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5.2. The Particle in a Box

We now consider our first problem with a potential, albeit a rather artificial
one:

V(x)=0, x| <L/2
= 0, |x|=L/2 (5.2.1)

This potential (Fig. 5.1a) is called the box since there is an infinite potential barrier
in the way of a particle that tries to leave the region |x| <L/2. The eigenvalue
equation in the X basis (which is the only viable choice) is

d*y  2m
—+—(E-V)y=0 5.2.2
R ( )14 (5.2.2)

We begin by partitioning space into three regions I, II, and IIT (Fig. 5.1a). The

solution v is called v, wu, and yy in regions I, II, and III, respectively.
Consider first region III, in which V= oco. It is convenient to first consider the

case where V is not infinite but equal to some ¥, which is greater than E. Now
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Figure 5.1. (a) The box potential. (b) The first two levels and wave functions in the box.



Eq. (5.2.2) becomes

d2‘/’m 2m(Vo—E)
—— Y =0 523
e 2 (5:23)
which is solved by

ym=Ae "+ Be™ (5.2.4)

‘where x =[2m(Vo—E)/#]'2,

Although A and B are arbitrary coefficients from a mathematical standpoint,
we must set B=0 on physical grounds since B e"* blows up exponentially as x— oo
and such functions are not members of our Hilbert space. If we now let V—o0, we
see that

Y= 0

It can similarly be shown that y;=0. In region II, since V=0, the solutions are
exactly those of a free particle:

wu= A expl[i(2mE/#*)"/*x] + B exp[ — i(2mE/#*)'*x] (5.2.5)
=A™ +Be ™, k=0QmE/W)'? (5.2.6)

It therefore appears that the energy eigenvalues are once again continuous as in the
free-particle case. This is not so, for yy(x)=y only in region II and not in all of
space. We must require that yy goes continuously into its counterparts yy and Y
as we cross over to regions I and II, respectively. In other words we require that

y(—L/2)y=yu(—L/2)=0 (5.2.7)
yu(+L/2)=yn(+L/2)=0 (5.2.8)

(We make no such continuity demands on y’ at the walls of the box since V
jumps to infinity there.) These constraints applied to Eq. (5.2.6) take the form

Ae 24 B e =0 (5.2.9a)

A4 BeTk2=0 (5.2.9b)



or in matrix form

—ikL /2 ikL/2 A 0
[e 2 "’_.kw][ }=[ ] (5.2.10)
é' e’ Bl |0
Such an equation has nontrivial solutions only if the determinant vanishes:

e * L — *l = —2isin(kL)=0 (5.2.11)
that is, only if
k=—, n=0, £1, £2,... (5.2.12)
To find the corresponding eigenfunctions, we go to Egs. (5.2.9a) and (5.2.9b). Since
only one of them is independent, we study just Eq. (5.2.9a), which says

A e-imr/2+Bein7r/2=O (5213)

inn/2

Multiplying by ¢™"~, we get
A=—¢e""B (5.2.14)

Since " =(—1)", Eq. (5.2.6) generates two families of solutions (normalized to
unity):

1/2
2
!//,,(x)=(z> sin(n———z x), neven (5.2.15)
2\ nwx
= (——) COS(L), n odd (5.2.16)
L L

Notice that the case n=0 is uninteresting since y,=0. Further, since y,=vy_,
for n odd and v, =—w_, for n even, and since eigenfunctions differing by an overall
factor are not considered distinct, we may restrict ourselves to positive nonzero A.
In summary, we have



1/2
2 nrx
n=\|- —, =1,3,57,... 5.2.17a
v (L) cos( 3 ) n ( )
2 /2 X
=(—-) sin(ﬂ>, n=2,46,... (5.2.17b)
L L

and from Eqs. (5.2.6) and (5.2.12),

En _ @ _ h2n,2nzl
2m  2mL

(5.2.17¢)

[It is tacitly understood in Eqs. (5.2.17a) and (5.2.17b) that |x| <L/2.]
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Sobstitotme Yhe expanstons and co“ec}r“ﬁ n powers 0, we ol !

Horo Ao 4°¥) 4+ = ESFO+ A(E' WO ESW)r .
*Tahof‘h\s Yerms v ')l, we. See

H'¥o+ 1Y = £'yor ¥
T“\""“A Hle tner prodoet with ()| yrelds”
CEIR Y5 <BIHW'y = € K1Yy + Eo<E ¥

ol B + E49A7 5 = E'CHI¥os s W
(BIHges = E'4200¥%
Remem\mws Y= YR Y]
o KPR YOS + B<HINITEs = o F
wheeh can be rewritten as’
& Wae + PUhp= B Wiy = <HINI%y
BL\,) a omilme method, the Tnnec prw\uc} w/ LY will Um\d:
AW, * BWop > BE'
Note dhad L0y are the Mot elements o H' and shoold therefe. be known.,
Move_ importanty i we moltiply the above eguation by Wap we see!

A W Wypar B Wabbdpp = BE ' Wab
PlOsp = o £ = otlna from above.

2) dluplpg+ Wrp (AE'-#10) = p E'Wab
w0y g Wiy - WWoetoa = E'(4E'-0t Wea)
1\ & py
0‘\\&)&» wb“']” wabE' 'dh)obb)m’ O((E ) ”deQ t



o= ‘*[(E ’)14’ E, (waa" Wey) * (-wa.bwba + waa,wbby]
¥t a7 O, then so\urnj the Guadmtre egn Lre' waldls

1L (00 W) 3 Tl o+ (Waalon -t
s

m———TEE

E' %(_(h)wt wbb> r J (Wae - Wi )+ Y W)™ '] {

¥ Rote . There v ?mSP in Gty whieh stedes Yt r‘?'&wcaﬂ O & Bermitan operdor
B Yo commotes with Hoand B, thonvse Hie eimoltangovs ergen fonctons

of Roand # tovse rm—oﬁe@enera%e, perturbaton MU

ex. Hrohor -Ordec Desenecacies
Ta see. o Yhe above procedore genealrees, we can rewtite ovr equatons abeve  In

medey form
Wae Web o\] - E\ [ oL]
Wha ,‘Obb][.n P

From here, T+ easy o vee Bt the St order eneu cotections are. %eelsenualuts
of e pertorbation wotrty cnd the 3@0& etﬁarwea\ots ore. Those oF the same

oy .
Th meodh derms, We are @wlmg) He basts in Yo d(%e,ne(u\-e, s0b space whreh
Aragona\rz;cs Yhe PerJrur baton matre.

]




Wk R; ?\-Q'\T)(‘Z)& ‘il\/wﬂ“rml

% Pn equaton solumy Tedwigue for Oamnny o pproxinate % ot ds TTSE m 1-D

# B srplestre explanal {ron follows ! TE e imasine. @Pm%e w/ enerqy E mouiny T
o constant potentol Vix) wher E 5 '\/{x)f then e Wow oo solotron te }‘@éi/(

L

Ux) = Pt ook %Q&m{@ ) (Woke 2 tdseates dmaction o tonel)

=2 Qor sdoten s a azaﬂ\a:‘fm) Lonekon w/ A = %‘ZW and. ol ke B

T4 we now allbw Vix) 4 \ras\ﬁ oot blously M comparison Yo A, we have o rggen over
severs] il | womelenoths were. Vi) 1 w«g)ﬁ%mhj constant. Thus  we. can reaasorchiy
LSS Lme 2}/ C?{} %%W)% smosordal i ?\(ff\ﬂ‘z‘:’ with A and  now ENUEN W/ g:mgmom“

Tn the oit

%ﬂpé% will RAUTARS
ey ;“*m ent “@3\

Note Thes will el ‘g\;ﬁ o %ﬁe’i o Ohing, po %.%”
[ I

# \J\)c}i. \@55’6&\‘(\ \w\ e:i’x;Q,vv\,w\w\,p3 ““(\AQ Cﬁ,,\c:,f’:fiizﬁjgz,\ ‘ﬂ%”/s’;\}@‘m‘i, k,@\ax ere. é/ RV / wh e ensoros y(@ - W&‘%

e T e Ay )G b Y s S
Ypn DA P VO Y= B (%) (=) 78 BT
Ln %BW\‘&’W*‘}: we. nows {x} has He @@W WUl = Alx) e E0l)
» gy s (RTe TRy et M)
/j?//

( A 'y Ay - {i‘%(f»f”’,ﬁ( cfé'@(ﬁ}

- e Y * o I i Jw TR
Hars, ,gr;fmﬂm ke N @_{Lm‘xﬂ“o nh {(m@ /,J oré \W\ﬂ\a}mai‘"\ﬁ} QM%%&'\“ i*f;g)h@“’f‘f Hu WJ{ into

Sehess &w\@@w @4 u_&\%’m’\/ 4 gi(}\mi’j

& MA@ -5)  (Read)

. . . | B



The Em«“}wxﬁmm) @3@;&"‘%%% con e @@%ﬂﬂ;} M»,E’WA *W}(Z )
" b \

=
-
7
f\
\
P
58
3

. \%{ Pocem

o wolve the ren ‘% Q‘@)&%ﬁmﬂ/ we assome. B varney sl &,. (: B v Vs Wé@ sueh Hat

A < U? \5 avid ‘%:;i ) w«%, v ﬁ@J @ig? v-atem E’N{;’;{’ OMes
o2 2 L B
There fore” Yiy= 2 f; S»p(}?) ohy

This rzsulks T por m}g/m;{ clotron bbecoming

,,,,,,

()é{ ; Wx: y

#x) = \W’@ & W&% £ { ’”)(%%\W 1 where € has obsorbed constants
Gom She. real e vatron and. Mary foud
be. complex .

Wote The frve. solobmn v a Wveor combmaton ol posilive. cunal ?’\%A(’“\iéw expepentyal s

ex. Plentia) v/ 2 verbeal poalls

V)= € Vix)  04xea
O Aweiorse.

Ll & , Ky , ~EHlx)
)

We Wrow oor solution has He [ wren AlxY - \‘;W}g (ve { e

= I X e sl + (. cosl 4@@,}1]
W\f\/r_%‘@, ” } %\% $ cp )(/R

Strce oo toliton muost 90 Yo 0 ot x=0, ondoso does, U ), we e:/"(,,uﬁ’mbf\gz{ﬂzi/a,,?/m
[

Kot Cq =0, Us *\43 oo other O o x= a, ofhee. s k) =0 we lanors

Yot Qo) w0, ne gt

. . Ea— R R T2 AN
Riote: Foc the mbmie s U, well (Veo) we ‘j@} Ji ﬂm&% s nlih = ke y\ﬁiif



#Now we exams
- exambng the. “ron clags I -
AR 3 / ‘
s a) W@mw where. V (xY) o E . dn Yegs renron, P T&

Ter 0\% TGy
Lo

Ly
¥ )= J [ptali 5m)Lr {;{\ ; g?[ﬁ:)%c%»& E

ex. ek N barvrer 1/ gnever tup

il

-

T seckon L U } ot
secton L Y= e D (ky o
“) p{ ¢ _ 3% . (e L= S \} &wjﬁ

L Mo : e oy
. bz et { Franemithed ’4,"3372)\%}57 lfxlz.j )
I ). S . 3 |
(w) e {x k! D
P | [, ..... ({) QP ¥ xa&ﬁ&i *MNM (jf%( L ;)(K }{X §7






Qoan+om Exam ) SWG‘UV‘J&

 Roswes fom Exgm |

.. B . 6uw=o -1 0o -
= Ox=| 01 (&} =l 1 o
>t 20, [.' 0] h [.f 0 i [o—l]
[0’,‘, 0"3] =0  Fand ()3(‘,\[‘(, Perm»%a}mns?oc other commutadors
l oy = ﬂ Glagy or Ah(? = Qglay (aoe\}fni‘\'rot\o?-a \ke*)
l
K = 1g¥< o] (Beliritron oF an operetor)

él}'\[‘?- %: lag74eg| = | (Pmd“ea‘rmr\ oPe(u’ror/Cmp\t:\tD@S relation )

3B obsenvables are represented Yoy Hermitran opetors; fr= AT T conditpn o Hecwitity
¥ U‘\I‘mn\\ o‘pecoérors ﬁa\ﬁ% VO =0*0=T

LAy 4plpy > | 4aip>1* (Schaoste Ihegoality )

AF> = (xlflay  (Deliwiton o expecredon valve)
L(amyy = 4B - By (Rms or avy valve )

AR-= B ~ AT (Diperson opestor)
(@R < (aBY> 2 F140ABI7T ( Uncertomndy redateon)

Condinvovs Basis [ Specire

#1In o contnoows basrs, the compleleness @aton B now defined ss’
St Wyax'V ' =T

*Ot%som\f\&) i now defmed % Dice S -fonehon

+ A pesition. operdors (K, ql %) commpute.




Traslodon Operodors
* Mow vs 1o see. how sss*exm es\ve. M Hme.

Tla)= T - 7‘%‘9\3 (Trfinitedesimal Hasloion opackr)
25 Dested fom e Blioomg, conditoons’

O Nesmalizahon OY\C\'\NvAeaL N T =T
B Ndditon & soccessie Tanslatons = T (") T (Ax) = TN

(D Towerse 1 tmnslaten M oppostie- diraton = V() = T(~dx)
@ 2en tumlaton & Rentity epacior =2 T(0)=T

2 \ote, [, P71 = Tk S

: We%nc‘rroni
$We defne. the pooten space wavetonehon o

U (x) = &X'l

= <play = Sd«x' 4Rlx"> <X =Y
= Jawl ¥E() % x)
LpIBYay = SO 4plet s ax| | ¥rad 4>
= wetke A in fems of positon opemtor > solve
Laboy = §A Ll X'y ax &Y
= § o 1o
=\ = Nomalrzaton conditon + geneatior o PDF

$\We. define the momentom spre wave-Rncton as'

Q (3 = <Py
= Monentom emenbiets Tollw came rles as pathon emenkets alwe

o -1 2, ~
AP lp's = ~thg Alp'> > Fo-hg K1y = o= epl BX]
AL



T’\'me, E\I‘O\u’rmf\
. ~ .
SC\\VDC)‘\T\SGS— Prdore. Shde vecrs ewle 1 dme ergenkejs ek
\ ; ¥ Operators Consy-.
el W Hine, Stde Vedors ngteat

*\\ﬂs&f\be% Prlvce evgea\w\s/ epesedon

= Time torslodon operaior mudt Sllow Fhrere Pmpgﬁrcs

(D Unitouy
@ ‘2\2-70 Olt,58, &) =1

B Soceessive. tsslaton are alss rarelarons Ok, £) Otk £o) = O luk)

= Ol = T- LSt
% oy dmensional analygrs (I = t

= J= £

_? U({:/'&o) = 1’ %"

* lersenlperoy eqoatons ot woton®

.r OA%
th 5z = LA H]
TS
* Dhoarest Theora, = 5 AVIR)>

Sim?\e/ Farmone Oscillador

P
He Zmt zmw’s"

#To derve creaton [awihlabon opeeions
B P, it

)ﬁ,w = Z_yy\h'w 2w

= a’ - Xg‘%é (‘A + v%%,) (O\X\N%\AJWP\ op%d“or)

6= V5 (- 0)  (cmbon open)

= N=ad  (Nomper operdor)
Ca, o0} = =1 (N, 0l =-a&
Lot al = -1 (n,a]=a"



SHO (cont)
% Aekmg there wewd cpociors on the enemy
Flny = IR -
G \ny = Tt 1D
Niny = nind

e\?_sei\v\a‘\s Bu‘ela\&:

=> Hamiltonmn con be_rewtitien ad’

Bo_yet ,siﬁ Op= Imo
T
o T TOF TR gy = M

Tonpetont Dernatons
% See oeckors oN Teansledion Opegdors + Time Ewloton

for @?anv&&ch&rvn opettdvrs

¥ Dervaton OF Momentom Opersdor
(T- )y = [ de T ) Ix'vax oy

= [ 1 e 'yl
={dx' > ax-axie>
+ Dwe Taglor expnd AX'-ax1 4>
= [ Ixy (axiey -o¢! o AX1s7)

= lay = So\x'('ax’a%/ 4x |4>)

~ P
%L\,_ _ - e (-ax 5 KAy
PRI

P
Blay = ~Th 5 \ay



Dernateore (cont.)
¥ Schebdirmer Equaton:

O(trst, ) = O£t &) Ol b)

=(L- %) Otk )

Gle+st &) ~ Lkt = o Ol L)SE

k7 S& 2k
lToua\orexPMdL’fﬂS avond. t-5€

Uk, k) - Dbk = Olkrko) +ot Se0thke) - V&R
S8 Ok ko) = Tn 1 O(ER)SE
k2 L(b,L) = W Olht) v~
Othor Tuportont Equahons
LY, F5d = &5
LF 6= - %

[XC( PJ] = 'Ekgq




Quartomy Exam 3 S*L’A:\ Guwe

 Raswes Bom DRI eXaNS

Sete » ol o Gl
Y z 0 O -

E‘Tt, 5]] = Oy (0‘“0’ relabons fesoH fam endie permota fons )

\"‘7= 2‘:: Cila;y or Rlad= 4plad (Abwiteon o & ket)
A= <) (APt an operator)

\
éca A\ = ic) laiy4q;l = | Pajectmn o@erabr/ compledeness telahon )
¥Vo ge} matex @ementy !

