A Companion Paper to the Momentum Space
RG Article by Knops et al.

Alex Kerr
June 24, 2015

1 Length Rescaling

To begin momentum space renormalization one must rescale the Hamiltonian
via a length rescale in real space (and equivalently rescale the system in wave
number space):
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Accordingly, our Gaussian field also rescales:
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X(k) = mX(k)
= X(k)(1—2c+3e% —4e® +..)
X(k)(1—2e) (3)

2 Hamiltonian for Gaussian field X (k)

We are given a rescaled Hamiltonian:

2 !
H'(J,y') = Ho(X(k)) + H (Y (k)) + cTyQ /d27" cos(X(r) +Y(r)) (4)
We want to use this model in a partition function, which in general is:

Z(J,y) = /DX(r)eH(‘]’y) (5)
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where

/DX(r) = ”sum over all states” (6)

Our partition function for our model corresponding to (4) is simply:

Z(Jy) = /DX(T)/Dy(r)eH'u,y')

/

= /DX(’I‘) exp [Ho(X (k))] /DY(’I”) exp {Hl(Y(k)) + 2a—y2 /d2r cos(X(r) +Y(r))

2 /
/ DX (r)eHo (X (k) / DY (1) 1V ®) [% ]]
a

where I is the integral given in (4). We understand exp {H1(Y (k))} to be the
probability density of Y (k) states. Therefore we conclude that the following
relationship holds:

/DY(r)eHl(Y(k))exp ﬁgl] = <eXp [iglbl (8)

where (); denotes the average with respect to the states modeled by H; (Y (k)).
The average of the exponential function is known as the moment-generating
function due to its use in deriving the moments of a distribution. It can also be

used to find the cumulants of a distribution:
] (9)
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Note that (z™) and ((z™)) correspond to the nth moment and nth cumulant of
the distribution respectively. With this knowledge we will expand (8) in terms
of the cumulants of Y (r):
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Recall:
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We can redefine our original (total) Gaussian field to make our next few equa-
tions neater:

Z(r)=X(r)+Y(r) (12)
such that:

Z(r) ~ N(0,0% +0%) (13)
Expanding the argument in (10):

(Z) i+ 3 (%) (2 = (%) [ ercos 2+

% (iyz') /dzrdzr’ [(cos Z(r) cos Z(r'))l(;l()cos Z(7))1{cos Z(r"))1]

We return to the partition function with (10) in mind:

7 = /DX(r)eHO(X(k)) <exp ﬁgl] >1
[ Dx(r)eto® exg [(Qy) w5 (2 <<I2>>1]
— /DX(r)exp [HO(X(I@)) + <2a?’;> (D)) +% <2a‘2>2 <<12>>1] (15)

We retrieve our Hamiltonian from the argument in the partition function:

H = Ho(X(k)) + (Zy > /d2 (cos Z(r))1+

2 (16)
% (i‘g) /dgrdzrl [(cos Z(r) cos Z(r"))1 — (cos Z(r))1{cos Z(r’))1]
We will attempt to evaluate the first-order term in (16):
(cosZ(r))r = {cos(X(r) +Y(r))h
= (cosX(r)cosY(r)+sin X(r)sinY (r))1
= (cosX(r)cosY (r)); + (sin X(r)sinY (r));
= cos X(7){cosY(7))1 +sin X (r)(sinY (7)), (17)



Keep in mind the following for X ~ N(0,0?):

@) =

{0 if n is odd (18)

o™(n— 1!l if nis even

We investigate the terms in (17):

Yz v+
(cosY); = <1—2!—i—4!—...>1
= <1>1—%<Y2>1+2*14<Y4>1—
= L ()4 (V-
11, . 1"
= gm[—2<y >1}

— e (-3 (19)

. y3 y?°
<SIHY>1 = <Y—3'+5'—>1
= (V) (V4 e (VO -
=0 (20)

Remember that odd-numbered moments vanish when the mean is zero. Now
we seek the find the average of Y2 as in (19). We know this to be equivalent to
the variance of Y if (Y); is 0. Note Eq. 2.4 from the paper:

1 &Pk [ Jk?
H((Yk)=-——| — | —Y(k)Y(-k)+ E(k 21
)= [ s | SV @Y R B®] e
We can retrieve the variance from this expression because the distribution of a
Gaussian variable is of the form:

py (y) ~ exp [W} (22)



Therefore:

¥2), = / DY (#)Y? exp [H)]
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| e
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= 7). Tak
= —5 [6(00) = $(0)]
= 5= (23)

where we have used Eq. 2.5 from the article to relate the cut-off functions and
we know the cut-off functions must go to zero at infinity and to unity at zero.
Our result for the first order integrand is then:

(cos(X(r)+Y(r)))1 = cosX(r)exp (_;<y2>1>
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