varied. Because CP3

crystals must have a gapless spin wave mode, just as
the Skyrme crystal in a monolayer QH system has, this
crystal state could be responsible for the fast NMR relax-
ation rate seen in the experiments of Spielman et al.4 and
Kumada et al.5. In addition, these Hartree-Fock calcu-
lations provide a check on the field theoretic calculations
that have been used on the CP3 state12,13. In the latter
it is assumed that the many body wavefunction can be
represented by a local 4-spinor with constant magnitude.
While Hartree-Fock introduces its own approximations
by using a different approach we may hope to better un-
derstand the true many body state.

Our paper is organized as follow. The model hamilto-
nian and the Hartree-Fock formalism needed to compute
the CP3 Skyrme crystal are introduced in Sec. II. In

Sec. III, we introduce the CP3 skyrmion and discuss its
limiting forms: spin-skyrmion and pseudospin-skyrmion.
Our numerical results are presented in Sec. IV. We dis-
cuss the relevance of our results to the experiments of
Spielman et al.4 and Kumada et al.5 in Sec. V.

II. MODEL HAMILTONIAN AND
HARTREE-FOCK FORMALISM

A. Hamiltonian of the 2DEG

We consider a symmetric double-quantum-well system
in a magnetic field B = Bẑ and submitted to an elec-
trical bias Δb = ER − EL where ER(L) are the subband
energies in each layer (right and left) in the absence of
magnetic field and tunneling. For the sake of limiting
the number of parameters characterizing our DQWS, we
make a narrow well approximation, i.e. we assume that
the width b of the wells is small (b << �) and treat in-
terlayer hopping in a tight-binding approximation. The
single-particle problem is then characterized by the sep-
aration d (from center to center) between the wells and
the tunneling integral t = ΔSAS/2. In the Landau gauge
where the potential vector is taken as A = (0, Bx, 0), the
Hamiltonian H0 of the non-interacting 2DEG is given by

H0 =
∑

X,j,α

Ej,αc†X,j,αcX,j,α (1)

−t
∑
X,α

(
c†X,R,αcX,L,α + c†X,L,αcX,R,α

)
.

In Eq. (1), c†X,j,α is an operator that creates an electron
with guiding center X in well j = R, L with spin index
α = ±1. We work in the strong quantum limit where
we assume that Landau level mixing is negligible and
only the Landau level N = 0 needs to be considered.
The energies Ej,α are defined by ER,a = Δb/2 + αΔZ/2
and EL,a = −Δb/2 + αΔZ/2 where ΔZ = g∗μBB is the
Zeeman energy, g∗ is the effective gyromagnetic factor
and μB is the Bohr magneton.

We describe the various phases of the electrons in the
DQWS by the set of average values

{〈
ρα,β

i,j (q)
〉}

where

ρα,β
i,j (q) is an operator that we define17 by

ρα,β
i,j (q) =

1
Nϕ

∑
X

e−iqxX+iqxqy�2/2 c†i,α,Xcj,β,X−qy�2 ,

where the Landau level degeneracy is Nϕ = S/2π�2 (with
S the area of the 2DEG). We explain the physical mean-
ing of these operators below.

In the Hartree-Fock approximation, the Hamiltonian
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of the interacting 2DEG in the DQWS is given by

HHF = Nφ

∑
i,α

Ẽα,iρ
α,α
i,i (0)

− Nφt
∑
α

[
ρα,α

R,L (0) + ρα,α
L,R (0)

]

+ Nφ

(
e2

κ�

)∑
α,β

∑
i,j

∑
q �=0

Hi,j (q)
〈
ρα,α

i,i (−q)
〉
ρβ,β

j,j (q)

−Nφ

(
e2

κ�

)∑
α,β

∑
i,j

∑
q

Xi,j (q)
〈
ρα,β

i,j (−q)
〉

ρβ,α
j,i (q),

where the renormalized single-particle energies Ẽα,i are
defined by

Ẽα,i = Ei,α +
(

e2

κ�

)[
ν

2

(
d

�

)
− dνi

�

]
. (2)

In Eq. (2), νR =
∑

α νL,α and νL =
∑

α νR,α where νi,α

is the filling factor for state (i, α) and ν =
∑

j,α νj,α is the
total filling factor of the 2DEG. The Hartree and Fock
intrawell and interwell interactions are defined by

Hi,i (q) = H (q) =
1
q�

e−q2�2 ,

Hi�=j (q) = H̃ (q) =
1
q�

e−q2�2e−qd,

Xi,i (q) = X (q) =
∫ +∞

0

dye−y2/2J0 (q�y) ,

Xi�=j (q) = X̃ (q) =
∫ +∞

0

dye−y2/2e−dy/�J0 (q�y) .

B. Calculation of the order parameters
nD

ρα,β
i,j (q)

Eo
of the crystal phases

To simplify our notation, we now define the four states
1, 2, 3, 4 ≡ (R, +) , (R,−), (L, +), (L,−) and write the or-
der parameters

〈
ρα,β

i,j (q)
〉

as 〈ρi,j(q)〉. From now on,
the indices i, j will run from 1 to 4. The average values
〈ρi,j(q)〉 are obtained by computing the single-particle
Green’s function

Gi,j (X, X ′, τ) = −
〈
Tci,X (τ) c†j,X′ (0)

〉
,

whose Fourier transform we define as

Gi,j (q,τ) =
1

Nφ

∑
X,X′

e−
i
2 qx(X+X′)δX,X′−qyl2Gi,j (X, X ′, τ) ,

so that Gi,j (q,τ = 0−) = 〈ρj,i (q)〉. In a homogeneous

phase, only
{〈

ρα,β
i,j (q = 0)

〉}
are nonzero while, in a

crystal, 〈ρj,i (q)〉 �= 0 only if q ∈ {G} where {G} is the
set of reciprocal lattice vectors of the crystal.