A= 5 Imysml Alav4n
MmN | ‘

Matrrx elements
(a7 4plp> 2 1exlpy]®  (Shoorte Tnegalty)
(K2 = <)l Rlay ( Expectedon volve )
(aRY> = <AV -t (RIS or o vake)
S AR = K- BT (Duperen cperdor)

LR 4@RYy > 4 14Caglr |? (Ur\Cen‘am{j Relaton)

L xe, 3= 0= [p, %] ( Positon/ M ermentom oma‘brs, self commote )
4 EX&,P;] =thoy ¥
’;La = X'y ( De}mﬂ-mr\ }W‘chﬁvn)
= ('P‘| A

<X'l§'\9'7 :~Eﬁg~<x'lp'> (X p'> - - p'x/
" 9 X P W&P}: h:[
= P -tha



RBasres (comdD
¥ Sc\“s&msex Prehore. = state veders Jme. evolve, Cporators + emenkels Constant

+ NeTenbery Revore =2 emenhels+ operators evolve - Stabe vectors, conglant-
O (4 &)= T-Tost
= ep[ L]
= Hemenbem equathions of moton® -k %% =[N ]

[5(\’/ Flﬁ)] 4 I’k%ll’: [‘ﬁl (7’(73')] = ~th %%

Stmple. Harmente. Oscilledor

N

- £, Lm PN a’=$‘m§; (x + -‘%\%) ol adon opgrm‘vr
L'ﬁ = +‘ hy
E“ (nwh )i &= (- ) creatton gpecr

NER Y Nomber opemisr
< [e,a7=)  [nal=-2 |
(&% &d="t  (na7=8

+ We con teworfte positon / momentom  opendors I Jems o ledder opertors as.
Y:_%(Z«“&’) Ux=m
S @2) oy Tmed
= Oncectainty relaton can be desvel osrms Nese. wessmns ot R, B; fesolt
Lom expecteton Volvey o X* P #0

¥To derme emen Bnclon, appy omihladmn epertor fo lowest state, switch to
either” potiton o momentom space t solve. Merentral eqoatron.
> Uolx) - “}m w ePl~/26] [ positon speee)

Vo [X) = -r‘h\ expt"X"/ 9~D"’] (momeniw\ SW)



SHO (Cbn«&h
¥E rﬁ&a@ond‘tvl\s con e 6@3@}@& Lom NowwiHonmn \95 50\04)\5 Aitlerentizd eqntion
when weitten N Qoaﬂwr\ Space LSy B.C. Ywat evgex\‘gmnﬁm most go
Yo O at beondawy + most e pormalizable
= Crenerodes Yreamtte ?obj(\omm\s (harkto recognree. normally)
w/ Tncloson & Gamsinn hecess omy B normal Y&abﬂﬂa

#Time. ewlton ot Ol ™ hardled vra a'\Dle\'rbmdQ” Hersen bewy equatrons of
motron, yrelomg ‘

ap 24 ag D
£ = -MmuwxX 5t W=

= ar{l\er olumg (AR ﬁ(@ end X (é)l Jime_ ewoloton GpopexmLors @\ be worftten,
Dot ety 4 eqpetons belre solumy yrelds!

da MW 9’? _I:.,Olﬁ . A
5@:3'};\; (’f;}*mw az) = -2d

dat At
oL = tWe

= Solumy above welds| &)= E(o) g ™*
L) =8 (o) 5

K(E) = X(o)eos(zok )+ JOL o (50)
f)"(l:) = - M X(0) sth(wt) s ;‘)’(o)ws[w{;)

G vane Teanshmaons

% Efchely omcont 1o moltphyny by & prase; Only transtsomatons ot ol
ROt o Hrphy e\re%%mi‘) omgoml% will resolt-m measvmble. Arfferance.

2 2
= H= B V() = B VR v,
\&, Lot 2 = €xp [:‘:Hdt/'h]\d‘/ 2y o oyt 7 = exPECVoﬂE/‘h] [tk &Y




@m%eTmns%ms (cond.)
* Motk cppleable o €M feds
= Moxwells Eqns
VeB=0 = B=W"hp =2 A= ATV

.__\—QB
I E=t88 = p--W-HE > 9= ¢- %

Rekedon s ,
#Closscally, Totadmn alost he 2-oxB T ghen by

R=1 cese -=n6 @
an O  cose o
o) C), \

= (-84 -%‘P‘L o # Tamlor ekpab\c\éd\ for infitesmal oo
¢ =21 o
o O |

> Tnliitesiva| Roteden cperdor
O(pse): T- 5300
(- ) = eeliR]

N =00

[ G Rotuten opecter)

¥ Rokadmon operedor oSt sairsly e Blbwomey
H K- DR
o Sy = Bk
6 SO TFM =1
O (B dr)] BR) = PRLBB Biwy]
% Expading operators yrells commtator latons
LT 351 =T (aok oyl permotatens)



Cloantrom Final Exam Ohdy Gorde-

¥ Voo fom PrEVIDLS EXOMS .

— Delintton o a ket _\"Lv = g layy
aloay = Bl

— Deliton of an spertor = 1av<b)
™ Prgecton Opombor/Completensss Relaten: 2} A; = %; laz><ag] = |
“ ¥ Som o m{zﬁm\ A ag & contmeovs basis set

~To get the malrix lements of an opemdor]  f- = S lmy4ml Alnz<nl

R

~ Schuwatz Trepalty ! Lalay <p)ay 2 14uipsyl?
— Expectadonvalie, K> = <alAlay
~ RS/ Aoy valoe} 4 (aRY> = 4 %y - A? |
Ly AR = F-<BYL  (Drpesmn Opemor)
= Oncertamdy Reldbon’ < (aRY> 4 (B 2 3| Ayl

- Ih\?ar-’mn\' Commotedon Relatons melode ! . ,;}
‘ ren s-[97
[xe, 47 = 0= e, 7] o 50 g=[38) aelio

Lx, pd = Thog gt =on (8]
q_ .4 2F
[X, F(P)] - L}\%’F‘)
| _, 26
[p, 6007 =-Th
CA®] = -th %% (Hersen\oe% egn o mohon)

~ Two prtores’ Scheodinger Petore. — shabe vedors evolve. Tn Hme, opemitors const.
Hesenber, Pretore -2 emenkets v opercdors evole; State Veclows cons



Rases (cont.)
¥ Tor functons & continvens vartables
- De?mﬂ\‘bv\ G‘P W'Q?Mﬁ‘wﬂ ' 1)’2; (X') - 4x'la>

Polpd = <plb>

> (play = D' <pix'vax'l«r = Jox B0 B6)
= fD\P' (p/ﬁ)(?‘ lay = SG\?' (P!,;(P') lPa(P’)

SpIMIay = [ (k! 4pIx"s &0 1A s <x'1aY
=Jag" § dy' 4pl "2 <p"t A1"24p 142
> e A derms oF x orpto

Lalay = de' (alx'>ax oy

= gdx’ \1{&(’(,)‘1
= | = Notmaleaton conclitn + PDF generator

> Iplpy = APy =5 P=ths
o lp's = J opL ]

¥ Tronslatron operators obey %Qo\\owmj propertres
D Ondory



Twportont Derivatmns

® Argolar Momentom
#Remember dhat! T -5 Ackitrasy orgolar momentom ( Nen refers 4 Yotal)

S Spm angolar momentom
L-> Orbied angolas mementom

Total %o\ar momeniom owvdvf‘: 3-5.3
= _S; v j\;" J2

Commotaton Relatons LT, 5 =0 L3, jﬂ: h €qv 3y
[f"-’ §31 =0
[§%331=0

*Fo“owit\s oo appeach fom SHO, we Acbe. \adder opemion®

= Je= Jetly 3. 1a,b> = binkila, bink?
L [ 34 3d=0
E-S%' jﬁ] = k -Si

[, 3.0= 2%3J2
£Snce 3 and T, commote, we myht emotbneons epen bt Such
Flaby=a  ad Jlabr=bh
- Relatonship bho T end Jp imphes wex valee o by
*‘_\Zn&wrdoaug, La bl 3T lab> 20
6,0l T J-la > 2 0
= Lab T I 3T labzo

= Lap! 43Tz )\ab? 20

Ly o=’ .



Dernatrons (cont)
*\We. can hao ek T, TS Tncremented i derms dn by,

3 ( S laky) = (5.3 + ’9\3:>\a,'o>
| = T, ( JevvDlab>

—

AN ( b+ # ) le,b>
= (o) (T2 14,b>)

¥ Dole" p‘d"“‘:\ T lad = ¢ la, lo+h>
Trerpreraton’ T increments ergenm\mv/o\l angolar momentom

£To Pnd. exdrenwom valoes, act g [lowsrtng operedors O X /min Sa¥es
_5'4 \&,bm) =0
I3, \0, by = O

(31'—52‘2‘7‘32\\4,%7 = O
*—aﬁSomnB o Non-zem Kevr

G~ boax =% brax = O
a= \Dm(bm*’ﬁ)
*let Dwox= JK
G= j(\'\ﬂ)hz

= () ore exprvabes of 3°

I la,bam? =0
‘Sr 3. \G,bmm> =0

(j’l’ ‘S: *‘Rst) !C"bﬂf\ﬁ'\> = O
Ly ® by TRbwn = O
a= bW\R\ (bmir\ "Y")

Broe (Do th) = Oy {bwin - 7
""‘a) \Owi 'bmw\



Destvatrons (cont. )

= Trs s b = D + %
L’l j.:\ lz‘\‘\)m.“ﬁ = :S: \q‘ ,bm>

= \Omax= %& . shee nez, b mot be on
| ineger o€ \h - Intener
+ Bk what abeot €x”?
= J,bbY = cela brh?
- Startng W/ I
Lap\ T Tolaby = 1e” 40,M\:ﬂ\>

5 \eit= WL -6 b
wit b=mh
Vel = RG] - weh =R

Cy = K \]j(j—u)—m"»m"
'-’)hl(j—m\ (3+m+!)‘

=S Now w/ I
\
le_124a, b5 o8 = 46,01 ST T _\a o>
= {‘[j(;ﬂ\] - b+ Kb
= Py - w

c. =h G(jﬂ\—mu;ﬁ

=4 .:) (5+m‘) (S-W\— )



Dervatwons (cont.)

® Ocbital Pw\»so\ar Momentom

*We de}m ovboitel al\ﬁl)[ou” momeantom opera:\'or’ t as.

~ Vi C%--W ra S
L= — L« =\é?&—%?3

ok

X

et &

> (L, ] = kL,
¥ Usig the. infinitestmal Totakon operetors, we- Can SW wavelbrions T posftron basis
‘B,(%"' DI, y,ie> = (L -EoeL) Ixy)2'y
= (I- Fselapy-upd) Iz
- (T- 54 Dopx-pad) Wy 2> e D] =0R%y
* Rt when drstriboted, these are fmnslaton epemtors

= | ¥-ust, yr x69, T |
¥ ok, Y madehes what we expect fiom, appyimay okwhon

fodex on ovr Posﬂwn ofw&or‘
s« We defme. oor wowelindon s’
()= 4xhy, 2195, 19y= (T- fLeSOl Y
=4, 6,91 8>

:41‘,6,‘?‘1\:*%‘—%%%“» = 4‘7914”‘7"“”“7
¥Touylor expareton bevt B9=0 yrelds

= 40,6,0lx7 ~ 94 /597,7 4e o0 1y

o> ik 2 AN BB &Y =(r 8¢ [ [AY
L7 ”L'h%@ﬁ La



Deswamns (cont.)

. TB ; O'W\é - F d S N C&H’@W\ %35{.9"\, ap\‘)\S {r\%nﬁeam‘) (U‘\‘Cs""ibf\
operator to Cartesten Vedors Torn convert-o spherzal sy 25

M\O\%FN\ maU\W\g. Taa\or apano\ (e 0,0 Lpl«y aeot B¢ =0
and. desve form d& @@@ra%vr

—\2&0\‘\6‘, E% =- (R %}‘?
Cx = ~th(-smU 36~ HO et 2)
'\:’3 = -th (st %)fa ~ Cot-siny %)
¥To dowe Sphesreal Harmontes, weeos on Ly component
= L%,LL my = “\)Y\ ‘ZIM>
Lo ltaldmy = wmk /\m/{,m>

=t Y2(6,4) = whY2(o )

*SOKU“%M ovove. MfPe ot €oaton \03 Separdion of VBrab e 8?61:15
&( L?) A €+ imt

—

+ T4 we,cl&ma, the oxbital c%vlar ngﬁomm%@ as'

L.t = in.ELg
:.—»Z‘haitw(tcgé»@},%)
+Hen
Lo 144y =0

Y3
WL Ly = —L%A(L%é”w#@ 2V, (6,9)

cr}?

= O
% Soluiney the abore dfferental ggonton Ve separton dargles + B.= e ™

= V(6,0 = B E(9): coe™snlte)



Dernatrons (cond.)
*\X)ma\i%a'\'m(\\fm
(Lt Lo = AL w[0,85¢6,@14,my
_ a { "
=180 1 dleme) 1Y |

_ O waED
= Cer o P

@ Opherieal Harmene + The Retodun Opercior

._,_;? We wornd 1 \RS = 9(0“1!3;7)1€>
= Dhe7E>

L L m'IAy = %}Aﬁim'l09(‘9,9,7)lz,m741,m\€>
U kA=l o dohal T changes
= S kw506 7)1 LmocLdmlZs
AN

ey

= (Y000 () (e ¢)

1



ji-' RV EK_«;

= 3.3, = (5,- T3\ Fri3y)

TL~LTuT TLT\'..Y\. —‘Lj\l

AN 1-3'\.1'-1.(.323'“ 33:5;)
J
T2+ i[5, A

-
——
~
—
[
—
—
-
-
—

37— jg—"‘i(!:'k‘&z)
3 -Jo-H)

¥ To desve. Ly apombr—%rm

(B(%‘f £) \x'.u' £y= (O- %

5"‘4)‘&' u' 2'>

= (- «:eql“qox 2p) Wiy, 2!

= (- kﬁ‘?r?}\x 95%:0 ‘x’ u' >

‘K.\\"sq?: 2 3?3 S
*¥In &’gnmm\ Xz TSNEeen? 7 ox = Ty @%@éﬁlﬁrrsmésm%‘i’
y= Combemd —> 4= *F&mécos(PS‘P + (oD 5&amY
2= (Co50 —» %3 =S bHse
= u'68= csinOsnlsh= ~-rsmOTH
Ly 606 = — SmLP%Cpx

X = 0= Con®een 5B - rsmdsm{ 59
oSOt S8 = amd sm¥sd

ok ok @ $6- = SP

~cotO el 59, =

= \X’ U( %Qx% ’1 .i’-k S(P

-, 6+20, 9-5¢>

-
-

e
.

