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1 Length Rescaling

To begin momentum space renormalization one must rescale the Hamiltonian
via a length rescale in real space (and equivalently rescale the system in wave
number space):

r′ =
r

1 + ε

= k(1− ε+ ε2 − ...)
≈ r(1− ε) (1)

k′ = k(1 + ε) (2)

Accordingly, our Gaussian field also rescales:

X(k′) =
1

(1 + ε)2
X(k)

= X(k)(1− 2ε+ 3ε2 − 4ε3 + ...)
≈ X(k)(1− 2ε) (3)

2 Hamiltonian for Gaussian field X(k)

We are given a rescaled Hamiltonian:

H ′(J, y′) = H0(X(k)) +H1(Y (k)) +
2y′

a2

∫
d2r cos(X(r) + Y (r)) (4)

We want to use this model in a partition function, which in general is:

Z(J, y) =
∫
DX(r)eH(J,y) (5)
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where ∫
DX(r) = ”sum over all states” (6)

Our partition function for our model corresponding to (4) is simply:

Z(J, y′) =
∫
DX(r)

∫
DY (r)eH

′(J,y′)

=
∫
DX(r) exp [H0(X(k))]

∫
DY (r) exp

[
H1(Y (k)) +

2y′

a2

∫
d2r cos(X(r) + Y (r))

]
=

∫
DX(r)eH0(X(k))

∫
DY (r)eH1(Y (k)) exp

[
2y′

a2
I

]
(7)

where I is the integral given in (4). We understand exp {H1(Y (k))} to be the
probability density of Y (k) states. Therefore we conclude that the following
relationship holds:∫

DY (r)eH1(Y (k)) exp
[

2y′

a2
I

]
=
〈

exp
[

2y′

a2
I

]〉
1

(8)

where 〈〉1 denotes the average with respect to the states modeled by H1(Y (k)).
The average of the exponential function is known as the moment-generating

function due to its use in deriving the moments of a distribution. It can also be
used to find the cumulants of a distribution:

〈ekx〉 =
∞∑
n=0

kn
〈xn〉
n!

= exp

[ ∞∑
n=1

kn
〈〈xn〉〉
n!

]
(9)

Note that 〈xn〉 and 〈〈xn〉〉 correspond to the nth moment and nth cumulant of
the distribution respectively. With this knowledge we will expand (8) in terms
of the cumulants of Y (r):

〈
exp

[
2y′

a2
I

]〉
1

= exp

[ ∞∑
n=1

(
2y′

a2

)n 〈〈In〉〉1
n!

]

≈ exp

[(
2y′

a2

)
〈〈I〉〉1 +

1
2

(
2y′

a2

)2

〈〈I2〉〉1

]
(10)

Recall:

I =
∫
d2r cos(X(r) + Y (r)) (11)
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We can redefine our original (total) Gaussian field to make our next few equa-
tions neater:

Z(r) = X(r) + Y (r) (12)

such that:

Z(r) ∼ N (0, σ2
X + σ2

Y ) (13)

Expanding the argument in (10):

(
2y′

a2

)
〈〈I〉〉1 +

1
2

(
2y′

a2

)2

〈〈I2〉〉1 =
(

2y′

a2

)∫
d2r〈cosZ(r)〉1+

1
2

(
2y′

a2

)2 ∫
d2rd2r′ [〈cosZ(r) cosZ(r′)〉1 − 〈cosZ(r)〉1〈cosZ(r′)〉1]

(14)

We return to the partition function with (10) in mind:

Z =
∫
DX(r)eH0(X(k))

〈
exp

[
2y′

a2
I

]〉
1

=
∫
DX(r)eH0(X(k)) exp

[(
2y′

a2

)
〈〈I〉〉1 +

1
2

(
2y′

a2

)2

〈〈I2〉〉1

]

=
∫
DX(r) exp

[
H0(X(k)) +

(
2y′

a2

)
〈〈I〉〉1 +

1
2

(
2y′

a2

)2

〈〈I2〉〉1

]
(15)

We retrieve our Hamiltonian from the argument in the partition function:

H = H0(X(k)) +
(

2y′

a2

)∫
d2r〈cosZ(r)〉1+

1
2

(
2y′

a2

)2 ∫
d2rd2r′ [〈cosZ(r) cosZ(r′)〉1 − 〈cosZ(r)〉1〈cosZ(r′)〉1]

(16)

We will attempt to evaluate the first-order term in (16):

〈cosZ(r)〉1 = 〈cos(X(r) + Y (r))〉1
= 〈cosX(r) cosY (r) + sinX(r) sinY (r)〉1
= 〈cosX(r) cosY (r)〉1 + 〈sinX(r) sinY (r)〉1
= cosX(r)〈cosY (r)〉1 + sinX(r)〈sinY (r)〉1 (17)
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Keep in mind the following for X ∼ N (0, σ2):

〈xn〉 =

{
0 if n is odd
σn(n− 1)!! if n is even

(18)

We investigate the terms in (17):

〈cosY 〉1 =
〈

1− Y 2

2!
+
Y 4

4!
− ...

〉
1

= 〈1〉1 −
1
2
〈Y 2〉1 +

1
24
〈Y 4〉1 − ...

= 1− 1
2
〈Y 2〉1 +

3
24
〈Y 2〉21 − ...

=
∞∑
n=0

1
n!

[
−1

2
〈Y 2〉1

]n
= exp

(
−1

2
〈Y 2〉1

)
(19)

The 3rd equality holds because Y (r) is a Gaussian with zero mean. Similarly:

〈sinY 〉1 =
〈
Y − Y 3

3!
+
Y 5

5!
− ...

〉
1

= 〈Y 〉1 −
1
6
〈Y 3〉1 +

1
120
〈Y 5〉1 − ...

= 0 (20)

Remember that odd-numbered moments vanish when the mean is zero. Now
we seek the find the average of Y 2 as in (19). We know this to be equivalent to
the variance of Y if 〈Y 〉1 is 0. Note Eq. 2.4 from the paper:

H1(Y (k)) = −1
2

∫
d2k

(2π)2

[
Jk2

ψ(k)
Y (k)Y (−k) + E1(k)

]
(21)

We can retrieve the variance from this expression because the distribution of a
Gaussian variable is of the form:

ρY (y) ∼ exp
[
− (y − µ)2

2σ2

]
(22)
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Therefore:

〈Y 2〉1 =
∫
DY (r)Y 2 exp [H1]

=
∫

d2k

(2π)2
ψ(k)
Jk2

=
1

(2π)2J

∫ 2π

0

dφ

∫ ∞

0

dk
ψ(k)
k

= − ε

2πJ

∫ ∞

0

dφ(k)
dk

= − ε

2πJ
[φ(∞)− φ(0)]

=
ε

2πJ
(23)

where we have used Eq. 2.5 from the article to relate the cut-off functions and
we know the cut-off functions must go to zero at infinity and to unity at zero.

Our result for the first order integrand is then:

〈cos(X(r) + Y (r))〉1 = cosX(r) exp
(
−1

2
〈Y 2〉1

)
= cosX(r) exp

(
− ε

4πJ

)
≈ cosX(r)

[
1− ε

4πJ

]
(24)

5