In our numerical calculation, we consider a finite num-
ber N of reciprocal latttice vectors (G1,G2, ...,GN ).
Defining the column vectors

Gi,j =

⎛
⎜⎜⎜⎝

Gi,j (G1, ωn)
Gi,j (G2, ωn)

...
Gi,j (GN , ωn)

⎞
⎟⎟⎟⎠ ,

where ωn is a Matsubara frequency, and the vectors

B =

⎛
⎜⎜⎜⎝

1
0
...
0

⎞
⎟⎟⎟⎠ , 0 =

⎛
⎜⎜⎜⎝

0
0
...
0

⎞
⎟⎟⎟⎠ ,

along with the 4N × 4 matrices

G =

⎛
⎜⎜⎝

G1,1 G1,2 G1,3 G1,4

G2,1 G2,2 G2,3 G2,4

G3,1 G3,2 G3,3 G3,4

G4,1 G4,2 G4,3 G4,4

⎞
⎟⎟⎠ ,

and

C = �

⎛
⎜⎜⎝

B 0 0 0
0 B 0 0
0 0 B 0
0 0 0 B

⎞
⎟⎟⎠ ,

we find that the Hartree-Fock equation of motion for the
single-particle Green’s function matrix G can be written
in a matrix form as

(i�ωn + μ) G − A G = C, (3)

where A is the 4N × 4N hermitian matrix

A = γG,G′

⎛
⎜⎜⎝

Ẽ1δG,G′ + Υ1 − X 〈ρ1,1〉 −X 〈ρ2,1〉 −tδG,G′ − X̃ 〈ρ3,1〉 −X̃ 〈ρ4,1〉
−X 〈ρ1,2〉 Ẽ2δG,G′ + Υ2 − X 〈ρ2,2〉 −X̃ 〈ρ3,2〉 −tδG,G′ − X̃ 〈ρ4,2〉

−tδG,G′ − X̃ 〈ρ1,3〉 −X̃ 〈ρ2,3〉 Ẽ3δG,G′ + Υ3 − X 〈ρ3,3〉 −X 〈ρ4,3〉
−X̃ 〈ρ1,4〉 −tδG,G′ − X̃ 〈ρ2,4〉 −X 〈ρ3,4〉 Ẽ4δG,G′ + Υ4 − X 〈ρ4,4〉

⎞
⎟⎟⎠
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with γG,G′ = e−i(G×G′)·bz�2/2 and

Υi = Υi

(
G− G′) =

∑
j

Hj,i

(
G− G′) 〈ρj,j

(
G − G′)〉 .

(4)

In the definition of A, the symbols X and X̃ stand
for X

(
G − G′) , X̃

(
G − G′) and the quantity 〈ρi,j〉 for〈

ρi,j

(
G − G′)〉 .

The 〈ρi,j (G)〉′ s are found by solving numerically the
self-consistent equation of motion given by Eq. (3). This
equation has many solutions representing the local min-
ima of the Hartree-Fock energy given by

EHF

N
=

1
ν

∑
i

Ei 〈ρi,i (0)〉 +
(

e2

κ�

)
d

�

(νR − νL)2

4ν

−1
ν

ΔSAS

2

∑
i=1,2

[〈ρi,i+2 (0)〉 + 〈ρi+2,i (0)〉]

+
1
2ν

(
e2

κ�

)∑
i,j

∑
G �=0

Hi,j (G) 〈ρi,i (−G)〉 〈ρj,j (G)〉

− 1
2ν

(
e2

κ�

)∑
i,j

∑
G

Xi,j (G) |〈ρi,j (G)〉|2 .

There is no guarantee that a solution is an absolute
minimum of EHF . Instead, we compare a finite num-
ber of likely solutions and choose the one that minimizes
the energy. The numerical scheme to solve Eq.(3) is de-
scribed in more detail in Ref. 17.

By definition,∑
i

〈ρi,i (0)〉 = ν.

This equation fixes the chemical potential μ in Eq.(3).

C. Spin and pseudospin fields in the crystal phases

In the Landau gauge and with the Hilbert space re-
stricted to the first Landau level only, an electronic state
in a single quantum well system (SQWS) is specified by
the two-component spinor cX where

cX =
(

cX,+

cX,−

)
.

Similarly, an electronic state in a spin-polarized DQWS
can be described by mapping this two-level system into
a spin 1/2 system by using the pseudo-spinor cX where

cX =
(

cX,R

cX,L

)
.

For a four-level system (with states j = 1, 2, 3, 4 =
(R, +) , (R,−), (L, +), (L,−) as given above), an elec-

tronic state is specified by the four-component spinor

cX =

⎛
⎜⎝

cX,1

cX,2

cX,3

cX,4

⎞
⎟⎠ .

The operators ρi,j(q) that we introduced previously
can be mapped into the density operator, ρ (q), the
spin and pseudospin densities operators Sa (q) and Pa (q)
(with a = x, y, z) and the 9 operators Ra,b (q) using the
SU(4) algebra (as defined in 13)

ρ(q) =
1

Nϕ

∑
X

e−iqxX+iqxqy�2/2 c†XcX−qy�2 , (5)

Sa(q) =
1

Nϕ

∑
X

e−iqxX+iqxqy�2/2 c†Xτspin
a cX−qy�2 , (6)

Pa(q) =
1

Nϕ

∑
X

e−iqxX+iqxqy�2/2 c†Xτppin
a cX−qy�2 , (7)

Ra,b(q) =
1

Nϕ

∑
X

e−iqxX+iqxqy�2/2 c†Xτspin
a τppin

b cX−qy�2 ,

(8)

where the 4 × 4 matrices τspin
a and τppin

a are defined by

τspin
a =

(
σa 0
0 σa

)
,

with σa a Pauli matrix, and by

τppin
x =

(
0 I
I 0

)
, τppin

y =
(

0 −iI
iI 0

)
, τppin

z =
(

I 0
0 −I

)
,

where I is the 2 × 2 unit matrix.
From Eqs. (5)-(8), it is easy to show that the electronic

densities in the right and left wells are given by

〈ρR (q)〉 = 〈ρ1,1 (q)〉 + 〈ρ2,2 (q)〉 ,

〈ρL (q)〉 = 〈ρ3,3 (q)〉 + 〈ρ4,4 (q)〉 ,

with the total electronic density given by 〈ρ (q)〉 =
〈ρR (q)〉 + 〈ρL (q)〉 .