L, O s, P-ob&eos P She>

¥ Now, T

ey lor w abovt %@y

(0,0, Ol Tt LysP Ay =

40,0154, P-eotpoos B0 \a>




&a\:\%m Exom L Study Gode.

Rasics
lay = Sleclap> or Alaz=alay  (Defton eba ket)
A= lavebl (Defmitron of an operaior)
ZiMi= 5 tadhag] = | ( Pajechon opector/Complekencss Relaton )
¥To qet the matx elements o on operator

A - 2‘ 1m7<m\mnm|
mn

Rrorwegron.

Calay 4plpy > 1<alpy)?  (Schworte Tneguolity)

{x| Aoy = AR (Expe%&*m Vale)

L (oMY = <AYY - (A>T (RS or Py veclve )
=> AR= A-<A>L  (Depersion Operator)

{2y 468" > FILEARTT  (Oncertamby Relaton)
 Importont- Commotation Reledions melude

Lxegd =Loypil =0 [5,61=00 , s=%o;

Lo il - Bh2a v oo=B0); e[00], s [
Fp) = 1h 5

L PO = 27 Law)=-x2} [Hersa\bag Egn aﬁmomn)

[p, 6] = ch 5
% Tor fonchrone. o contmeoces veroldes
U ()= Ld\ay {plady = S()o(' ?‘:(Xg%(x:) p= ,37\59;
olp) = 471> =fop U W) =G eplre]



Rastes (cond))

* Remember when s cossing anaplas momentom.
T~ Acoitay Prglos Mawertom ( cblen refecs 2 fotal)

L > Ol Angolar Momentom
% S g"‘,ﬂ\ Pﬁ\go\ar W\OW\Q‘Y‘UM

# Tinporlart (aolar momertom fsmokas tnclude

T'L: R Y= :Yxl-ng'f ‘j;- 3':!': _:Yxi Zj\\,\
[_3_1; ji] =0 [.31, —S;] =0
Ejt, :YJ] = Ekég‘k S L3, J:d = A 3:

L‘S-r, _S"] = M ‘S?:

= We often write smolanwos erenbels o T2, as la, by suth that)
Ta, by = alaby Tela by = binkla, binks
)z la, by = bla, by
Te la, by = WGem (Gamn) la, brh>
% L0hen Ofﬁﬂ\g angolas™ momentom, # 10 den el o e ds‘re&prv doct notaton

lS,,S;,:z:I’Sy_’SL%> o \g,,S‘%> @ ISZ_/SZ_%7

= Oor Yola system operalors now become !
j: ’j; -F—J'L -— j@mz"* I1®jz_

Y= (33)(3+3) = J 32307,
= jlk_jl?+l?;(3}+'jl~+j;’3;+

% Thi S\axibﬂﬂg dlows vst ose we sels ofF et o desciibe the. system
13\,}1] M!IML> &:—") l\],lj-z_/'j,‘m>

L35, 020 = [T, 3e) =0T, 3u ]



36. Clebsch-Gordan coefficients 1
36. CLEBSCH-GORDAN COEFFICIENTS, SPHERICAL HARMONICS,
AND d FUNCTIONS
. J J
Note: A square-root sign is to be understood over every coefficient, e.g., for —8/15 read —+/8/15. Notation:
my My
5/2 3/2
+2-1/2 [
~(5
372 172 15 ‘
+1/2+1/2 1 V= sin 8 cos § €%
372 172 8
15
+3/2 -1/2
+1/2 +1/213;
5/2 3/2 1/2
+1/2 +1/2 +1/2
5/2 3/2 172
1/2 -1/2 =172
GV
(frjamamelijad M)
= (=1)! =82 (jpjimam | jain JM)
d? = (—1)ymem gd —adf 1/2 [4 1+ cosf
mim = (1) mm! ~  —m,—m! dfo = cosd d1§2,1/2 =cosy diy= —y
1/2 . g 1 sinf
dijg1jp = sing  dig= vl
+3/2~-1/2
+1/2+1/2 1 1 - cosf
-1/2+43/2 dy 1=~

+4
2321
+2 + 1|1
+1 +2|]

7/2  5/2 3/2 172
+1/2 +1/2+1/2 +1/2

7/2 5/2 372
1/2 -1/2-1/2

+2 -2

+1 -1
00
-1 41
3/2 1+cosf @ =2 +2
d3yjaa = 5 085
K 2 2
3/2 . 1+4cosf ., @ 2 _ 1+ cosf\2
af3/2’1/2 = ~\/——————2 sin 3 diy ('—‘“_2 )
3/2 _ ml—cosf 6 2 :_1+cos(9 .
d3/a,-172 = \/5’—2”" cos 5 421 sind
. 1+ cos@
3/2 _ l-—cosf . [ 9 _\/3 .9 d?, = 9cosd ~ 1
d3/2,_3/2 =-— sin 5 dsg = - sin [ 11 (2cos )
3/2 3cosf—-1 @ 1-cosf . 92 _ 3.
d1/2|1/2 T cos g dg,_l = - ) sin @ dig= 5 sinf cos @
3/2 3cosf+1 | 1—cosf\2 1-cosf
dijp_1p=""7 3 d%,—z = ( B) ) ai_y = 5 (2c0s6 +1)

5/2 3/2
3/2-3/2

Figure 36.1: The sign convention is that of Wigner (Group Theory, Academic Press, New York, 1959), also used by Condon and Shortley (The

Theory of Atomic Spectro, Cambridge Univ. Press, New York, 1953), Rose

and Cohen (Tables of the Clebsch-Gordan Coefficients,

(Elementary Theory of Angular Momentum,

Wiley, New York, 1957),

North American Rockwell Science Center, Thousand Oaks, Calif., 1974).



Rasres (cond )

= Ose of the Clebsh - Gordlen coeBererts Alows vs to relake the hoo sets
b lets (see cMached dable)

5 0 calevlodmg loy hand, equate Siades of! degenerecy
and. Ve ladder operators

| (e max/mm 3 )

Tensor Opesators
¥ For Cortesien Yensors, we. wow they tokede a5
© Rank 1= Vi=RgYy
- W =®WY Vi Lj
* Remember we define cor Rotadon eperdor R(«,B,7 as'
Rl p7) 13, my = \;i":«' [’y 83 m R p ) ym>

— Q4. o —
= o@w\‘m. ljhm'>  where =)' 50 Tzcomh

= Compamﬁ e to our classteal piciure, we seg.

LlVilay —> K| HROVERIAY = %ZRTRJ aalV;lay
Lhere. AI(R) = exp[i\:(j"ﬁ)‘éﬂ

Ly SiRgv; = BV Oy,
#frpplying oor infinitesimal operator; we. see
V= Ver (0 34] = %} Ry 7€) V;
whih allos s 1o Adoce the. ommotaton relation
Lvs, 355 = teqhV,



Tepsor O?@rc‘\‘ois LCOM.)_
¥ Frcloser exammalon of rank oo tensors teveals they can be o\ecoMPmeA as Folbws!

, LV OV - y5\; OiVy + iV L=V
U’LU& = - 3 %ij. + QJ L' + ( = Q - - ——E" %‘:J)
S p————1 —
sCO.\O-T AWH 'wmdm: "\""‘C&\& 5\:)“‘“(/"1“\‘(, Jrex\%of‘
«C
0 ® ©

5The orzled F5 repesent the nomoer of-independent-per tem, whith hagpen to
matth the molhpleeity o skkes or L=0,1,2 res?edx\)ela

Ly Repochey R o V in oo definiton of sphencal fensors, we. see |
(%) ™ s '
Ta = Yo (\I>
& V=T = IE =03 Vs
| ) 5
\)i, = T;? N -.-51"1"?%&\’3
= Tp desive. hﬂs@omm*mn pmpedma we fefom o ovr 026971771%0‘& 'Mﬂ SW( harmonres
M A
Y.L (R)-: 4“ l'&f\'\7

+Renambeing In3 = BRIy > 4l = <nLOR) e ooy ven.
hets will tansform as

D) mo = g 1Lm's s A BR N m
)
=51 U's Epue(R)
m
*Applbn\ 4l b both sides @&We{oaz’mn

AL ER N = 8 4l s o (R7)

W
L 14w = %‘, V" () O%MM,(R )

W)= £V, ) d (F)
=>



Tensor Operators (cont.)
f%ﬁc\r\‘n\g Yo opercdér ‘gmn\cérmns‘,
+ " L yM « *
TOLMER - 4L W[E @]
s Al G\ml\ﬁ moumy Yo Yenser notedon ! | .
p— (s
T T - 4 TR @]
wp?\,\smcb this eguadron Yo on ﬁ\[}n;ﬂ'esﬂml fotedon |
[3n, 0] = %T,f,'“’ &gl Sonl kg
= EmlOa‘}mj the above  Hhe 2, and £ clirectons gl‘e’db’
3, T 5T
—___ (k)
L:S*. ; T;(k):( = J—(k 74) (krqt1) nﬂ
% We hae o Yheorem Hat cefines sphemal doecrs ™ ferms A Cattesan Hersors by

(W) (h) ()
Tq = é’} Q‘ <k| kLiQ(‘ZL|k|‘4L;|’tQ7 XQ' &qL

Ot R imadable splenual fesors

D To show the obove ‘{T&I\SQfMS as a f}?hﬁﬁtﬂ_l +€ll$0f\,‘
DR)TIHR) = 212 s khag il > B 0m BR) 2305 (2)

f

Y " (k:) x
= Z’Z’ﬂ,Z’ 4 1‘-.!42;‘2,41_’ k.kzi ’477 Xq(? {i@m; ( R)]FZ;,) ED?:& ( R)]
J

q/ 42 ql fz'

{4 3 o\ sl gt .- oy
%Sy (Q)MMUZ) M{(m - Ji% %’ WATLIN him> de,‘ﬂjﬂ;lhjiiv‘“) b

- [ f ,
oy 48, by 14"/?”@7?' [Q)j X:' 2y



Tet\'sor Qaewc\otb ( con.)

+We delermme. the watvix elemars o o sphestzal Yeneor v the Weer - £ckart Tleanen
= Sy o/ 03, T - Rl liagn) T oo

(ok,j M 'El,—}z{ﬂ -‘K\‘) (h %4) L%-H) 1"(,],0\7 =0
S Suwitdhing Yo L3, T = 4,75

<d 1} ™ ’ IlT‘fk)’ ‘ 2‘\3—3— WLT:")[;‘(J/M7 =0

(o("J ’“\\ M\""Zk‘__“’;(k)w\ _ ‘ZT{“) { “l]lm? =0
@ m'= M+ whene. {’5 angolar mementom odded o 53;+evv\ |

by ﬂasvﬁ\w&al Tonsor

= w&appj %w5WM7M by M{“ﬁ <"‘ YLARY il A, 1M con be
wiitken M Jems of a5 coefBerent-and o nedueed wahy elemeytt

3wl TP my = <\|,!<,M'ZI i il N'ZT’ (d/J I )qk)ld,ﬁ

% Oor genem) Q?P‘OOLV\B o caleolale. recvced maW Element-in a
smple. Case then Ose that #in oor stutwn of infonest

ex.
3oITON09 = <Ly00012 1,05 430TDN S

M;’ (69) V- (6)Y, (0)A = 41,2;0011,2; 1,0% 4 T 13

= L3MTON S - F%r



Pertorbaton _ﬂ\eonj_
*We- only consider er&'ﬂ\zlrzpew\m i\on—deﬂene&*\f, Cases ‘be thrs exam

#* Rerorbadion B an approximalion Techngue Hut allowas 03t el on-tdalizad
probems mm\%vm mechantzs and othe Frelds |

¥hor a ayven Hawilfonran u}e, write 1as
W - Hov Vo, wherewe lnow fhe solohons B Hy bof not V

e ED NO0] + B 1250 + A 1% <29 + 2V, 2y 10
Ef") Wi
= The notmal matrix methods e 5@9,:
E= 2(E+5) +lb(E-B) vy
Ey= 3 (E+B)-Jalme) el
#Hovever, P we art vnable do solve e problemt exactly, we preceerd @ Bllows !
SWe Wwow’ Y lIny = EPnd

FMWay = Tolnd
-?J—‘\'\rvc&ocmﬁ O =En- “’)

Ly EO-dIny = W -4Anln?
DO EDM Yy = APV -Anlny

O = Lp®|v-2n\nY

(6)

-K*-Dg(:m(\cs C 'prb\\'(,c\rm o?erc:\-or‘ ‘P,\ = 1“ \n S 4“(011

= 51 KKK
k#n

\
= Iy = gy i (W-A0 Y
%o ag 2 =0, we most appreach Bs (007 = "”I N



Portucbaton Mné (eond.)
=W e redehine Y as
Wy = e noy + oy, ‘P (=210 - G = 4nlny

#Note! We choose. AN Iy = ‘ﬂ\eregwe, we mostaways
Wm\% ny a@fa‘bo \}ms%r

L \\YW = \V\(Q ¥ E‘(\‘) LP (’/W’A“ vx))
#We. extiack ‘m/\rah&a\\» D oy mottply g both sies by < n|
\Av\ KAU\(”)IV\V\)] -

¥ l:)@ln&\ns lny QNL\ Ay\ aS Power sertes
Y= W@y 2 ">> «—wn% £
Aw = ’AA“’ Al |

¥ Sobf,Ho}nﬁ the above. Mt ‘We abavc bowl ezoam\s Bre,!ols e comectons
or matching TN poluers A1

A(\) - /\ (0) \\” (o)>
AD = 4@V = 4 l\,/,’;“'
\“(D) _ (‘b) ‘+ (.P \ (o) k#h (En\ )

- 4 th ()
A= 2@“4 >



Q\m\om’ﬁ: Exam 1L 5*\%13 Gurele.

Busies
Jocy = éi.‘c-blaﬁ ad Ay = alay  (Defwton dra ket
A= 1a><b| (Defmiton oFan opefa\vl‘)

ZL:'\f 2 2[: 14> 44; \ = | (be\‘bdmn GP%&G“/COMP\e\tn&S Redatren )
% To azthe malm elemerts o on opertor’

A = 2 imvaml Alas<nd
Wgﬂ

(ald><plpy > 1 <xlpo® (Sdaarte Tnegpality)
(el = LAy (Expeckadnn Valoe)

AR-= A-<pYIL (Dispessian Cpemior)

L(aR)S = L A%y — 4AY? (A\,B\m\ue, or RMS)

(80> < (aB¥> > 4 | <TABI> 1T (Oncartarky Relchen)

* Tporont comwotaon relatons inelde! N
Cxe, 53=Upe,p3= 0O oy =[%0). %% -J %], Sl
Lxi, »7 = th 8y L., (o UJX - 0}

[x, F))= th 5
(;PI G,(x)] - a‘\ 27(’;

¥ For {onctions o centmoous vasvedbles
Flx) = 4x'la> LBlay =f A Zf;(x’)%‘a(x') p=Lh %

P (3) = 47l oy :MP' (P/;(P')<?4(F/) 4Py :@mexp[;f;p‘x’

Cand= % (Henenven Egn of Vebon)



Rasies (_cont.)
*Rw\m\ber, ﬁr o\y\%\\\ o womentom |
T > bty Anplar Momertom ( oxaly refers 1o 1ok

L = Obdal Pﬂ\a\)\m‘ Momentvm
S = Spm Pr“g)olar Momenyom

*:Em?cr\nk\' a»go\ar rometiom {-\cmom mlvse,

T3 T3, m 3y

[¥T]-0 LR 3d=0 =[, %]

LT, 351 = thégd, L3 1327,

%\D& otten wiite SMuane sos ersenws& NI, e by such Hed
J*e,b> = ala, by Jele, B> = tﬂj:m\(jw\f |a, bei?
—51\4, b> = bla,b> 'Sﬁla,w = bank |a, brnky

¥ hen clling apgpler momeniom, 7 s el to cse ek prodiet poketen’

\S.,k%m-Sz,Sn y = '\s,,s‘n & 1S, S.:7
= Oor +olal Sustem operators now become

T=3,+3, = Jel, + L, 03,

RS (3.+Tz)~(5.*31) = 3. 324277,

= Jie + Tee* 2(3,0-4 300

¥Thvs lexibiliy allovs os 4o e oo ek of kets fo descrloe. Hhe system:

V3 T MM Y &y 0 §my

(353527= 0= [T, Vo2 | =(D, Tau)

2 Use ot Cleboh-Gorlon coePerents, alows 03 1o relate the Yoo sefs
of hets Yo one ansther (see Yeble)

L T calwlahw\s by hoel , eqoccke. Stedes & degmaa% \
(e moxor min 3) and ose. ladder operion



Rasres (cont.)
FRememberthat e ée@tm%a\mr opesctors 05 Clows:

Wy
To = H‘ \/) Wwhere. V 15 @ neea) casteswn vecter
V=10 T T
\
& 'T‘ E; O = r\’x'* LVS

*’SP‘WM | Tensew, /Temsor Opeators have Hhe Bolowsma, popertres!

