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Chapter 2

Problem 2.1

Let’s say S is the event that someone at the party went to the same school, R is the event that
someone at the party is vaguely recognizable. By Bayes’ rule:

P (S|R) =
P (R|S)P (S)

P (R)
(1)

We are given:

P (R|S) = 1/2 = 0.5

P (S) = 1/10 = 0.1

P (R) = 1/5 = 0.2

The result is

P (S|R) =
0.5× 0.1

0.2
= 0.25 (2)

Chapter 3

Problem 3.1

x ·wT − bias = 0 (3)

x1 + x2 = −1.5 (4)

This function would not correspond to a logic gate, but a constant voltage source.

Problem 3.7

Lagrange Multipliers

We are trying to minimize f(x) = ||x − x′||2 while constraining x to the hyperplane y =∑
iwixi + b. First look at partial derivatives:

∇f = 2
∑
i

(
xi − x′i

)
x̂i (5)

∇g =
∑
i

wix̂i (6)

1



Figure 3.1: The blue line is the decision boundary (x2 = −x1 − 1.5), the green arrow is the
weight vector w = (1, 1), and the red points are the standard logic gate inputs.

In accordance to ∇f − λ∇g = 0 we have

xi = x′i +
λ

2
wi (7)

Sub this back into the constraint g:∑
i

wix
′
i +

λ

2

∑
i

w2
i + b = 0 (8)

λ = −2

∑
iwix

′
i + b∑

iw
2
i

(9)

Sub Equation 7 back into f and use our value for λ:

fmin =
λ2

4

∑
i

w2
i =

(
∑

iwix
′
i + b)2∑

iw
2
i

=
y(x′)2

||w||2
(10)

Finally the distance:

||x− x′||min =
√
fmin =

|y(x′)|
||w||

(11)

Projection

The shortest vector between x′ and the hyperplane is parallel to the vector orthogonal to the
hyperplane. This is the vector that points ‘most directly’ to x. In the case of the Perceptron
boundary, this vector is wT . The boundary is ‘flat’ so if we ensure we project x′ −x to wT we
are good to go. For the projection, I like to use the Gram-Schmidt process as a reference.
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projw(x′ − x) =
(x′ − x) ·w
w ·w

w =
x′ ·w − x ·w

w2
w (12)

Substitute in the discriminant function:

w · x = −b (13)

x′ ·w + b

w2
w =

y(x′)

w2
w =

y(x′)

w
ŵ (14)

The magnitude is
|y(x′)|
||w||

(15)

Chapter 4

Problem 4.5

Refer to the train seq method of the multi-level Perceptron class MLP on my github reposi-
tory.

Problem 4.12

tanh(h) =
eh − e−h

eh + e−h
=

1− e−2h

1 + e−2h

=
2− 1− e−2h

1 + e−2h

=
2

1 + e−2h
− 1 + e−2h

1 + e−2h

= 2g(2h)− 1 (16)

Chapter 6

Problem 6.1

Refer to my lda function on github.
The author may have made mistakes in the text relating the scatter matrices. At the very least
he wasn’t clear. The covariance matrix is estimated by the total scatter matrix in the numpy

routine:

cov(xa,xb) = E
[
(X − E[X])(X − E[X])T

]
' 1

n

n∑
i=1

(xi − µ)(xi − µ)T (17)

where the mean data point is understood to be the sample mean:

µ =
1

n

n∑
i=1

xi (18)

We can expand the total scatter matrix as:
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https://github.com/ajkerr0/mlpy
https://github.com/ajkerr0/mlpy
https://github.com/ajkerr0/marsland/blob/master/dim_reduction/lda.py


(a) (b)

Figure 6.1 Left : The original iris data. Right : The reduced iris data after LDA.

1

n

n∑
i=0

(xi − µ)(xi − µ)T =
1

n

∑
c

∑
j∈c

(xj − µ)(xj − µ)T

=
1

n

∑
c

mc∑
j=1

(xj − µc)(xj − µc)
T + (µc − µ)(µc − µ)T

+ (xj − µc)(µc − µ)T + (µc − µ)(xj − µc)
T (19)

Let’s look at Equation 19 piece by piece. The third and fourth terms goes to zero:

m∑
j=1

(xj − µc) =
m∑
j=1

xj −mµc =
m∑
j=1

xj −
m

m

m∑
j=1

xj = 0 (20)

The within-scatter matrix as written in the text is invalid. It comes from the our first term in
Equation 19:

1

n

∑
c

m∑
j=1

(xj − µc)(xj − µc)
T =

∑
c

mc

n

1

mc

m∑
j=0

(xj − µc)(xj − µc)
T

=
∑
c

pc covc(xa,xb) (21)

where the covariance is calculated as the total scatter matrix of class c ala Equation 17. This
is where the pc = mc/n term comes from in the code, but the expression is not exactly right in
the text. I think there is a similar error in book equation 6.2. It comes from the second term
of Equation 19 and it should read:

SB =
1

n

∑
c

m∑
j=1

(µc−µ)(µc−µ)T =
1

n

∑
c

mc(µc−µ)(µc−µ)T =
∑
c

pc(µc−µ)(µc−µ)T (22)
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