The spin densities in the right and left wells are given
by

〈Sx,R (q)〉 = � 〈ρ1,2 (q)〉 ,

〈Sy,R (q)〉 = 	 〈ρ1,2 (q)〉 ,

〈Sx,L (q)〉 = � 〈ρ3,4 (q)〉 ,

〈Sy,L (q)〉 = 	 〈ρ3,4 (q)〉 ,
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and by

〈Sz,R (q)〉 =
1
2

[〈ρ1,1 (q)〉 − 〈ρ2,2 (q)〉] ,

〈Sz,L (q)〉 =
1
2

[〈ρ3,3 (q)〉 − 〈ρ4,4 (q)〉] .

Finally, the pseudospin densities for the up (+) and
down (-) spin components are given by

〈Px,+ (q)〉 = � 〈ρ1,3 (q)〉 ,

〈Py,+ (q)〉 = 	 〈ρ1,3 (q)〉 ,

〈Px,− (q)〉 = � 〈ρ2,4 (q)〉 ,

〈Py,− (q)〉 = 	 〈ρ2,4 (q)〉 ,

and by

〈Pz,+ (q)〉 =
1
2

[〈ρ1,1 (q)〉 − 〈ρ3,3 (q)〉] ,

〈Pz,− (q)〉 =
1
2

[〈ρ2,2 (q)〉 − 〈ρ4,4 (q)〉] ,

with Pz (q) = Pz,+ (q) + Pz,− (q) the total pseudospin
density.

Note that by definition 〈ρi,j (q)〉 = 〈ρj,i (−q)〉∗ . Also,
〈S (−q)〉 = 〈S (q)〉∗ and 〈P (−q)〉 = 〈P (q)〉∗. The four
order parameters that are not related to the electron,
spin, or pseudospin densities are 〈ρ1,4 (q)〉 , 〈ρ2,3 (q)〉 and
their complex conjugates. These densities involve aver-
age values of operators that flip both the spin and the
pseudospin.

The Hartree-Fock energy per electron can now be writ-
ten as

EHF

N
=

Δb

ν
〈Pz (0)〉 − ΔZ

ν
〈Sz (0)〉 − ΔSAS

ν
〈Px (0)〉

+
1
4ν

∑
G

Υ1 (G) |〈ρ (G)〉|2 +
1
ν

∑
G

Jz,1 (G) |〈Pz (G)〉|2

−1
ν

∑
G

∑
a=R,L

X (G) |〈Sa (G)〉|2 (9)

−1
ν

∑
G

∑
α=+,−

X̃ (G)
[
|〈Px,α (G)〉|2 + |〈Py,α (G)〉|2

]

−1
ν

∑
G

X̃ (G)
[
|〈ρ1,4 (G)〉|2 + |〈ρ2,3 (G)〉|2

]
.

In Eq. (9), we have defined the interactions

Υ1 (G) = H (G) + H̃ (G) − 1
2
X (G) ,

Jz,1 (G) = H (G) − H̃ (G) − 1
2
X (G) .

Because of the neutrality of the total system compris-
ing the electrons and the positive donors, we have

Υ1 (0) = −1
2
X (0) ,

Jz,1 (0) =
d

�
− 1

2
X (0) .

In the pseudospin langage, a bias acts as a pseudo-
magnetic field that couples to the z component of the
total pseudospin while the tunneling acts as a pseudo-
magnetic field that couples to the x component of the
total pseudospin. The positive sign in front of the first
term on the r.h.s of Eq. (9) is due to our particular
choice of mapping (R → + and L → −) for the pseu-
dospin states. A positive bias forces the z component of
the pseudospin down; i.e. pushes the electronic charge
in the left well. At zero bias, there is equal population
of electrons in both wells and 〈Pz (0)〉 = 0 in order to
minimize the capacitive energy.

D. The coherent liquid state at ν = 1

At ν = 1, the 2DEG can have spontaneous interlayer
coherence. For nonzero Zeeman coupling, the ground
state is well described (but this description is only ex-
act at d = 0) by a state where all electrons are in the
symmetric combination of both wells and all spins are
polarized. The order parameters are then

〈ρ1,1 (0)〉 = 〈ρ3,3 (0)〉 =
1
2
,

〈ρ1,3 (0)〉 =
1
2
eiθ,

irrespective of the value of d (for t �= 0, θ = 0 where θ is
the angle between the pseudospin vector and the x axis).
In the absence of tunneling, the coherent liquid phase
supports a gapless pseudospin wave excitation18 that dis-
perses linearly with q (for d �= 0) at small wavectors
and becomes soft at an interlayer separation dc/� ≈ 1.2.
This critical separation is increased by a finite tunnel-
ing. Above this critical interlayer separation, the inter-
well coherence is lost. The system is then believed to
be formed of two composite fermions liquids with filling
factor νR = νL = 1/2. This state is not captured by
the HFA which instead predicts a transition to a charge-
density-wave state.

E. Influence of a bias

With a bias, the symmetric and antisymmetric states
of the non-interacting 2DEG are replaced by the bonding
and anti-bonding states defined by

|B〉 =

√
1 − σ

2
|R〉 +

√
1 + σ

2
|L〉 ,

|AB〉 =

√
1 + σ

2
|R〉 −

√
1 − σ

2
|L〉 ,

where σ = Δb√
Δ2

b+Δ2
SAS

is the unbalance parameter. At

σ = 1, the ground state has all electrons in the |B〉 state

(i.e. the symmetric state in this case) with up spin if the
Zeeman coupling is non zero.
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When interactions are included, we can still easily solve
Eq. (3) in the presence of an electric bias, at ν = 1,
assuming that the Zeeman term is non zero so that the
2DEG remains spin polarized. We find

〈ρ1,1 (0)〉 = νR =
1
2

(1 − σ) ,

〈ρ3,3 (0)〉 = νL =
1
2

(1 + σ) ,

〈ρ1,3 (0)〉 = α =
1
2
eiθ

√
1 − σ2.