Y7(R) = 4R | Lm>

NS )
Y.o(h) 'Z’ (n)ﬁt (R) wheee B 5 the rotaton eperator
()
[ ljlm'y = i > 45w (R g ) L >

,"7 The Yronsformatmen ?“’?m are 05 Tolows.
'R V3 (9)D(R) = &V Ys ) p2 (Rry(*
YT O(r) - z T (D1

= The cbove properines yreld W%llowms commotudom, |
L3, 7T = Re T
—t
[31 ' Tik)] = T\J(k '@q)(kizfs )‘i:)
The. theorem Hhat de@mes Sphercal depcors 1n Yerns oF Cartesten tensors .

T{ 5% Ak k ke 4 )
o6 itz ) Xq %‘bimﬁom\)lt WW\ .

2 The makrc Slements of o sprencal Jensor are ghen by he Waper-Eekart Thwm.
reolvz«j madrix

Ld‘,J, 'lT(L”d\")’M? = <J,k N/‘llj, /J/M>\r“ﬂ4o(’ l“"'“(lk)”o(’J7
sfrm'= Mg
)
et £3,01T 0> =41,2,00)1,21,0% 43N Ty
J¥ () Y0 VLo )L = 412,000 12,10 5 L3N TNy

Ly (3TON 1y =17



?)abYLS (C(sM )
¥ Tor '\W—\ML’\)M"' r\on-degenem&a pertorbatmen '\\\&0\15, Yhe \Aﬁs\yefﬂ s on
Iny = In®y =+ t—;’:’-az, 9 (AV-24)1n>

Ay = X ‘\“M\VIY\>

L

1]

= Expanding the aloove as power semes, we find #hat-:
Ay = A Vs
Ay’ = 4n®lv|nos
- s
éah (ey- gyl

\r\(\\> = é'z-:)-" (P \“(°)>

v '
= é" (p)‘mE(o) n(()

= Rememben pectorbaton theany ™ simply an approxmaton schemes fiut-cannot
be. eam\/g; SoWed e;(sz Mam, cloe b a ‘walem%w&*cou\ W
problems can be easily aol\)ed bb &Lmﬂ;\ohagg the Hamitbonien as normal.

Tine - Mex\d@l\‘\" Perky Fbajrmr\ 'ﬂ\gor\é ( Dqgmh@sd

¥ Pob- smmplyy, we. need + Aingpralrze the degenemde. sobmatine howeser e con

= Tor cor dﬁ%ﬁ\&m‘\ﬁ enemyes, 00 evenkels become. |
llz a)\> - 2 \m1o)><m(o)l£lo))
med

= To solve the emenvuloe. epn (#= tr\)
(E-¥-V) Ly =

Lo Teolate degenemte + non-degenete siates w/ prje cton Operdors |

IO T 2 ko= T -1
= & W) W2 =T

LED



Deaenerte Portoriatron Theay (conl.)

= Reworite exgex\wtbe, eioa*hvr\ as.

(E-#-MW)B Ly + (E-#h-2V)P Ly =5
¥ fpplymey oo ?VDJ@&M epertlors, 1 a\owe,g,m\d‘.

O (E-to- M) PALY + (E-th-2V)RPILY = 0

(E- E-2D v)9 1Ly = AMVP LY = 0
= APVR Ly (B4 -1 P Ly = 0
#So\vn\s the. above 5 gstem ob-goatrons yrelds.!
11y = A[E-%-2PvP T PRy

L Ry = B Eana W L
) .1, 2vp
% expanding LL7 as apevwer sefes ond e AR X, ey -

= \?.\i‘% = éJ E,g o \\«“”%

ex. Linear Stark Effest
¥ Oor Pupieal set-vp 1> o kadmﬁarlfw oo I @ Oniform €~M
= V=-ezk, ; n= Nrlrlwhee ne’, L efon1], Nefo,z’s

Ly Flndm 7= E Indmy
1 ndm 2 = L ULANRLMY
Ly [ndm> = MmE Indm>
ﬁ | nAm> = ("‘)L [nAm> (Par% stedvﬁ}

*/Pem&wb&q TR oA ,s;>}~errcal Yensors . 2 = ﬁ”“‘;’

= <n,£‘,m‘n{(‘>>\n11m> - Mam' b/pnoaa@al#rona@%anﬁ.w\om
L e[ A, 14-1]



‘Dec\eww*&?eﬁur\ax\*mr\ “ﬂ\e,on\») (eond)

FNoe thot: Wl = -2
Ly (cddlzleven? = 4 AT T T T even

- 40&&‘?;\&“&\7

= —{odd 12\ 0dd
oldlz\ 0dd 4 2\ odd > S ok egoal O
{evenl 2| eveny = - 4evenl z|leveny

» T W we see L'z L2 and ol we con row Wyrite. Y Weachzn matry
= bor n=2, L=01

Vi o <.60v13,L05 ] = [p 5%1;;}
,,0Vi00y  © | deq,E, O
Ly v Qaeralizalron
L )
\""7 = \Y'-L( \2,0,05 + \1,1,O7> A(a—)'"%& 4o Es
\
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Problem 1: The Infinite Square Well: (10 Points)

A single particle is in a one dimensional infinitely deep potential well of width L where V(z)
is given by:

0, f0<z<L
V(=) = { 00, otherwise

1. Find the allowed energies (E,) and the normalized eigenfunctions (¥(z)) to Schrodinger’s
Equation for this potential. Show all your work. (2 Points)

2. Sketch the wave functions for the first three stationary states for this potential. (2
Points)

3. Now, if four spin-1/2 identical particles of mass m are placed in this potential, calculate
the three lowest values for the total energy of the system of particles. (3 Points)

4. Determine the degeneracy for each of the three energy states found in part 3. (3 Points)
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Problem 2: The Harmonic Oscillator (10 Points):

The normalized wave functions for the one-dimensional quantum harmonic oscillator can be
written as,

2rply/T

where n is the principle quantum number of the oscillator, Hy, is the n* order Hermite poly-
nomial, @ =wm/hk, w is the oscillator frequency, and m is its mass. The following equations
may be useful,

1/2
\Ifn(w)=< o ) e/ Hy(v/aw),

Hpi1(q) +2nHy—1(g) — 29Hn(q) =0

dH, (Q)
dgq

= 2nH,_1(q)

and

(HplgHn11) = 2% (n + 1)V/m
<Hn|an> =0
(HplgHp_1) = 2" tnly/m

1. Calculate the expectation value of z and 22 for the nt? state of the harmonic oscillator,
where z is the position. (2 Points)

2. Calculate the expectation value of p and p? for the nt" state of the harmonic oscillator,
where p is the momentum. (2 Points)

3. Calculate Az and Ap for the n'* state. What is the uncertainty product (AzAp) for
the oscillator?(2 Points)

4. Calculate the expectation value of the kinetic energy and the potential energy of the nth
state of the oscillator. Show that the sum of the expectation value of the kinetic and
potential energies are equal to the total energy of the ntt state. (2 Points)

5. How does the uncertainty principle relate to the fact that the energy is not zero in the
ground state? Explain and interpret your answer to receive credit.(2 Points)
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Problem 3: The Variational Principle: (10 Points)

If the case where you would like to calculate the ground state energy (E,) for a system described
by the Hamiltonian H but you are unable to solve the Schrodinger equation, the variational
principle will give you an upper bound for the ground state energy.

For any normalized function ¥, the variational principle states:

E, < (Y|H|D)
1.(2 Points) Prove the variational principle. i.e show that

E, < (Y|H|D)
Hint (Write ¥ = %,c,¢y, where ¢y, are the (unknown) eigenfunctions of H )

Now consider a specific case:
In the x-basis, a one-dimensional operator

d2
0= —Ew‘—2+l.’13]

has an eigenvalue A and an eigenfunction 4(z) with 4 (z) — 0 for |z — oo.
Let us choose an unnormalized trial function

a—|z|, for|z| <, and

P(z) = (z]¢) = {O, for |z| > o

where « is the variational parameter.

2. (2 Points) Find (¢|¢).

3. (3 Points) Find the expectation value of the operator 1.

4. (3 Points) Determine the best bound on the lowest eigenvalue ()\) of the operator 2
with the trial function 9(z). (Note your answer cannot depend on a.)
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Problem 4: Measurement of Hermitian Observables: (10 Points)

Consider a system with three Hermetian observables that are represented in a three-dimensional
Hilbert space using the orthonormal basis |e1), |e2) and |es)

with
1 0 0
le)=1 0 |.le2)=| 1 |,lesy=1] 0
0 0 1
and
2 00 1 0 0 010
A=}1010},B=]0 1 2 |,C=]1200
0 01 0 -2 1 0 0 1

The system at time ¢=0 is in the state:

9(0) = Jeler) = Jglea) + 1 3len)

1. Find the eigenvalues and normalized eigenvectors of B and C. (1 Point)

2. Find the probability of measuring B at time t = 0 with the eigenvalue b = 1, and then
immediately measuring C and finding the eigenvalue ¢ = 1, i.e. find Py (b = 1,¢ = 1).
(2 Points)

3. Now find the probability if these measurements are performed in reverse order at ¢ = 0,
i.e. find Py (c=1,b=1). (2 Points)

4. Are the probabilities obtained in part 1. and part 2. the same or different? Explain in
detail. (2 Points)

5. Use the Generalized Uncertainty Principle to determine a lower bound on ABAC for
the system in the initial state |¥(0)). Discuss your results. (2 Points)

6. Discuss in detail, the conditions that would result in obtaining a lower bound of zero
when using the Generalized Uncertainty Principle. Would you expect to get zero for a
particular pair of the observables, A, B, and C in this problem? Or for other conditions?
(1 Point)
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Problem 5: Perturbation Theory: (10 Points)

A single particle is in a one dimensional infinite well of length L. The potential V(z) is given
by:

0, f0<z<L
Viz) = { o0, otherwise

Suppose the potential energy inside the well is changed to

V(z) = esin?—rg—

when 0 < z < L.

Note you may use your results from Problem 1 for this problem.

1. Calculate the energy shifts for the perturbed well to first order in e. (2 Points)
2. Which energy level is shifted the most to first order in €7 (1 Point) |
Calculate the second order (in €) correction to the ground state energy (2 Points)

Calculate the corrections to the ground state wavefunction to first order in e. (2 Points)

>~ W

5. Suppose that ¢ is larger than the energy of the first excited state. Carefully sketch the
wavefunction versus z for the ground state and for the first excited state. How many
nodes, maxima, and minima does the wavefunction have in each state. (2 Points)

6. Suppose the wavefunction is a linear combination of the ground state and the first excited
state from part 5. Describe how the maximum of the probability density depends on
time.(1 Point)
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Problem 6: Spherically Symmetric States: (10 Points)

Consider eigenfunctions of the Hamiltonian of a particle in a three-dimensional central po-
tential. In particular, consider those eigenfunctions that depend only on the electron’s radial
coordinate r, that is W p=Ug(r). States represented by such eigenfunctions are called “spher-
ically symmetric states”.

1. Derive an equation for a function xg(r) defined by:

Un(r) = =xn(r),

R

~ where n is the principle quantum number. (2 Points)

The remainder of this problem concerns a hydrogen atom in the approximation that
we neglect all interactions except the Coulomb interaction and treat the proton as an
infinitely massive point particle at the origin.

2. Sketch xy,(r) for the lowest three spherical bound states of the hydrogen atom. Justify
the qualitative features of each function. (2 Points)

3. (2 Points). Consider the eigenfunction for the ground state. Prove that to be physically
admissible this function must decay exponentially as r becomes infinite.

x1(r) = e™ ¥, whenr — 00

where « is a constant, and that therefore x1(r) must have the form.

xi(r) = f(r)e”®".

4. Use f(r) = r. Justify why this is an appropriate choice and show that the above equation
is a solution of the equation you derived for xi(r) and determine the corresponding
eigenvalue E;. (2 Points)

5. Derive an expression for the constant « in terms of fundamental constants. (2 Points)



pmg QO

Problem 1: A 3-D Spherical Well(10 Points)

For this problem, consider a particle of mass m in a three-dimensional spherical potential well,
V(r), given as,

V=0r<a/2
V=Wr>a/2

with W > 0.

All of the following questions refer to the zero angular momentum states of the potential.

a. Find the form of the wave functions (i.e without matching boundary conditions), ¢(r), for
this potential for an energy, E, less than the well depth, W.(3 Points)

b. The wave function for the one-dimensional symmetric square well has both a cosine and sine
solution. Is this true for the three-dimensional spherical well potential? Explain. (1 Point)

c. If the potential well was infinitely deep, W — oo, what are the energies? Derive the
expression using the wave functions you calculated in (a).(2 Points)

d. Derive the transcendental equation that determines the energies for the finite spherical well.
(2 Points)

e. Is there always a bound state in the finite three-dimensional potential? Justify your answer
to receive any credit. How does this compare to the one-dimensional finite square well? Use

the figure. 42 = 12 + £2, where ¢ = vV2m£Ea/2h and n = /2m(W — E)a/2h.(2 Points)
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Problem 2: Near Degenerate Perturbation (10 Points)

Consider a system with two energy levels that are very close to each other while all others are
far away. In this system, the unperturbed Hamiltonian (Hp) has two eigenstates |1/)§0)> and
l¢§0)> with energy eigenvalues Ego) and Eéo) that are very close to each other

B - B ~o0. (1)
We often choose a state of the form
) = alpl”) + bl 2
and try to diagonalize the complete Hamiltonian (H = Hp + H) with
Hlpy = EW) (3)
0 0
Hop) = Ew®) (@)
as well as
2Hq1
t = ——, 6
an Hyp — Hag (6)

(a) (2 Points) Solve the characteristic equation and find the energy eigenvalues ] and Es.

(b) (3 Points) Show that the normalized states corresponding to the energy values Fp and

Es are
W) = cos(B/2)[w”) + sin(8/2)[4) (7)
o) = —sin(B/2)[") + cos(8/2)[¢3)) - (8)

In (c) and (d), consider the limit
|H11 — Hoa| > |Hio| = |(H1)12] - (9)

(c) (3 Points)

Find the energy eigenvalues E1 and Ej for the Hamiltonian H to the order of H 2, in
terms of Hy1, Hog, and Hig as well as in terms of EZ.(O) and Izbfo)),i = 1,2,

(d) (2 Points) Find the eigenstates [t;),i =1,2.