When t = 0, the energy of the 2DEG is again invariant
with respect to θ while for t �= 0, the energy is mini-
mized when θ = 0. The bias acts as a pseudomagnetic
field that forces the pseudospin up or down from the xy
plane. The interlayer coherence is maintained but dimin-
ished. In the HFA, there is a critical interlayer separa-
tion dHF

c (Δb) where interlayer coherence is lost and all
the charge is transferred into one well. Notice that the
pseudospin mode remains gapless under bias although
it now becomes soft at a critical interlayer separation
dGRPA

c (Δb) < dHF
c (Δb) that depends on bias. This sit-

uation is represented in Fig. 1 in the case of zero tun-
neling (essentially the same calculation can be done at
nonzero tunneling. As expected, the critical interlayer
separation increases with ΔSAS). For a 2DEG initially
in the incoherent state at d > dGRPA

c (Δb), it is possible
to get a coherent state (and so a quantum Hall effect) by
increasing the bias. This transition has been studied in
detail both theoretically19 and experimentally20.

ΔV /(e2/κl)

d/
l

0 0.05 0.1 0.15 0.2 0.25 0.3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

ICS

IIS

SQW liquid

FIG. 1: Phase diagram of the 2DEG in a DQWS at ν = 1.
The top critical line (triangles) is obtained by the instabil-
ity of the pseudospin wave mode in the GRPA. As d/� goes
through this line, the interlayer coherent state (ICS) looses
its coherence to become two interlayer incoherent states (IIS)
with νR(L) = 1/2. When bias is increased at fixed d/�, the
ICS looses its coherence and all the charge is transfered into
a single quantum well (SQW liquid). This line (squares) is
obtained in the HFA.

III. TOPOLOGICAL EXCITATIONS IN THE
DQWS

A. Spin and pseudospin skyrmions

In a monolayer system with only spin degrees of free-
dom, Eq. (9) becomes

EHF

N
= −ΔZ

ν
〈Sz (0)〉 (10)

+
1
4ν

∑
G

Υ2 (G) |〈ρ (G)〉|2

−1
ν

∑
G

X (G) |〈S (G)〉|2 ,

where the interaction

Υ2 (G) = 2H (G) − X (G) .

In the absence of Coulomb electrostatic energy and
Zeeman coupling and in the gradient approximation
where 〈S (r)〉 is assumed to vary smoothly over the mag-
netic length �, the energy in Eq. (10) can be reduced to
that of the O(3) nonlinear sigma model.21 The O(3) non-
linear sigma model in a planar geometry possesses topo-
logical solitons or skyrmions. Using the complex function
w (z) which represents the stereographic projection of the
unit sphere of spin textures s, a skyrmion of Pontryagin
index Q = 1 (which corresponds to the addition of one
electron to the 2DEG) can be written2 as

w (z) =
sx (z) − isy (z)

1 − sz (z)
=

z − b

λ
, (11)

where z = x + iy. Eq. (11) describes a skyrmion of size
|λ| centered at position b = xb + iyb in the x − y plane.
The spin components are

sx (z) − isy (z) =
2λ∗ (z − b)

|λ|2 + |z − b|2 ,

sz (z) =
|z − b|2 − |λ|2
|z − b|2 + |λ|2 .

At infinity, the spins point upward while at the center
z = b of the skyrmion, they point downward. The phase
ϕ in λ = |λ| eiϕ fixes the global orientation of the spins
forming the skyrmion.

In quantum Hall systems, skyrmion-antiskyrmion ex-
citations have been shown to have lower energy than
the corresponding maximally spin-polarized Hartree-
Fock electron-hole excitation if the Zeeman coupling is
not too strong.6,22 Around filling factor ν = 1, a finite
density of skyrmions (ν > 1) or antiskyrmions (ν < 1)
are included in the groundstate (with filling fraction
νs = |ν − 1|). At T = 0 K, these quasiparticles condense
into a Skyrme crystal.
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The equation of motion method derived in Ref. 17
was used some years ago to study the phase diagram of
the Skyrme crystal in the ΔZ − νs space. Numerical
results15,16 show that, in a large portion of the phase
space, skyrmions crystallize into a square lattice struc-
ture with two skyrmions of opposite phases (ϕ = 0 and
ϕ = π) per unit cell. This arrangement was termed
SLA (for square lattice antiferromagnetic). More recent
calculations23 show that, as the Zeeman coupling is in-
creased from small values at fixed quasiparticle filling νs,
the crystal structure changes from a checkerboard24 lat-
tice of merons near ΔZ = 0 (i.e. a SLA skyrmion lattice
where each skyrmion splits into two merons of charge
e/2 with opposite vorticities and where all merons are
equally spaced) to a lattice of biskyrmions25 at small ΔZ ,
a SLA skyrmion lattice at moderate ΔZ and finally into
a TL120 lattice of skyrmions (a triangular lattice with
three skyrmions with phases ϕ = 0, 2π/3, 4π/3 per unit
cell to avoid the frustration created by the preferred an-
tiferromagnetic ordering of the skyrmions25) at higher
values of ΔZ . The spin texture is gradually lost as the
Zeeman coupling further increases and we finally have
a Wigner crystal of maximally polarized quasiparticles
with no spin texture.

For a spin-polarized 2DEG in a DQWS, the energy
functional of Eq. (9) becomes

EHF

N
=

Δb

ν
〈Pz (0)〉 − ΔSAS

ν
〈Px (0)〉

+
1
4ν

∑
G

Υ2 (G) |〈ρ (G)〉|2 (12)

+
1
ν

∑
G

Jz,2 (G) |〈Pz (G)〉|2

−1
ν

∑
G

∑
α=+,−

X̃ (G) |〈P⊥,α (G)〉|2 ,

with

Jz,2 (G) = H (G) − H̃ (G) − X (G) .

In the absence of bias, tunneling and Coulomb elec-
trostatic energies and in the gradient approximation,
the energy in Eq. (12) can be reduced to that of the
anisotropic nonlinear sigma model with a unit pseudospin
field p (r).21 The topological excitations of this model
are bimerons and merons (or pseudospin-skyrmions and
pseudospin-merons). A bimeron with topological charge
Q = 1 has its pseudospin field given by2

px (z) − ipy (z) =
2 (z − b) (z∗ + b∗)
|z − b|2 + |z + b|2 ,

pz (z) =
|z − b|2 − |z + b|2
|z − b|2 + |z + b|2 ,

where ±b are the positions of the two merons forming the

bimeron. Alternatively, we can write

w (z) =
px (z) − ipy (z)

1 − pz (z)

=
(

z − zL

z − zR

)
e−iϕ

=
(

z − b

z + b

)
e−iϕ,

where zR(L) are the positions of the merons in the right
and left wells. The angle ϕ gives the global orientation
of the pseudospin vectors with respect to the x axis at
infinity. When z = b(−b), we are at the center of the
meron on the left(right) well and there the pseudospin
pz = −1(+1).

Bimerons and merons have been studied extensively
in the context of the QHE.11,26,27 Again, bimeron-
antibimeron excitations have been shown to be the rel-
evant excitations near ν = 1. Although we have not
performed an exhaustive calculation of the phase dia-
gram of bimeron crystals, our numerical results23 show
that at finite tunneling, an SLA (or rectangular anti-
ferromagnetic) configuration of bimerons is stable up to
an interlayer separation d/� ≈ 1. At very small tun-
neling, the bimeron lattice becomes a lattice of merons
with again the checkerboard configuration. In compari-
son with Wigner crystal in bilayer systems where a one-
component Wigner crystal can only be stabilized at small
interlayer distances of order d/� ≈ 0.1, the interlayer co-
herence in a bimeron or meron lattice persists to much
larger d/�.

B. CP3 skyrmion

When both spin and pseudospin are active degrees of
freedom, electronic states must be described by a four-
component spinor. As explained in Ref. 12, this spinor
is a CP3 spinor since the DQWS has a U(1) gauge invari-
ance (all four components of the spinor must be trans-
formed by the same phase for the DQWS’s energy to
remain invariant). Strictly speaking, a texture of a CP3

spinor can lie wholly in the spin degrees of freedom, or
wholly in the pseudospin degrees of freedom. We only
have a guarantee that the topological charge associated
with the texture integrates to an integer. In this paper
we use the phrase “CP3 Skyrmion” to refer to textures in
which both the spin and pseudospin degrees of freedom
are appreciably varying. This is sometimes referred to as
an interwined texture.

To start the iteration process needed to solve Eq. (3),
we must provide an approximate solution for the crystal
of CP3 skyrmions. From our discussion above, we ex-
pect that an SLA configuration of skyrmions could be
a likely solution. Following Rajaraman12, we write the



8

four-component spinor

Ψ (r) = A

⎛
⎜⎝

z − b
λ1

z + b
λ2

⎞
⎟⎠ , (13)

were z = x + iy and the normalisation factor is

A =
1√

|λ1|2 + |λ2|2 + 2 |z|2 + |b|2
.

This state contains a skyrmion of size |λ1| at position b
in the right well, a skyrmion of size |λ2| at position −b in
the left well and a bimeron in the spin up component of
the pseudospin centered at z = 0. The CP3 static energy
of this skyrmion is given by

ECP 3 = 2ρs

4∑
a=1

∑
j=x,y

∫
dr (DjΨa (r))∗ (DjΨa (r)) , (14)

where Dj = ∂j − iKj with K a gauge field defined by
Kj = −i

∑
a Ψ∗

a (r) ∂jΨa (r) and ρs a “spin-pseudospin”
stiffness. The field Ψ (r) must satisfy the constraint∑

a |Ψa (r)|2 = 1. Eq. (14) can be obtained from our
Hartree-Fock energy by taking the limit ΔSAS = ΔZ =
d = 0. The solution of Eq. (13) is a skyrmion with topo-
logical charge Q =

∫
drδQ (r) = 1. The CP3 topological

charge density is defined by

δQ (r) = − i

2π
εij (DiΨa (r))∗ (DjΨa (r)) . (15)

The order parameters for this single quasiparticle state
are given, in real space, by 〈ρi,j (r)〉 =

〈
Ψ†

i (r)Ψj (r)
〉

.

Fourier-transforming this expression, we can easily write
the 〈ρi,j (q)〉′ s for this state. To write an approximate
solution for a crystal of these quasiparticles, we consider
the change δ 〈ρi,j (r)〉 in the ground state (at ν = 1) when
a skyrmion is added to the system

δ 〈ρi,j (r)〉 = 〈ρi,j (r)〉 − 〈ρi,j (r)〉GS ,

where 〈ρi,j (r)〉GS describe the ground state (at ν = 1)
which has (at zero bias) all electrons in the bonding (or
symmetric) state with up spins (see Sec. II). In principle,
the fields δ 〈ρi,j (r)〉 are zero when we are far away from
the position of the skyrmion so that the crystal state can
be written approximately as

〈ρi,j (r)〉 = 〈ρi,j (r)〉GS+
∑
R

∑
α=1,2

δ
〈
ρ
(α)
i,j (r − R − cα)

〉
,

where cα is the position vector of the two skyrmions in
the unit cell, R is a lattice vector, and α is the index
of the phase of each of the two skyrmions. The order
parameters for the crystal state are then given by

〈ρi,j (G �= 0)〉 ∼
∑

α=1,2

e−iG·cαδ
〈
ρ
(α)
i,j (G)

〉
. (16)

In general, it is sufficient to give the 〈ρi,j (G �= 0)〉′ s
given by Eq. (16) on the first or first two shells of recip-
rocal lattice vectors in order for the program to converge
to the CP3 skyrmion crystal. The SLA configuration
is obtained by choosing R1 = nax̂ and R2 = maŷ for
the lattice vectors (n, m = 0,±1,±2, ...), c1 = −a

4 ŷ and
c2 = +a

4 ŷ for the positions of the two skyrmions. For
the first skyrmion, we take b = −a

4 and λ1 = λ2 = 1. For
the second skyrmion, we take, b′ = a

4 and λ′
1 = λ′

2 = −1
in order to rotate the global phase by π.