Q% Q60%

Problem 3: The Harmonic Oscillator(10 Points)

A one dimensional harmonic oscillator has a potential given by
V(z) = mw?z?/2.
where w is the oscillator frequency and m is its mass. Derive all results.

a. Write the Schrodinger equation for a single particle in a one dimensional harmonic oscillator
potential. (1 Point)

b. Consider the raising and lowering operators

mw

, P
2h - Vomhw

““V— m

respectively, where p is the momentum operator. If ¥ g is an eigenvector of the Hamiltonian
with energy eigenvalue E, find the energy eigenvalues of a'¥p and a¥p. (You may need to
use the fact that [x,p] = ifi). (2 Points)

of =

and

c. Using the raising and lowering operators find the energy eigenvalues for a single particle in
a one dimensional harmonic oscillator potential. (2 Points)

d. Find the normalized ground state wave function. (2 Points)
e. The harmonic oscillator models a particle attached to an ideal spring. If the spring can only

be stretched, and not compressed, so that V = oo for & < 0, what will be the energy levels of
this system? (3 Points)
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Problem 4: The Infinite Square Well: (10 Points)

A single particle is in a one dimensional infinite well whose potential V() is given by:

W@={Q f-L<x<L

00, otherwise

a. Find the allowed energies (FE,) and the normalized eigenfunctions (®(x)) to Schrodinger’s
Equation for this potential. Show all your work. (2 Points)

Assume the particle is in the ground state and a position measurement of the particle is made.
Since any measuring apparatus has a finite resolution, the exact location of the particle cannot
be detemined. We therefore only know the location of the particle within some resolution e.
After making the position measurement the wave function ¥(z) is:

U(z) = lz| <

Sl

NI e

U(z)=0 || >
b. What is the probability that the particle has energy E,? (2 Points)

¢. If € = 2L, we know that the particle is somewhere in the box. What is the probability that
the particle is in the ground state? (1 Point)

d. Before the position measurement we knew the particle was in the box and in the ground
state. If after the measurement and ¢ = 2L we know that the particle is in the box, why is
probability that the particle is in the ground state not 1?7 (1 Point)

For parts e), f) and g) now assume that the particle is in the potential V(z)

0, f-L<x<L
V(z) = { 00, otherwise

and in the ground state. The position of the walls are quickly increased to

0, if-L'<x<L’
V(z) = { 00, otherwise
where |L'| > |L]|
e. After the expansion, what is the probability that the particle has energy E.,? You do not
need to solve the integral. (2 Points)

£ Before the walls of the potential are increased, does |¥(z,t)|* (where ¥(z,1) is a solution to
Schrodinger’s equation before the expansion) have any time dependance? Explain (1 Point)

g. After the position of the walls are increased to L', does |¥(x,t)[?> (where ¥(z, ) is a solution
to Schrodinger’s equation after the expansion) have any time dependance? Explain. (1 Point)
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Problem 5: Time Evolution (10 Points)

Consider the Hamiltonian and a second observable, B, for a system that can be represented
in a 3-dimensional Hilbert space using the orthonormal basis: |e1), |e2) and |es)
with

1 0 0
ler) =1 0 f,le)=| L f,les)=| O
0 0 1
as:
2 00 1 0 -1
H=hw| 001 [|,B=| 0 2 0
010 -10 1

The system at time t=0 is in the state:
[9(0)) = lez2)

a) Calculate the eigenvalues and normalized eigenvectors of H and B. (2 Point)
b) Determine |¥(t)), the wavefunction at a later time.(1 Point)

¢) Determine Py (b = 2), the probability of obtaining b = 2 if b is measured at an
arbitrary time.(1 Points)

d) Is your probability in part ¢) time-dependent or time-independent? Discuss in detail.(1
Point)

¢) Derive an expression for 2 (B) where (B) = (¥(t)|B|¥(¢t)) by explicit differentiation
using the Time-Dependent Schrodinger Equation.(2 Points)

f) Use your expression in part b) to find 2 (B) for this system using the [¥(t)) you found
in part a). (2 Points)

g) Without doing further calculations describe what result you would expect for %(B) if
the initial wavefunction |¥(0)) = |ez) changes to:

[%(0)) = le)

Explain your answer in detail.(1 Point)
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Problem 6: Hydrogen Atom (10 Points)

The spatial component of the ground state wavefunction for the hydrogen atom is
o(r,6,) = Ae” (w2
where A and a, (the Bohr radius) are constants.

a) Find A by normalizing the wavefunction. Express your answer in terms of a,. (2
Points)

'b) Calculate the expectation value of the potential energy. (2 Points)
¢) Calculate the expectation value of 7 and the most probable value for r. (2 Points)

d) What is the expectation value for L, the magnitude of the angular momentum? How
does this value compare to the prediction of the Bohr model? (2 Points)

e) Many solutions to the Schrodinger equation for the hydrogen atom are related to a z-axis
despite the fact that the potential energy is spherically symmetric. What defines the z-axis?
Explain your answer. (2 Points)
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Problem 1: Spin % particles (10 points)

Consider a system made up of spin 1/2 pérticles. If one measures the spin of the particles,
one can only measure spin up or spin down. The general spin state of a spin 1/2 particle
can be expressed as a two-element column matrix.

a
()
The spin matrices are:

h(o 1 h(0 —i A1 0
S””"i(l o)’ y”i(i 0>’SZ_§<0 —1)

a) Can one simultaneously measure Sy, S, and 5,7 Explain your answer. (1 pt)
b) Can one simultaneously measure S 2 and S,? Explain your answer. (1 pt)

¢) Show S, is Hermetian. (1 pt)

d) Calculate the normalized eigenvectors and eigenvalues of S,. (2 pts)

Suppose a spin 1/2 particle is in the state

= A ( 1";“i )
e) Normalize the state in order to determine A (1 pt)
£) If one measures S,, what is the probability of getting -h/2 7 (1 pt)
g) If one measures S, what is the probability of getting +4/2 7 (2 pts)

h) What is the expectation value of Sy (1 pt)
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Problem 2: A two-state system (10 points) 2

We can approximate the ammonia molecule NHj by a simple two-state system. The
three H nuclei are in a plane, and the N nucleus is at a fixed distance either above or below
the plane of the H’s. Each is approximately a stationary state with some energy Fqy. But
there is a small amplitude for transition from up to down. Thus the total Hamiltonian is
H = Hy + Hi, where

HO:<Z?)° go> and le(_OA —0A>

(a) Find the exact eigenvalues of H. (1 points)

(b) Now suppose the molecule is in an electric field that distinguishes the two states. The
new Hamiltonian is H = Hy + H; + Ha, where

_ €1 0
(5 0)

Find the new exact energy levels. (I points)

(c) Apply perturbation theory and find the energy levels to the lowest non-vanishing order
for ¢; < |A|. Compare the results to the exact answer in (b). (4 points)

(d) Apply perturbation theory and find the energy levels to the lowest non-vanishing order
for ¢; > |A|. Compare the results to the exact answer in (b). (4 points)
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Problem 3: 2-d potential (10 points) 3

A particle of mass m is confined by two impenetrable parallel walls at £ = £a to move
on a two-dimensional strip defined by

—a<zr<a
—00 <Y < 00

The wave function for this system can be expressed as the product of two functions: one
that depends only on the spatial co-ordinates (z and y), and one that depends only on time
L.

a) Use the separation of variables technique to find the time dependent function. (2
points)

b) The part of the wave function that depends only on spatial co-ordinates can be ex-
pressed as the product of two functions: one that depends only on z and one that depends
only on y. Use the separation of variables technique to find these two functions. (3 points)

c) What is the minimum energy of the particle that measurement can yield? (2 points)

d) Suppose that two additional walls are inserted at y = +a. Can a measurement of the
particle’s energy yield the value 3m%h? /8ma® Explain your answer. (3 points)
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Problem 4: Angular momentum (10 points) 4

A [jm) = |1,0) state scatters from a [jm) = |}, 1) state via a [jm) = |3, 3) resonance.

a) Relate the highest weight (highest possible m) states in the total j basis to the highest
weight states in the direct product basis for this system of $®1. (1pt)

b) Acting on the highest weight states with lowering operators, give an expansion of each
total-j state in terms of direct product states and their Clebsch-Gordon co-efficients. (b pts)

Hint: Je|jm) = h[(j Fm)(j £m+ D]Y?5,m £ 1)

c¢) How often do the above-mentioned spin states scatter elastically, and how often do
they scatter inelastically? (4 pts)
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Problem 5: Measurement and Probability (10 points)

Consider the following two observables, H and C, whose representation in the unit basis
le1), |e2) and |es) is:

110 0 0 —1
H=m!| 1 01 ],C= 0 1 0
011 -1 0 0
where:
1 0 0
1€1> = 0 ,|62> = 1 ,I63> = 0
0 0 1

Assume that at time t=0 the ensemble of particles is in the state:

3(0)) = %Ieﬁ " %l&z)

The eigenvalues of H are given by A = 2,1, ~1 with normalized eigenvectors given by
(1,1,1)/v3, (1,0,—1)/v2 and (1, -2, 1)/+/6 respectively.

The eigenvalues of C are given by A = 1,1, -1 with normalized eigenvectors given by
(1,0,—1)/+/2, (0,1,0) and (1,0, 1)/+/2 respectively.

a) What is the probability of measuring H and obtaining £ = hw? What state is the
particle in after the measurement? (2 pts)

b) If one immediately measures C' after the measurement of H in part b), what is the
probability of obtaining ¢ = 17 (1 pt)

c¢) What is the probability of measuring H first and getting £ = Aw, then measuring C
and getting ¢ = 1, i.e. what is Py (E = fw,c=1)? (1 pt)

d) If the system is allowed to evolve in time after the measurement of H and before C' is
measured, will your answer to part c) change? Explain your reasoning. (1 pt)

e) With the ensemble of particles all in the original state: |T(0)) = %IGQ + T/l—ileg),
reverse the order of the above measurements and answer the same questions:

i) What is the probability of obtaining ¢ = 1 if C is measured first? What state is the
particle in after C' is measured? (1 pt)

ii) If one immediately measures H after C is measured in part i), what is the probability
of obtaining E = fw? (1 pt) (question continues on next page...)



iii) What is the composite probability Py (c =1, E = fw) ? (1 pt) 6

iv) If the system had been allowed to evolve in time after the measurement of C' and
before H is measured, would your answer to part ii) be different? Explain. (1 pt)

f) Are H and C compatible observables? Why?
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Problem 6: The hydrogen atom (10 points) 7

The figure below shows the radial function Ry (r) for a stationary state of atomic hydrogen.
The normalized Hamiltonian eigenfunction for this state, in atomic units, is

1 /2
wn,lf,mg(r) = ﬁ\/;(6 - T) €_T/3 cos . (1)

0.10[
0.08]
0.06]
0.04}

R (1) (au)

0.02

0.00}

-0.04

r(ao)
Figure 1: A radial function for a stationary state of atomic hydrogen.

1. 3 points. What are the values of the quantum numbers n, £, and m, for this state?
To receive any credit, you must fully justify your answer.

. 1 points. What is the energy (in eV) of this state?

]

3. 2 points. What are the mean value and uncertainty in (in atomic units) for this
state?

. 2 points. Calculate the value of r (in atomic units) at which a position measurement
would be most likely to find the electron if the atom is in this state.

o

5. 2 points. From Eq. 1, generate the normalized eigenfunction Unbme+1(T)-

o0 3 n-+1
/o e 23 dr = ) (-—2—) (2)

Hint: The following table gives the orbital-angular-momentum operators in Cartesian and
spherical coordinates.

Hint:



Component Cartesian coordinates Spherical coordinates
Ew -1k (ygz— - z%) 1k <sin<p§§ +cotﬁcosgo%)
Ey —1h <z5% - m%) —1h (cos goaa—a —cot fsinp 5%)
Ez —1h <x5~ - y(%) _lhé%
i [2112402 - {ﬁgé (ma%) +~§ﬁ%}

Table 1: Components and square of the orbital angular momentum operator in Cartesian
and spherical coordinates.
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Problem 1: Step Potential (10 points)

Consider the potential V (z)

0, z <0
V(x>:{—\/ z >0

A particle of mass m and kinetic energy F approaches the step from z < 0 .
a) Write the solution to Schrodinger’s equation for z < 0. (1 pt)
b) Write the solution to Schrodinger’s equation for z > 0. (1 pt)

c) Sketch the wave function for z < 0 as well as z > 0. Making sure to describe how the
amplitude and frequency of the wave function changes. (1 pt)

d) What is the probability that particle will reflect back if £ = V/87 (2 pts)

¢) What is the probability that the particle will be transmitted if E = V/8. (2 pts)
(Determine the transmission probability directly by using the flow of probability current
and do not simply use T = 1 — R)

f) Show that T+ R = 1. What does this mean physically? (1 pt)

g) If instead the particle approached the step from z > 0, how do your answers to parts
a), b), d) and e) change? (2 pts)
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Problem 2: Variational Method (10 points)°

Let us consider the hydrogen atom without spin. The Hamiltonian is

2
= ¢ (1)

T om v

Since the ground state is an S state the wave function must be spherically symmetrical.
Suppose you could not solve this problem exactly. Estimate the ground state wave function

with a Gaussian:
P(7) = N/

a) Compute the normalization constant N so that 1(F) is correctly normalized. (2 pts)

)
b) Evaluate the expectation value of H in this state. (3 pts)
¢) Find the best estimate for Fy by applying the variational method. (4 pts)
)

d) The true ground state energy is
L
Ey = ——5(0 m) .

How much does your estimate in (c) differ from the correct answer? (1 pt)
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Problem 3: Artificial Atoms (10 points) °

Modern techniques in nanotechnology research can create artificial atoms, man-made
structures that confine electrons like real atoms but with properties that can be engineered.
In this problem, consider a 2D atom (electrons tightly bound in the z-direction) with a
parabolic potential in the x- and y-directions. The Hamiltonian is:

2 2
P mw 9 9
Hy =+ 4+ — o+ .
0 2m + 2 (m y ) (1>

Note: In solving this problem, you might want to use the standard operators:

a 1 [z n Z_/\ a 1 [y + A @)
= =17 TPz ) =—7= |3y 7T

NACN v =3 TR
and their Hermitian conjugates, where A = 1/;’1}—.

a) What are the eigenenergies of this atom? What are the degeneracies of these energy
levels? If the separation between adjacent levels is 20 meV (0.02 eV), approximately
how large are the low-energy electron states in the atom (the radius)? (2 pts)

b) If the atom is put in a constant electric field, the Hamiltonian Hy is perturbed by a
potential:
Hl = -—6E1$ (3)

where E; is a constant (the electric field). Prove that to first order in the field, the
energy levels of the atom do not change. (2 pts)

¢) Next the atom is placed in a more complex field to study its properties. The new potential
is:

C
H, = /\—sxy (4)

To first order in Cy, what are the new eigenenergies of what were the first three energy
levels of Hy? Show your work. (4 pts)

d) If a different perturbing potential:

C,
Hy = .A.g-ﬁ (5)

is applied (rather than H,), how would your answers to part (c) change? No compu-
tations should be necessary to answer this question. (2 pts)
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Problem 4: 3-d central-force problem (10 points)

A particle of mass m and spin s = 0 has a short-range potential energy V(r). The particle
is in a stationary state with Hamiltonian eigenfunction

Ye(r) = N%— (e“’” - e"ﬁr) , (6)

where N is a normalization constant (which you need not determine), and o and § are real
numbers such that 8 > a.