IV. NUMERICAL RESULTS ON CP3 CRYSTALS

A. Crystal states considered

The HFA does not contain the correlations necessary
to describe the ground state at d/� > 1.2 where interwell
coherence is lost. For this reason, we limit our numerical
calculations of crystal states to interlayer separations 0 ≤
d/� ≤ 1.2. In the monolayer and polarized bilayer limits,
we found that a square lattice with two skyrmions of
opposite phases per unit cell is the ground state in a wide
region of parameter space. We thus choose to consider
the following states in our analysis:

• CP3: a square lattice with two spin-pseudospin
skyrmions of opposite phases per unit cell as de-
scribed at the end of Sec. III. This state is rep-
resented in Fig. 2 in the case of small tunneling
where each skyrmion is broken into two merons of
opposite vorticities.

• SPB: a spin-polarized square lattice with two
bimerons of opposite phases per unit cell. The
spinor of Eq. (13) is replaced by Ψ (r) =

A

⎛
⎜⎝

z − b1

0
z + b1

0

⎞
⎟⎠ . At small tunneling, the bimerons

split into a pair of two merons with opposite vortic-
ities. This spin-polarized bimeron (or merons) lat-
tice should be the ground state when the Zeeman
energy is of the order or bigger than the tunneling
energy.

• SS: this is a symmetric skyrmion state which is a
pseudospin-polarized square lattice state with two
symmetric-band spin-skyrmions of opposite phases
per unit cell. By “symmetric-band”, we mean that
the SU(2) spinor for the first electron would be

given by Ψ (r) = A′

⎛
⎜⎝

z
λ1

0
0

⎞
⎟⎠ in the symmetric-

antisymmetric basis (S+; S−; AS+; AS−) basis or
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by Ψ (r) = A

⎛
⎜⎝

z
λ1

z
λ1

⎞
⎟⎠ in the (R+; R−; L+; L−) ba-

sis. We expect this phase to be the ground state
state when tunneling energy dominates the Zeeman
energy.

• High Tunneling CP3(HCP3): a square lattice with
two spin-pseudospin skyrmion of opposite phase
per unit cell. The difference between this state and
the CP3 state above is that here the spin texture
exists in the symmetric and antisymmetric bands
while in the latter it exists separately in each quan-
tum well. This state is the ground state only when
the tunneling energy is higher than the Zeeman en-
ergy and only for filling factor ν > 1. We note that
the HCP3 state is an intermediate state between SS
and SPB states. The textures in the HCP3 state
splits into two vortices with charge e/2 by reducing
the Zeeman gap.

When the tunneling or Zeeman couplings increase, the
size of the pseudospin or spin skyrmions decreases. At
large values of both these parameters, a limit is reached
where the skyrmion state reaches maximal spin and pseu-
dospin polarization. The resulting state may be viewed
as a crystal of Hartree-Fock quasiparticles. When inter-
layer coherence is non zero, the HF quasiparticles are
delocalized in both wells and form a coherent Wigner
crystal (i.e. a “one-component ”Wigner crystal)

FIG. 2: Spin textures in each well (bottom) and pseudospin
textures in each spin component (top) of a CP(3) crys-
tal for ν = 0.8, ΔSAS/

`
e2/κ�

´
= 0.0002, ΔZ/

`
e2/κ�

´
=

0.002, d/� = 1.0. The crystal has four merons per unit cell.
In each unit cell, two merons with the same vorticities have
opposite phases as explained in the text. The contours color
indicated on the legends at the right side of each plot is for
the z component of each field.

With increasing bias, the CP3 or SS solution will con-
tinuously transform into a monolayer spin skyrmion. The

SS solution, for example can be written in the R/L basis

as Ψ (r) = A√
2

⎛
⎜⎜⎝

√
1 − σz√
1 − σλ1√
1 + σz√
1 + σλ1

⎞
⎟⎟⎠ in the presence of a bias

(where σ is the unbalance parameter and σ = 0 in the
absence of bias).

B. Effect of interlayer separation at zero bias

We first compute the energy of the three states just
introduced as a function of the interlayer separation
for parameters ν = 0.8, ΔSAS/

(
e2/κ�

)
= 0.0002 and

ΔZ/
(
e2/κ�

)
= 0.002. Figure 3(a) shows the energy dif-

ferences ECP 3 − ESPB and ESS − ESPB . At small in-
terlayer separation, the ground state is the SPB crys-
tal while above some critical interwell separation that
depends on the Zeeman coupling, a CP3 crystal state
emerges and remains the ground state up to the largest
value of d/� that we consider (i.e. d/� = 1.2). Figure
3(b) shows the difference in energy between the CP3 and
the SPB crystals for several values of the Zeeman cou-
pling. As expected, the interlayer separation at which
the SPB-CP3 transition takes place increases with in-
creasing Zeeman coupling. (We remark that e2/κ� = 50.

489
√

B K, so that the difference in energy, at d/� = 1.0
and ΔZ/

(
e2/κ�

)
= 0.002, is of the order of 90 mK.)

Moreover, in Fig. 3(c), we see that the spin polariza-
tion per electron 〈Sz (q = 0)〉 /ν varies strongly with in-
terlayer separation in the CP3 crystal state in compar-
ison with the SS state. The spin depolarization of the
CP3 state increases with decreasing ΔZ and reaches a
maximum at about d/� ≈ 1. Figure 3(d) shows the be-
haviour of the pseudospin polarization per electron in the
x−y plane i.e. 〈Px (q = 0)〉 /ν. The pseudospin polariza-
tion increases when the spin polarization decreases. The
value of pseudospin polarization gives some indication of
the size of the bimeron in the CP3 skyrmions. When
〈Px (q = 0)〉 /ν = 0.5, there are no pseudospin vortices
in the phase considered. Note that we have chosen in
our analysis a very small value of the tunneling constant.
Our results of this section stay essentially the same if the
tunneling coupling is exactly zero.