1. Is the orbital angular momentum of the particle sharp in this state? (That is, does L*
have zero uncertainty?) If not, explain why not. If so, justify your answer and give
the value of L? for this state. (4 pts)

9. What is the stationary-state energy of this state? (4 pts)

3. What is the potential energy V(r)? (2 pts)



P

Problem 5: Quantum statistics (10 points) °

. Write down the energy eigenvalues and wave functions for a particle of mass m in an
infinite square well, with V = 0 for ~L/2 < z < L/2 and V = oo for |z| > L/2. (2

pts)

. What is the ground state energy and wave-function if 2 identical non-interacting bosons
are in the well? (4 pts)

. What is the ground state energy and wave-function if 2 identical non-interacting spin-
up fermions are in the well? (4 pts)
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Problem 6: Spin 5 System (10 points)

Consider a spin % particle in the state space Fs. This space can be spanned by the 2

eigenvectors of Sy, Sy, or S, the components of the spin operator S =S+ Syj' + S, k. The
matrix representation of S, S, and S, in the eigenbasis |+);, |~), of S, are given below:

Sw:h/z((l) é) Sy:h/Z(g ~01> szzh/2<(1) _01>

where S,|+), = 1/2|+), and S.|-). = —h/2|-). .
Assume that the state of the system at time ¢ = 0 is: |¥(0)) = |—)..
a) If the observable S, is measured at time t = 0, what results can be found and with
what probabilities? (1 pt)
 Now assume that a magnetic field is applied in the = direction: B = Byi. The original
wave function |¥(0)) = |-), is allowed to evolve in time. The Hamiltonian governing the
evolution is:

Hspin = § : E
b) Set up the time evolution operator for this system, U(t,0). (1 pt)

¢) Find |¥(t)), the wave function at a later time ¢. (1 pt)

d) At time ¢ > 0 after |¥(0)) has evolved, S, is measured. What is the probability of
obtaining +#4/2? Is your answer time dependent or time independent? Explain correctly for
credit. (1 pt)

e) Now let |¥(0)) evolve again and measure S, at time ¢. Determine the probability
of measuring S, at time ¢ and obtaining —/A/2. Is your answer time dependent or time
independent? Explain correctly for credit. (1 pt)

f) Without explicitly finding the probabilities, discuss whether you expect the following
probabilities to be equal or not. Give a brief explanation of your reasoning for any credit.
The symbol Py (a,c) represents the probability of starting with an ensemble in the state
|U(t)), measuring A first and getting eigenvalue ”a” and then measuring C and getting
eigenvalue ”¢”. Assume that the eigenvalues of Hyy, are £y and E_. (1 pt)

i) Is Pyy(+h/2 for Sy, —h/2 for S;) = Pu(y>(—h/2 for S, +h/2 for Sy)7 All mea-
surements are taken at ¢ = 0, i.e. the second measurement is taken immediately after the
first measurement in each case. (1 pt)

ii) Is Paoy(Ey, —h/2 for S;) = Pyy(—h/2 for S, E4)? The first measurement in
each case is taken at ¢ = 0; the second measurement is taken immediately after the first
measurement in each case. (1 pt)

iii) Is the probability Py oy (+h/2 for S, at t, —h/2 for S, at t') time dependent or time
independent in regards to the time ¢ of the first measurement? Same question for the time
# of the second measurement. Discuss your reasoning in each case. (2 pts)
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Quantum Mechanics
Qualifying Exam—January 2010

Notes and Instructions:

There are 6 problems and 7 pages.

Be sure to write your alias at the top of every page.

Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

¢ You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

(01 (0 —i (10
%=\10) T\i 0 ) ==\ o -1

One-dimensional simple harmonic oscillator operators:

h
— A T
X 2mw(a+a)

P = —iy hn;w(a —a)

Y2(0, ) = —2—= 3sin® 4 %%

Spherical Harmonics:

Y3(0.9) = = V67

Y0, ) = — \/%1} 3sin 6 cos e
01— gt 0,0 o (oo
Y20, ) = '\—/%;COSH Y510, 0) = \/25—4% 3sinf cosfe
Y70, 0) = \/:;—7; sinfe™* Y520, 0) = \/5557? 3sin® e~ %%

Angular momentum raising and lowering operators:

Ly=(Ly+ily)



PROBLEM 1: The Delta-Function Potential

Let us consider a single particle of mass m moving in one dimension with the Hamiltonian

H=T+V(z),
where the kinetic energy is
2 2 92
T = _]i_ = ﬁ_h__(?_ ,
2m 2m Oz?

the potential energy is
V(z) = -V é(2),
and §(z) is the Dirac delta function.

(a) [2 points] Find an expression for the discontinuity of the derivative of the wave function
at z = 0.

(b) [3 points] Find the ground state wave function.
(¢) [2 points] Find the ground state energy.

(d) [3 points] Find the expectation value for the kinetic energy, (T).



PROBLEM 2: Hydrogenic Atoms with One Electron

In terms of the first Bohr radius, ag = i/(cam,), where « is the fine-structure constant,
the ground-state eigenfunction of a hydrogen atom is

e /%,

1,01,0,0(7", 0, 90) =

mag

(a) [3 points] Evaluate the probability of finding an electron in the ground-state of a hy-
drogen atom in the classically forbidden region. The classically forbidden region is the
region of space where the classical kinetic energy is negative.

(b) [4 points] For the ground state, evaluate the uncertainty in the Cartesian coordinate =
and the uncertainty in the corresponding component of the linear momentum, ps. Hint:
You need not use the explicit form of the operator for the linear momentum to evalu-
ate Ap,.

(c) [3 points] Show explicitly that the product of your uncertainties, Ax Ap,, is consistent
with the Heisenberg uncertainty principle.



PROBLEM 3: Time-Dependent Perturbation Theory

Consider a non-relativistic particle of mass m and charge ¢ with the potential energy:

Vig) = 3 b X?

A homogeneous electric field £(t) directed along the x-axis is switched on at time ¢ = 0.
This causes a perturbation of the form

H =—-¢X&(t)
where £() has the form

E(t) = Ee7T

where &, and 7 are constants.

The particle is in the ground state at time ¢ < 0. This problem will deal with calculating
the probability that it will be found in an excited state ast — oo.

The probability that the particle makes a transition from an initial state ¢ to a final state
f is given by:

t ) 12
[t o @)Ied e

1
sz(t, to) - ?

where the particle originally is in state ¢; and finally in state ¢;.
(a) [2 points] In terms of known quantities, what is the value of wy; 7
(b) [2 points] How many excited states can the particle make a transition to?

(c) [6 points] Derive an expression for the probability that the particle will be found in any
allowed excited state as t — oo.



PROBLEM 4: Spin Physics

Spin-1/2 objects generally have magnetic moments that affect their energy levels and
dynamics in magnetic fields. The interaction between the magnetic moment and a magnetic
field, B can be written as:

H=-uS B (1)
where § is the spin of the particle

S==7 (2)

o] St

where the ¢;’s are Pauli matrices.
In this problem we’ll be using as our basis the eigenstates of .5,

=) 19=(1) ®)

+), compute the expectation values of Sz, Sy,

with eigenvalues i%.

(a) [1 point] If a particle is in the spin state
and S,.

(b) [1 point] If a particle is in the spin state |+), what are the uncertainties of Sy, Sy, and
S,? (AS? = (82?)—(S;)%.) Explain the physics of your results in terms of the eigenvalues
and measurement probabilities of the spin in the x, y, and z directions.

(c) [3 points] A large ensemble of particles are all prepared to be in the spin state |+) at
time t = 0 when a magnetic field in the x-direction is switched on, B = Byé,. Solve for
the time-dependent probabilities, Py (t), of measuring S, to be +h/2.

(d) [2 points] For the experiment described in part (c), what are the probabilities for mea-
suring S, to be £A/27 Explain the differences between the results for S, and S;.

(¢) [3 points] Consider the case where the magnetic field is B = % (é; + €,). In this case
what is the time-dependent probability of measuring S, to be +h/27
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PROBLEM 5: Two Level System

Consider a quantum system that can be accurately approximated as having two energy
levels |+) and |—) such that

Hol) = +e|+)

where € is energy.
When placed in an external field, the eigenstates of Ho are mixed by another term in the
total Hamiltonian

Vi) = 8F).

For simplicity, we choose € to be real.

(a)

(b)

(c)

[1 points] Using the states |[+) and |—) as your basis states, write down the matrix
representations for the operators Hp and V.

[3 points] What will be the possible results if a measurement is made of the energy for
the full Hamiltonian H = Hy + V7

[2 points|] Experiments are performed that measure the transition energies between eigen-
states. Without the external field (§ = 0) it is found that the transition energy is 4 eV
and with the external field (§ # 0) the transition energy is 6 eV. What is the coupling
between the states |+), d, in this case?

[2 points] We can write the eigenstates of the total Hamiltonian in terms of two energy
levels |+) as

1) = cos(by)l+) + sin(61)|—)
2) = cos(fa)|+) + sin(62)|—) .

Letting §/e = C, solve for the angles #; and 6, in terms of C.

[2 points] Consider an experiment where the two-level system starts in the eigenstate of
H, with eigenvalue —e. A very weak field is turned on so that C < 1. To the lowest
order in C, what is the probability of measuring a positive energy for the system when
§ # 07



PROBLEM 6: Hyperfine Splitting

The hyperfine splitting in hydrogen comes from a spin-spin interaction between the electron
and the proton. The total Hamiltonian can be written as

P? Pz e
H:2—2- —& — — + Hyp
m, 2me T

where Hyp = Age . gp, and A is a real constant.

(a) [1 points] What are the spin quantum numbers s and m of the electron?
(b) [1 points] What are the spin quantum numbers s and m; of the proton?

(c) [1 points] What are the spin quantum numbers s and m, of the combined electron-proton

system?

(d) [5 points] Diagonalize Hyr in the total S =25+ 5’,, basis and compute the energy
eigenvalues.

(e) [2 points] Write an expression for the energy of a photon that would be emitted from a
hyperfine transition in terms of A, i, and any other relevant constants.



Quantum Mechanics
Qualifying Exam—August 2010

Notes and Instructions:

e There are 6 problems and 7 pages.

e Be sure to write your alias at the top of every page.

Number each page with the problem number, and page number of your solution (e.g.
“Problem 3, p. 1/4” is the first page of a four page solution to problem 3).

You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

(01 (0 —i (10
ow=\10/) %=\ 0) 710 -1

One-dimensional simple harmonic oscillator operators:

f
_ f
X 2mw(a—}-a)

P = —iy hr;w(a —ah)

Spherical Harmonics:

2 __5 12 g 20
YO, ) = ZW Y38, v) ote 3sin“fe
Yy (0,p) = — \/555 3sin O cos O e*
_ 3 i
109 =~ 0.9 - s (o )
3 ,
Y20, ) = Jir cos 0 Y5 (0, ) = #_25477 3sinfcosfe™™
- 3 i .
Y6, 0) = N T 0e™ v, 2(0,p) = ———956% 3sin? § 2
In spherical coordinates, the Laplacian is
10,,0 1 0 0 1 02

2 _ o 9 engl =
V= r? GT(T 87“) * r2sin 6 80(Sm08«9) + r2sin® 0 O¢?



PROBLEM 1: Motion of a Particle in One Dimension

Consider a particle of mass m moving along the +x direction in free space.

(a)

(b)

[2 points] Suppose the particle is in a momentum eigenstate where the particles momentum
is known precisely to be py. Write a wavefunction W(x,t) that describes such a state.

[2 points] Suppose the particle is in a state where it is equally probable for the particle
to have any momentum between py — Ap/2 and po + Ap/2 at time ¢ = 0. Construct a
wavefunction U(z,t) that describes such a state.

2 points] Suppose a beam of particles, each in the state described in part (a), encounters
an abrupt step in potential energy at z = 0. The step height V; is less than the particles
total energy E. Construct the wavefunction, U(z,t) with —oo < z < oo, that describes
this situation.

[2 points] Calculate the probability that a particle is reflected by the potential energy step
described in part (c).

[2 points] Consider the situation described in part (c), except with V, greater than F.
Compare the probability of finding a particle at a distance z inside the barrier to the
probability of finding a particle at z = 0.

V(x)




PROBLEM 2: Harmonic Oscillator with Two Particles

Consider a Hamiltonian for two non-interacting particles:

P 1 P 1
H(1,2) = 5;17: + Emw%X12 + Z% + Emngg
k = H{+ H
where wy = 2w = 2w.
Defining the raising and lowering operators:
1 5 .5
An — %( n +1 n)
1 - -
1- — .
al = —(Xp— i
n \/5( )

where n = 1,2 and

such that [am, al)] = 6mn, m,n = 1,2.
Answer the following questions:

(a) [2 points| Write the Hamiltonian in terms of raising and lowering operators.
(b) [2 points] Write the eigenvector [¢n, z,) in terms of the ground state ¥g0) = |@n,=0)|Pn,=0)

where |¢,,) is the eigenvector for particle 1, i.e.,

Hylpn,) = (m + %) fuwr|@n, )

and similarly for particle 2.

(c) [1 points] Write a formula for the energy levels of this oscillator, F, with n defined in terms
of n; and ns.

(d) [1 points] Determine a formula for the degeneracy, gn , of an energy level E,.

(e) [2 points] Using your results from part (d) determine the degeneracy g, for the energy,
E = 15/2hw and list all the eigenfunctions [1n,n,) that have this energy.

(f) [2 points] Determine AXj, the uncertainty in X, for the state |tn,=1n,=2) Using raising
and lowering operators. Discuss the dependence of AXy, on the frequency w; and explain
why it makes sense physically. -
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PROBLEM 3: Dirac formulation of quantum mechanics

Let & be a three-dimensional Hilbert space that is spanned by the orthonormal basis {|u), lug), |us) }-
The operator §2 acts in &3 as follows:

Qlur) = 3lu) (1
Qlug) = 2[ug) — |ua) (2)
Qlug) = —lug) + 2fus) (3)

(a) [5 pt] Prove that  is Hermitian. Find its eigenvalues, wy, wa, and w3, and write down each
of the corresponding eigenvectors in the {|u1), |uz), |us)} basis.

(b) [1 pt] Does {9} constitute a complete set of commuting operators for £37 Why or why
not?

(c) [2 pt] According to Eq. (1), & can be partitioned into eigensubspaces by letting &, be the
subspace spanned by {|u;)} and &, be its orthogonal supplement. Construct an orthonormal
basis {|t2), [ts)} of &, and write each basis vector in {|u), |ua), lug)} basis. (Choose [t3) to
correspond to the smallest eigenvalue of 2.)

(d) [2 pt] With |t1) = |u1), the set {|t1),|t2), [ts)} constitutes an alternate basis of &. Find
the matrix S, with elements iz = (u; | tx), that transforms between {|u1), [uz), lug) } and

{lt), 1t2), [ta) }-
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PROBLEM 4: Stationary Perturbation Theory
Consider a non-relativistic particle of mass m moving in the three dimensional potential:
Lo 2 2
V(z) = ik(w +y° +2%).
(a) [1 point] What is the ground state energy and first excited state energy for this potential?
Now there is a perturbation applied so the potential becomes
Lo, 2, .2
V(z) = —2-k(ac + 1y + 2°) + Azy

where ) is a small parameter. |
(b) [1 point] Calculate the ground state energy to first order in A.
(c) [4 point] Calculate the ground state energy to second order in A

(d) [4 point] Calculate the first excited state energies to first order in A.



PROBLEM 5: Variational Method

In the z-basis, the Hamiltonian for a hydrogen atom is

gy o e
2m T
K2 e
= ——V?-=
2m T

Let us choose

as a trial wave function for the ground state.
(a) [2 points] Find (tq|ta). (N.B. This wave function is not normalized.)

(b) [4 points] Find the expectation value of the Hamiltonian (H).

(c) [4 points] Determine the best bound on the energy for the ground state of this system using
the variational method and the trial wave function given above.



PROBLEM 6: Radioactive Decay

In this problem you will calculate the transmission and reflection coefficients for a simple
potential step. Then you will use this result to estimate the tunneling probability through an
arbitrary potential. This evaluated tunneling probability is called the Gamow Factor. Finally,
you will use the Gamow Factor to explain radioactive decay by calculating the decay probability
for an a-particle being emitted from a radioactive nuclei and the mean lifetime for that process.

(a) [4 points] Potential Step: Calculate the transmission and reflection coefficients for a
particle with total energy F interacting with a potential barrier that is a simple potential
step (Vo > 0):

0, ifz<0
V(m):{\/o, if0<z<a
0, ifz>a.

(b) [3 points] Arbitrary Potential: A particle of total energy F interacts with an arbi-
trary potential barrier V' = V(z). The classical turning points are r = 7, and T = Zg.
Assume the potential curve V(z) is sufficiently smooth, then divide the interval [21, z2]
into intervals of length Aux;, large compared with the relative penetration depth d; =
h([8m(v(z;) — E)|7Y* of a particle in the rectangular barriers. Find an expression for the
transmission coefficient T (the Gamow Factor) in this approximate way for the barrier
V = V(z), knowing that

T e o HVEVE)

for the ith rectangular barrier.
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(c) [3 points] a-emission of radioactive nuclei: Now show that a-particles with energies of
a few MeV can leave potential wells with depths of tens of MeV. Use a simplified model
potential, i.e. let V(r) = =V if r < Ry, and V(r) = 22ifr > Ry. Now calculate Gamow’s
factor for this barrier, i.e. the decay probability for emission of a-particles of energy E
through the barrier. Express the result in terms of the final velocity of the a-particle, and
estimate the mean lifetime of an a-emitting nucleus.