The observation that this CP3 state is most prominent
at large d suggests that it is stabilized by the interlayer
charging energy. The merons of the SPB state involve
“tilting” of the pseudospin at their cores into one layer
or the other, at an energy cost of order e2d/κ�. For large
enough d, it is energetically favorable to admix spin states
to that near their cores the charge of the vortices will be
balanced. An examination of the charge densities in each
well reveals that the CP3 lattice is indeed more locally
balanced than the SPB lattice.
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FIG. 3: (Color online). CP3 crystal at ν = 0.8 and ΔSAS = 0.0002
`
e2/κ�

´
. (a) Energy difference between the CP3 or SS state

and the SPB state at ΔZ = 0.002
`
e2/κ�

´
; (b) energy difference between the CP3 and SPB state for different values of the

Zeeman coupling; (c) Spin polarization and (d) pseudospin polarization per electron in the CP3 state (full lines) and SS state
(dashed lines) for the different Zeeman couplings indicated in (b).

C. Effect of tunneling at zero bias

In Fig. 4, we show the behavior of the spin polar-
ization per electron with filling factor for ν < 1 for
two values of the interlayer separation. At ν = 1,
〈Sz (q = 0)〉 /ν = 0.5. Away from ν = 1, the spin po-
larization decreases rapidly for the CP3 crystal until it
reaches a minimum at about ν = 0.9. Then, as ν is fur-
ther decreased and the density of skyrmions increases,
the size of the skyrmions also decreases and the Wigner
crystal limit is reached where the ground state is again
fully spin polarized. The behavior of the spin polariza-
tion we find for the CP3 crystal is identical to what was
found for Skyrme crystals in a single layer system.16 As ν
is increased towards ν = 1, we also find that the critical
interlayer separation for the transition between the SPB
and the CP3 states decreases so that the CP3 crystal
state is stable over a larger range of interlayer separa-
tion for smaller quasiparticle filling. For the SS state
that occurs at high tunneling, the variation of the spin
polarization is less marked than in the CP3 crystal.

Because the spin polarization is minimal around d/� =
1 for ν = 0.8, we choose this value of the interlayer
separation to study the effect of tunneling on the spin
polarization. Figure 5 shows the difference in energy

ECP 3 − ESPB and ESS − ESPB for three values of the
Zeeman coupling. At small Zeeman coupling, increasing
ΔSAS causes a transition from the CP3 to the SS crys-
tal. At larger Zeeman couplings, where the ground state
is the SPB crystal at zero tunneling, increasing ΔSAS

causes first a transition to a CP3 crystal (in a very nar-
row range of ΔSAS) and then into a SS at larger tunneling
values. The CP3 crystal exists only in narrow range of
ΔSAS and that range decreases with increasing Zeeman
coupling so that the CP3 state disappears at large ΔZ .
Typically, the SS phase occurs for ΔSAS � ΔZ/2.

The change in the spin and pseudospin polarizations
of the CP3 and SS crystals with ΔSAS is shown in Fig.
6 for the values of the Zeeman coupling considered in
Fig. 5. We see from this figure that increasing ΔSAS

increases the pseudospin polarization and decreases the
spin polarization. At the transition from the CP3 to the
SS state indicated by the vertical dashed lines in Fig.
6, there is a sharp drop in the spin polarization. This
sudden change in 〈Sz (q = 0)〉 , and so in the in-plane
spin polarization, should lead to abrupt changes in the
NMR relaxation time, as we discuss below.

Our results, so far, have been for filling factor ν < 1.
Interestingly, we do not find a precisely analogous spin-
pseudospin configuration for filling factors ν > 1. In-
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FIG. 4: (Color online). Spin polarization in the CP3 and SS
skyrmion crystals as a function of filling factor for ν < 1. Here
ΔZ/

`
e2/κ�

´
= 0.006. For the CP3 curves, ΔSAS/

`
e2/κ�

´
=

0.0002,while for the SS curve, ΔSAS/
`
e2/κ�

´
= 0.05.

stead, as explained in Section IV, we have found an in-
termediate spin-pseudospin state at large values of ΔSAS

and small separations ( d/� � 0.7 ), which we call the
HCP3 state. Fig. 7(a) shows the difference in energy of
HCP3 or SS and SPB. As we can see in this figure, by
increasing ΔSAS the ground state changes from SPB to
HCP3 and then to SS. Also in Fig. 7(b) we can see the
spin depolarization in HCP3 state as a function of ΔSAS .
The spin polarization of the HCP3 state is more sensitive
to ΔSAS than the SS state.

For ν > 1 the SS state also can be the ground state. At
ν = 1.04, we find that the SS state is the ground state for
d/� � 0.8, ΔSAS/

(
e2/κ�

)
> .03 and 0 < ΔZ/

(
e2/κ�

)
�

0.002. The spin polarization with interlayer separation in
the SS state is shown in Fig. 8. The linear behaviour is
typical of what is obtained for ν < 1 in the SS state (see
Fig. 3, for example).

D. Effect of a bias on the spin polarization

To conclude this section, we look at the effect of a po-
tential bias on the spin polarization. Intuitively we un-
derstand that a CP3 skyrmion involves a “twist” in some
high dimensional space that is difficult to plot in 2D.
That twist will occur throuh degrees of freedom where it
costs the least energy, and the texture will vary slowly in
sectors where the system is “stiff”. If we can change the
stiffness of textures along some direction of phase space
we can drive the texture into or out of that degree of
freedom. A simple analogy would be to drive an O(3)
model into an XY model by making excursions into the
z-direction too costly.

The behavior of this system with respect to bias il-
lustrates this physics. We choose the parameters d/� =
1, ν = 0.8, ΔSAS/

(
e2/κ�

)
= 0.0002 and ΔZ/

(
e2/κ�

)
=

0.01 so that, at the balanced point, the ground state is
a spin-polarized meron crystal (SPB). Our numerical re-
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FIG. 5: (Color online). Energy difference between the CP3

crystal (filled squares) or SS crystal (filled triangles) and the
SPB state at ν = 0.8 and d/� = 1.0 as a function of tun-
neling for Zeeman couplings: (a) ΔZ/

`
e2/κ�

´
= 0.004;(b)

ΔZ/
`
e2/κ�

´
= 0.006; and (c) ΔZ/

`
e2/κ�

´
= 0.008.