Quantum Mechanics
Qualifying Exam—August 2011

Notes and Instructions:

e There are 6 problems and 7 pages.

Be sure to write your alias at the top of every page.

Number each page with the problem number, and page number of your solution (e.g. “Prob-
lem 3, p. 1/4” is the first page of a four page solution to problem 3).

e You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

(o1 (0 —i /10
%=\10) =i 0) T 0 -1

One-dimensional simple harmonic oscillator operators:

h
— 1
X 2mw (a+ah)
P o= —iyfMM e ot
2
Spherical Harmonics:
Y0(0, ) = TEF YZ(0,¢) = \7—936—; 3sin? § e
Y3 (0,¢) = -ﬁ 3sin f cos 0 €'

Y10, 9) = —\/—?3—; sinfe®  Y2(0,¢) = % (3 cos?6 — 1)

Y06, ) = \/—2’4——;0030 Y{l(@,so) = \/—-—254=7r3sin6(:os06“i9°

Y0, 0) = \/—:2337 sinfe™™  Y;7%(0,¢) = \/—56—7 3sin? g e~ %i¥

In spherical coordinates, the Laplacian is

s 10 ,,0 1 48, ,0 1 02
2 902% vy =Ygy ——
v r? 87"(7 67")+7’2 sin 36(Sm 80)+ r2sin? § O¢?



PROBLEM 1: Postulates of Quantum Mechanics

A physical system consists of three distinct physical states. For this system, an operator A has
eigenvalues Aj, Az and As.

(a) Write down the completeness relation for this system. [2 points]

(b) Apply the completeness relation, then write down the expansion of a general state [¥) in
terms of eigenvectors of A [1 point]

(c) What is the probability that a measurement A of the state ) yields the value A1? [2 points]

(d) A measurement of A on the state i) is found to give a value Aq. What is the state of the
system immediately after the measurement? [1 point]

(e) A second measurement of A on the system is immediately performed. What is the probability
of finding (A) = A;? What is the probability of finding (A) = A2? [2 points]

(f) Let us assume that the Hamiltonian H is time independent. Write down an equation that
determines the time evolution of the state |(¢)) in the Schrédinger picture. Write down an
equation that determines the time evolution of A(t) in the Heisenberg picture. [2 points]
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PROBLEM 2: Harmonic Oscillator

A particle of mass m is confined to one dimension. Its potential energy is

1
V(z) = EmwQacQ,
where w > 0 is a real parameter. At time t = 0, the state of the particle is represented by the real

wave function
z

¥(s,0) = 2= (1 - H) o),

where ¢(z) is a normalized function of odd parity.

‘On each question, to receive any credit you must fully justify your answeil

(a) At t = 0, what is value of the position probability density P(z,0) at the origin, z = 07 [2
points]

(b) Describe the parity of the wave function at ¢ = 0 and at any ¢ > 0. [2 points]

(c) The region probability P([a,b], t) denotes the probability that a position measurement at time ¢
would detect the particle in the finite region = € [a,b). What are the initial values of this
quantity for the left and right halves of the = axis: P((—o0,0], 0) and P ([0, 00), t}? [2 points]

(d) At what time tygny > 0, if any, is ’P( [O,oo),tright) =17 [1 point]
(e) At what time tiery > 0, tf any, is P (—00,0], tiey) = 17 [1 point]

(f) At what time tsame > 0, if any, are the two region probabilities equal:
7)( (_OO’ 0 ]a tsame) = P( [Oa OO), tsame)? [2 points]



PROBLEM 3: Angular Momentum Operators

Consider a state space formed from the direct sum of the two subspaces: £ (j=0) spanned by

|j = 0,my, = 0) and £(j=1) spanned by lj =1,m, =1),|j = 1,my =0), and l7=1,my =—1);:

ie.

E=E(j=1)®&(j=0)

where

Let

(a)

g, my) = j(j + 1>h2lj$ mMy)

Jyld, my) = myh|J, My)

7) = %Ij —1,m, :1)+—\\//—%|j=1,my :o>——}\/§1j=o,my:o>

Consider the measurement of the two observables J 2 and Jy. Do these observables commute?
Demonstrate explicitly the value of the commutator of J 2 and J,. (2 points]

Determine the probability of measuring J 2 and getting 242, i.e. determine P|\1,>(2ﬁ2 for J?).
What is the resulting normalized state vector, |¥’) after this measurement? (2 points]

If J, is then measured after the measurement in part (b), what is the probability of obtaining
my = 0, i.e. what is Pyy(0 for Jy)? What is the resulting normalized state vector after this

measurement? [2 points]

What is the composite probability of measuring J 2 and getting 2% and then measuring Jy
and getting zero, i.e. what is Py (2h? for J2, 0 for Jy)? (1 point)

Now starting with the original |¥) reverse the measurements, measuring Jy first and getting
zero, and then measuring J2 and getting 212, Determine four quantities: 1) Pjgy(0 for Jy )
2) the resulting normalized state |¥"); 3) Pigny (2h* for J?); and 4) the final normalized state
after both measurements have been taken. [2 points]

What is the new composite probability when the measurements are reversed, i.e. what is:
P|\1,)(O for Jy, 2h? for J?)? Are your two composite probabilities the same or different? Dis-
cuss in detail. [1 point] ’



PROBLEM 4: Spin Angular Momentum

A Stern-Gerlach experiment is set up with the axis of the inhomogeneous magnetic field in the
z — y plane, at an angle 6 relative to the z—axis. Let us call this direction 7 = cos 0% + sin 0.
Then the spin operator in the 7 direction is S, = cos Sz + sin0.Sy. Let us describe the common
eigenvectors for S? and S; as [s,m;), e.g. |s,mg) or |s,my).

(a) For a spin—1/2 particle, calculate the matrix corresponding to Sy. [1 point]
(b) Evaluate the eigenvalues of S;. [1 point]
(c) Find the normalized eigenvectors of Sy. [2 points]

)

(d) Suppose a measurement of the spin of the particle in the 7 direction is made and it is de-
termined that the spin is in the positive # direction, i.e. Sp[¢p) = (+//2)|¢). Now a second
measurement is made to determine m, (the component of the spin in the z direction). What
is the probability that m, = —1/27 [3 points]

(e) Suppose that the particle has spin in the positive # direction as in part (d). The z component
of the spin is measured and it is discovered that m, = +1/2. Now a third measurement is
made to determine m,. What is the probability that m; = —1/2? [3 points]



PROBLEM 5: Stationary Perturbation Theory

Consider a particle of mass m confined in a 2D infinite square well:

V(iz,y)= 0, for0<z<Land0<y<L,

oo, otherwise,

with energy eigenfunctions

Yrgmny (T,Y) = %sin (%m) sin (T—LZ—ﬂy) .

(a) What are the energies and degeneracies of the first four energy levels (eigenenergies) of the

particle? Explain your answer. [1 point]

Impurities in the well will shift these energy levels. Assume we can model the effect of an

impurity through a local potential:

W (z,y) = —Vo L 6(z — 20)6(y — %o)

where the point (zg, yo) is the position of the impurity.

(b) For the case where zg = yo = L/2, what are the energy shifts (including splitting of energy
levels) to first order in Vg for the first two energy levels of the particle? Show your work. [3

points]

Which of the energy eigenstates will not be changed by this impurity? Explain. (You should

not have to do any calculations to answer this second question.)

(c) Again for mg = yo = L/2, what is the shift in the ground state energy that is second order in
Vo? You should write your result in terms of sums, and approximate the result by summing

over the largest terms. {3 points]

(d) For the case where zo = L/3 and yo = L/4, what are the energy shifts (including splitting
of energy levels) to first order in Vg for the first two energy levels of the particle? Show your

work. [3 points]



PROBLEM 6: Variational Method

Consider a Hamiltonian H that may or may not be solved exactly. The variational theorem
states that the expectation value of energy obtained from a trial wavefunction will always be greater
than or equal to the ground state energy.

Consider a trial wave function ¢ consisting of two basis wavefunctions ¥ and ¥ such that

¢ =c1¥; + ¥y

where ¢; and ¢ are constants.

(a) Find the expectation value of the energy for this system. [1 point]

(b) Now assume (¥1|Wq) = (T2|¥1) = 0, (V1|H|¥s) = (¥2|H|¥1) and c; and c; are real.
Determine a 2x2 matrix relationship for the best bound on the energy. [3 points]

(¢) Now also assume ¥; and ¥y are orthonormal. Solve the matrix relationship you found in
part (b) to determine 2 solutions for the best bound energy. [2 points]

(d) Note that there are 2 solutions to the best bound energy' found in part (c). What additional
constraint can you apply to remove one of the solutions? [2 points]

(e) Confirm your answer to part (c) by using a Simple Harmonic Oscillator Hamiltonian and set-
ting ¥, to be the ground state eigenfunction and ¥s to be the first excited state eigenfunction
of the Simple Harmonic Oscillator 2 points]



Quantum Mechanics
Qualifying Exam—January 2012

Notes and Instructions:

There are 6 problems and 7 pages.

Be sure to write your alias at the top of every page.

e Number each page with the problem number, and page number of your
solution (e.g. “Problem 3, p. 1/4” is the first page of a four page solution
to problem 3).

e You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

0 1 0 —i 1 0
%=\ 190/) =i o) 27\0 -1

One-dimensional simple harmonic oscillator operators:

h
X = t
Sy (a +al)
P = —i fime (a —al)
2
Spherical Harmonics:
Vi) = V30,6) = i dein? 6%
Y3(0,p) = \/—: 3sin @ cos 0 e

VH6,9) = ~Fmsinde®  v0(0,0) = = (§oos?0 - 3)
Y2(0,0) = \/—(050 Y, M0, ) = \/-——3sm0cosé’e i

Y7 0,9) = FsmGE ip Y20, ) = _&733111296_%90
In spherical coordinates, the Laplacian is

2
19,,0 1L 0, g0 10

2_ + O o
v rzar(T or )+r2sm989< 89) r2sin? 0 82



PROBLEM 1: Stationary States

For a quantum system with a time independent Hamiltonian (H), the wave
function (¥(z,t)) is a linear combination of stationary state solutions (¥n(z,1))
to the Schrédinger equation:

T (,1) = un(z) exp (~iBnt/R)

where u,(z) are eigenfunctions of the Hamiltonian
Hu,(z) = Epun(z)

and they form a complete orthonormal basis.

(a) Evaluate the uncertainty in the energy for a system in a stationary state
with the wave function ¥(z,t) = ¥y, (z,t). [Show all work.] (2 Points)

(b) Derive the time evolution operator U(t, o) in terms of the Hamiltonian (H),
and apply it to a stationary state ¥n(z,to = 0). Describe the change in the
stationary state. (2 Points)

Now consider a particle that starts out in a normalized wave function
\I/(.'E, 0) =cwm (Z‘) + Czug(m)
where the u,(z) are real eigenfunctions of the Hamiltonian and ¢y, are real.

(c) Determine an expression for the wave function ¥(z,t) at subsequent times.
(2 Points)

(d) Evaluate the probability density and describe its motion in time. (3 Points)

(e) Determine the uncertainty in the energy AE with At = 7 that is the period
of oscillation in (d). (1 Points)



PROBLEM 2: Dirac Notation in Quantum Mechanics
Consider the kets |a,) as the eigenstates of an observable operator A
Alay) = anlag) .

Assume that |a,) form a discrete orthonormal basis in the vector space. Define
an operator U(m,n) as
U(m,n) = |am){an|.

(a) Show that U(m,n) is an Hermitian operator. Calculate the commutator
[A,U(m,n)]. [2 Points]

(b) For a generic operator with matrix elements By, = {am|Blay), show that

B =Y ByaU(m,n).

mn

[2 Points]
(c) Assume the Hamiltonian of a three-level system
H = H;2U(1,2) + HouU(2,1) + Ho3U(2,3) + H3U(3,2)

where Hig = Hoz, and Hy; = Hjy are complex numbers with dimension of
energy. Find the eigenvectors and the eigenvalues of the Hamiltonian in the
la,) basis. [4 Points]

(d) Assuming the Hamiltonian above, and n = 1,2,3, find the condition where
the observable operator A is time independent. [2 Points]
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PROBLEM 3: Harmonic Oscillator

A particle of mass m is under the influence of the following potential
V(z) = VoV A% + 2

where V; and A are constants. For small displacements < A this potential can
be approximated by a simple harmonic oscillator.

(a) Determine the lowest energy this particle can have in terms of , m, Vo and
a for z < A. (2 Points)

Now consider the Hamiltonian describing the true one-dimensional harmonic
oscillator

with eigenstates
H|n>:Enln> n=0,1,2,--- .
(b) Using commutation relations, calculate the equations of motion for P and
X in the Heisenberg picture. (Find X and P.) (2 Points)

(c) Solve for P(t) and X (¢) in terms of P(0) and X (0) and show that [X (t), X (0)] #
0 for t 5 0. (2 Points)

A harmonic oscillator system is known to be in the state
19) = —=(0) +13))
by = —
V2

where |0) and |3) are the normalized ground state and the third excited state of
the harmonic oscillator respectively.

(d) What is the value of n > 0 for the first non-zero value of (X™) with the state
vector |psi)? (2 Points)

(e) What is the expectation value (X 3) with the state vector [#)? (2 Points)



PROBLEM 4: Angular Momentum

The hydrogen atom including hyperfine splitting can be described by a Hamil-
tonian
P, P2 ¢
CE ¢

2my  2me r+ HE

where Hyp = Agp . S, describes the spin-spin or hyperfine interaction and the
total spin angular momentum is given by S = Sp + S.. The subscripts (p and e)
refer to proton and electron, respectively

(a) Write down the form of the spin-spin direct product state vectors. What are
the “good”, i.e. diagonal operators for this set of state vectors? [2 points]

(b) Write down the form of the “total-s” state vectors. What are the “good”,
i.e. diagonal operators for this set of state vectors? [2 points]

(¢) Choosing an appropriate set of state vectors, calculate the Hy r energy eigen-
values, and the energy splitting due to the hyperfine interaction. [5 points]

(d) If the photon wavelength (A) is 21 cm from the hyperfine transition, evaluate
the constant A in Hyp. Hint: ic = 1.97 x 107° eV-cm. [1 point]



PROBLEM 5: Interaction Picture

There is a 3rd ’picture’ in quantum mechanics in addition to the Schrodinger
and Heisenberg pictures that is often used. This picture is called the interaction
picture. The interaction picture is related to the Schrédinger picture through the
following unitary transformation for a Hamiltonian, H = Hp + V.

Tz, t) = Uyt¥g(a, t)

where

UO —_ e—%(t—-io)HQ .

The Hamiltonian Hyg is assumed to be time independent, V' is considered to be
small in comparison to Hy, I denotes interaction picture and S denotes Schrodinger
picture, to is the time when the two pictures coincide (you can take this to be
to = 0) and t is the time from when the two pictures coincide.

(a) Use this information to find the equation, analogous to the Schrédinger
equation, that gives the time evolution for ;. To receive full credit justify
all steps. (4 Points)

(b) How are operators in the interaction picture (Qr) and the Schrodinger pic-
ture (Qg) related? (2 Points)

(¢) These 2 pictures are related to each other through a unitary transformation.
In general, what is a unitary transformation and what are the important
quantities that a unitary transformation preserves? (3 Points)

(d) Why do you think this is called the interaction picture? Why is it useful?
To receive credit you must explain how the name relates to the dynamics.
(1 Points)



PROBLEM 6: Stationary Perturbation Theory

Let us consider the Hamiltonian H for a harmonic oscillator with a charged
particle in a constant electric field (E):

H = Hy+H;

P2 1 .,
H, = 2—7”‘?‘ + —2—kX and
H, = XX

where \ = ¢F and q is the electric charge.
The non-perturbed Hamiltonian has the following eigenvalue equation

1
Holn) = EQn®)y, EQ =hw(n + 5) and w=/k/m.

(a) Apply perturbation theory and determine the first order energy ESLI). [2

Points]

(b) Apply perturbation theory and evaluate the second order energy E,(f). 3
Points]

(c) Solve this problem exactly and find the energy En. [3 Points]

(d) Determine the eigenvector to the first order |n) = |n(©) + |n(M). 2 Points]



Quantum Mechanics
Qualifying Exam—August 2012

Notes and Instructions:

There are 6 problems and 7 pages.