sults, plotted in Fig. 9, show that there is a transition
first into a CP3 crystal and then into the SS state as the
applied bias increases. The energy of the CP3 crystal in-
terpolates nicely between the SPB and SS phases as can
be seen in the figure. The corresponding spin polariza-
tions are shown in Fig. 9(b). The bias has the effect of
inducing a linear spin depolarization of the 2DEG in the
CP3 state. In effect, the texture inducing the deviation
of charge density from ν = 1 is being shifted from the
pseudospin degree of freedom to the spin degree of free-
dom in a continuous way. Note that the spin polarization
varies only slightly with d/� in the SS state. Fig. 9(c)
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2/κl)
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/ν
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0.5

(a)

ΔSAS/(e
2/κl)
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x>

/ν
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0
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0.3

0.4

0.5

CP3 ΔZ/(e
2/κl)=0.004

CP3 ΔZ/(e
2/κl)=0.006

CP3 ΔZ/(e
2/κl)=0.008

(b)

FIG. 6: (Color online). Spin (a) and pseudospin (b) polar-
ization per electron as a function of tunneling for the CP3

crystal (lines with symbols) and the SS state (dashed lines)
for different values of the Zeeman coupling. In (a), the spin
polarization goes to that of the SS state at large tunneling.
The vertical lines in (a) indicate the critical tunneling for the
transition between the CP3 and the SS states as found from
Fig. 5.

shows the filling factor νR and νL in the CP3 state (the
exact same curves are obtained in the SS state). Above
Δb/

(
e2/κ�

) ≈ 0.30, all the charge is transferred into the
right layer and the spin polarization is that appropri-
ate for a monolayer Skyrmion crystal with filling factor
ν = 0.8 and Zeeman coupling ΔZ/

(
e2/κ�

)
= 0.01 and

is then independent of the interlayer separation. We ex-
pect the marked decrease in the spin polarization with
bias to translate into an increase of the NMR relaxation
rate with increasing bias.

V. DISCUSSION AND CONCLUSION

Our numerical calculations show that crystals involv-
ing spin and/or pseudospin textures are likely candidates
for the ground state of the 2DEG in a bilayer quan-
tum Hall system around filling factor ν = 1. At small
tunneling and for ν < 1, we find intertwined spin and
pseudospin textures (CP3 crystal) with a spin polariza-
tion that is strongly interlayer dependent while at higher
tunneling, a symmetric skyrmion state with fully polar-

ΔSAS /(e2/κl)

ΔE
/(

e2 /κ
l)

0.015 0.02 0.025 0.03

-0.002

0.000

0.002

HCP3
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<
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0.5
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HCP3 (spin)
SS (spin)
HCP3 (ppin)

(b)

FIG. 7: (Color online). (a) Energy difference between the
HCP3 crystal or SS crystals and the SPB state as a function
of tunneling for ν = 1.2, ΔZ/

`
e2/κ�

´
= 0.0015 and d/� = 0.1;

(b) Spin an pseudospin polarization as a function of tunneling
for the HCP3 and SS crystals.

d/l

<
S

Z
>

/ν

0.4 0.6 0.8
0

0.05

0.1

0.15
ν=1.04, ΔZ=0.003
ν=1.04, ΔZ=0.002

FIG. 8: (Color online). Spin polarization as a function of
interlayer separation in the SS state for different values of the
Zeeman coupling and filling factors. Here ΔSAS/

`
e2/κ�

´
=

0.04 and ν = 1.04.

ized pseudospins or another type of spin-pseudospin state
minimizes the energy.

As mentioned in our Introduction, a Skyrmion crys-
tal has an extra gapless spin mode in the crystal phase
(and possibly in some overdamped form in a Skyrme liq-
uid state) that is believed to be responsible for the rapid
nuclear spin relaxation observed in the experiments.15.
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FIG. 9: (Color online). (a) Energy difference between the
CP3 or SS states and the SPB state; (b) spin polarization per
electron as a function of bias for ν = 0.8, ΔSAS/

`
e2/κ�

´
=

0.0002, and ΔZ/
`
e2/κ�

´
= 0.01; and (c) filling factor in the

right and left wells in the CP3 state.

This extra Goldstone mode is present both in the SS and
CP3 crystal states that we studied in this paper but not,
in the SPB state.28 To make a direct comparison with
the experiments of Spielman et al. and Kumada et al.,
it is necessary to compute the NMR relaxation rate. Re-
sults of such calculations will be presented elsewhere.28
We can expect, however, that the relaxation rate will be
proportional to the in-plane spin polarization so that the
behavior of spin polarization Sz should be an indication
of the behavior of the relaxation time T1. The rapid
change in the spin polarization that we found in the CP3

crystal state (very small ΔSAS) for filling factor around

ν = 1 may explain the rapid change in the NMR relax-
ation rate measured in the experiment of Spielman et al.
which was carried on at almost zero tunneling and for a
Zeeman coupling which is approximately that indicated
in Fig. 4.

Our Hartree-Fock calculation indicates that the ground
state at higher tunneling is a SS state instead of a CP3

crystal. In this case, the spin polarization Sz varies much
less rapidly with filling factor than for CP3 crystal. More-
over, the spin polarization does not depend much on the
interlayer separation as can be seen, for example, in Figs.
3. The results of Kumada et al. showing a rapid change
in the NMR relaxation rate as well as a strong depen-
dence on the interlayer separation would be more readily
explained by a CP3 crystal state than by the SS state
that we find. This is also true for their measurement of
the relaxation rate in the presence of an applied bias.

Fig. 10 illustrates the in-plane component for various
Zeeman couplings as a function of bias, which we believe
is a measure of the NMR relaxation rate, for small ΔSAS .
The evident continuous behavior is reminiscent of the
Kumada results. We speculate that the effects of finite
well width, Landau level mixing, and possibly disorder,
all not included in our calculations, may stabilize the CP3

state at higher tunneling than was found for our idealized
system.

In conclusion, we have studied textured quantum Hall
states in bilayer systems including the spin degree of
freedom, and have shown under appropriate circum-
stances that mixed spin-pseudospin textures appear as
the groundstate.
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FIG. 10: (Color online). Average in-plane spin polarization
in the CP3 crystal state as a function of applied bias for ν =
0.8, ΔSAS/

`
e2/κ�

´
= 0.0002 and d/� = 1.0
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