Be sure to write your alias at the top of every page.

e Number each page with the problem number, and page number of your
solution (e.g. “Problem 3, p. 1/4” is the first page of a four page solution
to problem 3). '

¢ You must show all your work.

Possibly useful formulas:
Pauli spin matrices:

0 1 0 —i 10
={10) T\i o) TZTl0 -

One-dimensional simple harmonic oscillator operators:

h
1/ 2mw(a +ah)

X =
P = —i hmw<a —al)
2
Spherical Harmonics:
Y2(0, ) = \/—i*_w YZ(0,0) = \7% 3sin? 9 e
Y21(9> W) =- \/254—7r e

Yi(0,0) = ‘«%Smg@w Y90, 0) = Ji= (3eos®0 - §)

ip

YP(0,¢) = g cos Yy M0, ) = \/—38111900896
\/,__

THO.p) = F=sinfe™™ v2(,0) = 3sin?§ e~2i®

In spherical coordinates, the Laplacian is

16 1 0 ] 1 9

2 _ 2 o {ay . e
v 287"( 87') r2sin089(8m989)+r2sin298¢2



PROBLEM 1: Eigenvalue Equation and Time Evolution

The Hamiltonian for a certain three-level system is represented by the matrix

H:

o~ O R
o0 O
e O o

where a, b, and c are real numbers and a — ¢ = +b. “"—57 C 75 Gvb
(a) Find the eigenvalues Ey, and normalized eigenvectors |En),n=1,2,3 of H.
[4 points]
(b) If the system starts out in the state

0
)y =11 |,
0
what is |#(t))? [3 points]
(¢) If the system starts out in the state
0
[p(O) =10 |,
1

what is |¢())? [3 points]
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PROBLEM 2: Generalized Uncertainty Principle

Consider the spin 1/2 operator

S:§U,

where & = (04,0, 0;) is a vector of Pauli matrices, which are defined in the basis
of the S, operator eigenvectors,

ae(2) ne(t)

(a) Compute the commutator [S;, S;], with i,j = z,y, 2. [2 Points]
(b) Compute the expectation values ((65,)?) and {(§Sy)?) for the state
la) = cos(a)|+) + sin(a)|—),

where 68 = S — (S). Show explicitly that the relation

(35:)(35,)%) = 11[S2, S,

is satisfied. What does it physically mean? [4 Points]

(c) Find the states that maximize and minimize the product ((882)2)((85y)%).
Interpret the results. [2 Points]

(d) Suppose one performs an experiment which filters the +7/2 eigenstate of the
S, operator from the initially prepared state |a). Then the S, component of
the spin is measured. Compute the expectation value of this measurement
in the state |a). [2 Points]
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PROBLEM 3: Clebsch-Gordan Coeflicients

Consider a system of 2 spin 1/2 particles, i.e. s1 = %, 89 = —%— where:

S12]81, ms1) = ms1fils1, me1)

S%lSI,m51> = 31(81 + 1)h2|51,m51) = 3/4h2|s1,m31)

and similarly for Sy, and S%.

Initially, the 2 spin particles are uncoupled and subject to a Hamiltonian:

Hy = w151, + w252,

The eigenvectors |s1, S2; Ms1, Ms2), for this Hamiltonian can be written in compact
notation as: | ++),|+—),| = +),| — —) where the + and — denote the sign of ms
and mge respectively.

Answer the following questions:

(a)

(b)

(d)

Set up the matrix representation for Hp in this uncoupled basis. [1 point]

Now add an interaction term: A§1 . 52 to Hy:
H = Hy + Agl . §2

Determine the commutator : [H, S1,]. Will the uncoupled basis be an eigen-
basis for H? Explain. [2 points]

Determine a coupled basis for this system: |S, M) where S is the value of
the total spin § = S; + Sz and M is its component, i.e.

S2|S, M) = 8(S + 1)R*|S, M), S,|S, M) = MA|S, M).

by setting up the matrix for S? = (§1 + §2)2 in the uncoupled basis and
diagonalizing it. List the eigenvectors of S? with the correct values of § and
M ie. as |S, M) states. [3 points]

Identify the Clebsch-Gordan coeflicients: (51, 82, Ms1, Ms2|S, M) from the
expansions you found in part ¢). Fill in values for all the quantum numbers in
the Dirac braket for each Clebsch-Gordan coefficient and give the numerical
value for all the Clebsch-Gordan coefficients you have found. There should
be 6 Clebsch-Gordan coefficients. (4 points]



[

PROBLEM 4: Stationary Perturbation Theory

Suppose an electron is in orbit in the ground state about a tritium nucleus.
The tritium nucleus suddenly undergoes beta decay, so that SH —3 Het+e™ +7e.

(a) What are the orbital quantum numbers of the still-bound electron after the
beta emission and why? [2 points]

(b) Estimate the probability that the orbital electron remains in the ground
state after the beta emission. [6 points]

(c) What is the probability that the orbital electron is in an excited state after
the beta emission? [2 points]

Helpful information: the radial wavefunction of the still-bound electron in the

A

3/2
ao) e=%r/a0  which is similar to the wavefunction of

ground state is Rijp = 2(
the hydrogen atom.



PROBLEM 5: Time Dependent Perturbation Theory

A particle of charge g, undergoing simple harmonic motion along the z-axis
(1-D), is acted on by a time-dependent homogeneous electric field,

E(t) = Eoe ¥/ 3

where Fy and 7 are constants.

(a) What is the new interaction term in the Hamiltonian for the simple harmonic
motion due to the specified electric field? [1 Point]

(b)

If the oscillator is in its ground state at t = —oo, find the probability that it
will be in an excited state at t = co. Assume the interaction can be treated

as a time-dependent perturbation. [3 Points]

Consider the same charged particle linear harmonic oscillator as in (a). As-
suming that dE/dt is small, and that at ¢t = —oo the oscillator is in the
ground state, use the adiabatic approximation to obtain the probability that
the oscillator will be found in an excited state as ¢ — oo. Compare your
result with the one you obtained in (b). [3 Points]

Again consider the charged particle harmonic oscillator but with a slightly

different perturbation. For ¢ <0

K2 52

Ho = " 2m Ox?

+1
2
Fort> 0
R 92 1

+

Ht)=-5 5213

with
qEp
a=—,
mw

“k(z —

2

ka* .

a)? — ka?

where w = /k/m. Show that in the weak coupling limit for ¢ >0 that the
only eigenstate of Ho which will be excited with any sizable probability is the
first excited state, 11 (), and that the corresponding transition probability

13
2

2¢°E,
Pro(t) = mhcug

sin®(wt/2).

Assume the perturbation is turned on suddenly (fast). [3 Points]



PROBLEM 6: Neutron Evolution

A polarized beam of neutrons with energy Eo and spin projection along the
positive z-axis enters abruptly at ¢ = 0 a region where there is a uniform magnetic
field B. If we ignore the spatial degrees of freedom the Hamiltonian for the neutron
interacting with the magnetic field is

H=-B-jip=2wh-S
where 7 is a unit vector in the direction of the magnetic field and w = By /.

(a) Hamiltonian: Express 7 in spherical coordinates {6,¢} and then find an
expression for # - S. [2 points]

(b) Time Evolution Operator: Write down an explicit expression for the
time-evolution operator in terms of {6, ¢,t}. [3 points]

(c) Evolved State: Find the state of the time evolved system for any time
t > 0. [2 points]

(d) Expectations: Find the expectation value of the spin S. |2 points]

(d) A Special Case: Determine and describe the motion for a system where
B = B# [1 point]



Quantum Mechanics
Qualifying Exam - January 2013

Notes and Instructions
¢ There are 6 problems. Attempt them all as partial credit will be given.
e Write your alias on the top of every page of your solutions

o Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

» You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

In spherical coordinates,

o, 10° . 1 9. 0% 1 &
Vi = r8r2r¢+ r23in986(8m060) + r25in203¢2¢'



Problem 1: Bound States and Scattering for a Delta-Function Well

Consider a delta-fuction for a 1-D system,

V(z) = —g d(z) )

where g > 0. We will consider the states of a particle of mass m interacting with this
potential for both E < 0 and £ > 0.

This potential has a single bound state F, < 0.

(a) [1 pt] Explain why the bound state wavefunction for the particle will have the form
U(z) = ce~ 121/ (You don’t need to solve for anything to answer this question.)

(b) [2 pts] Derive the boundary conditions for ¥(z) and 9,¥(z) at = 0.
(c) [1 pt] Using the boundary conditions at = 0, determine the value of A

(d) [1 pts] What is the energy of the bound state, £,? What is the normalization constant
c?

(e) [2 pts] What is the uncertainty in position, Az for the particle in this bound state?

(f) [2 pts] Next consider a scattering state for this particle with energy E>0

U(z) = e ae”® x <0
be*=, >0 (2)

. a ﬁ2k2
For this state, £ = S

Using the boundary conditions you found in part (b), determine @ and b, and the
transmission and reflection coefficients for this scattering state.



Problem 2: Born Approximation

In the Born approximation, the scattering amplitude for a particle of mass m elastically
scattering from a potential V() is given by

10,8 = ~ 5oz [ BT @a M

2h2
and where hk is the incoming momentum, Kk is outgoing momentum, ¢ is the scattering
angle measured from the incoming momentum, and ¢ is an azimuthal angle about the

incoming momentum.
The scattering cross section is given by

do 9
& =110, 9)" @)
{(a) [2 pts] Define & = k' — k. Show that the magnitude || = 2ksin(8/2) for elastic

scattering.

nr

(b) [6 pts] Find ch% for the Yukawa potential: V{r) = &

™
(c) [2 pts] Why does the cross section get larger as p gets smaller? What is the scattering

cross section the limit as u — 07 What physical problem does this correspond to in
the y — 0 limit?



Problem 3: Spin Measurements and Uncertainty

Define the operator S, = S - fi,, where § is the vector spin operator and 7, is a unit
vector in the @ — z plane that makes an angle o with the z-axis. So fiq = 2 for o = 0 and
g = & for o = m/2.

Consider a spin 1/2 system initially prepared to be in the eigenstate of S, with eigenvalue
+h/2,

Salet, ) = 2o +) M)

(a) [3 pts] Compute the eigenstates of Sq in the basis of the .5, operator, [0, ) = |£).

(b) [2 pts] If the spin is in the state |, +) and S is measured, what is the probability of
measuring —Hh/27 '

(¢) [3 pts] Compute the expectation value ((35;)?) for the state |o,-+), where §5; =
Sz — {(Sz).

If one measures S, what are the values of « that minimize the uncertainty of the
measurement for the state |o, +)7 Interpret the physical meaning of those states.

(d) [2 pts] Finally, define Pz 4 to be the projection operator for the spin 1 /2 state of
Sy, |7/2,--). Compute the matrix element Py, in the initial state, (-, | Py )0, +)-
Explain the behavior of the resultant expression as a function of the angle a.



Problem 4: Operator Solutions to the Harmonic Oscillator

Consider the Harmonic Oscillator Hamiltonian in one dimension:

To simplify this problem, define the new observables:

1 mw
= 4 [ —— =4 —X 2
P=y mth v g i (2)

This gives the dimensionless Hamiltonian,

H = %Hho = % <p2 + qz) (3

(a) [1 pt] Calculate the commutation relation for these new variables, [g,p]. Be sure to
show your work.

(b) {1 pt] Define the non-Hermitian operators a = %(q +ip), af = ﬁ(q — ip) and the
Hermitian operator n = ala. Compute [a,a'], [n,a'], and [n, g]

(c) [1 pt] Write the dimensionless Hamiltonian H in terms of ¢ and a!. Write the dimen-
sionless Hamiltonian H in terms of n.

(d) [3 pts] Define the eigenvalues and eigenvectors of n as:

n|A) = AA). (4)
and assume that these eigenvectors form a complete set.
Show that
alN) = AD+1)
ald) = B]A-1) (5)

Determine the normalization constants A and B.

(e) [2 pts.] Show that n = a'a must have non-negative eigenvalues, A > 0. Explain why
this implies that there must be a state where a{0) = 0 and that the eigenvalues of n
must be non-negative integers.

(f) [2 pts.] Write the definition for the state |0)
al0) =0 (6)

as a differential equation, in g, for the ground state wavefunction of H. Solve this
expression for the normalized ground state wavefunction.



Jan GOV ®£>0=‘\1J AN

6

e

kY] I
Rewmem iy el

Lop) - o

S " B
LW S doo©
131 X ‘m%/‘flx) !

b) Ea, 0‘3 = qa' -l

N

’\2‘ / 4 f iy \\ it ! % N
ARSI G el Wala gy Lo i)

i

o
E)
o
i




o f
Y Lo

)

&f{) \.00 \(\0&{ oo Lol e } ‘(} ( p? q*’ - orm O{\ o on ﬂ} ]

S Ta s qip

! [
Lon i"(fi&“’iw‘:fi»::v o Lnive

‘ / Ao
L el o cOMMUTED

d\> # j’)g s

J
>
\

=
5
-




i}:tl (cont. )

&) %5\\%«,\\%‘\&(‘ L
e

5, 1y

= oln-0) 10y
- Q{%««\B‘\%}x;@

= . Lo 0
AR

= laald s = B A%y
B?.

Mnlny ~
/)\ o ?{’?} K 3’?




2 0y 2
= C ) ifi‘t’,,;ff%;;r Ay

o0

k




Problem 5: Perturbing a Square Well

Consider a particle of mass m in a 1D infinite square well of width a,
V(z)=0, 0<z<a V()=o00, <0, z>a. (1)

(a) [2 pts| Derive the eigenfunctions and eigenenergies of the particle in this potential. Be
sure to normalize the states. '

(b) [2 pts] Show that if the well is perturbed by a potential V'(z) = o x, the energy
of all the unperturbed states shift by the same amount to first order in . Find an
expression for this energy shift. Give a physical explanation for why this perturbation
results in an equal first-order energy shift for all states.

(c) 3 pts] Next, instead of the perturbing potential from part (b), the well is perturbed
by a potential
V/(z) =V, g—éng%JﬂS V'(z) =0, :c<%~5, x>%+6 (2)

Compute the energy shift to first order in « for the unperturbed energy eigenstates
¥y (x). Explain the limit of this result as n, the unperturbed energy level, gets large.

(d) [2 pts.] What is the energy shift of the states 1n(z) to first order in § as § — 07 (Vo
is constant.) Give a physical explanation of this result. Note: You should be able to
answer this question even if you did not get a solution to part {c).

(e) [1 pt] What is the energy shift of the states ¥, (x) as § = £? (Vp is constant.) Give
a physical explanation of this result. Note: You should again be able to answer this
question even if you did not get a solution to part (c).



Problem 6: Spherical Square Well

Consider a spin 0 particle of mass m moving in a 3D square well, given by the potential
V(i) =-V% 05| <a, V(=0 |f>a (V>0). 1)
In this problem we will only consider the bound states of this well, so that -V < E < 0.
(a) [1 pt] Explain why we can write the eigenstates of this potential as
Vigm = fra(r)Y1™ (0, 8). (2)
(b) [2 pts] Defining the function ug(r) = rfi(r), write the radial Schrédinger equation
for ug(r).

{c) [2 pts] For [ = 0, write the form for the function ugo(r) in the regions 0 <7 < ap and
r > ag. Define any constants that you use.

(d) [3 pts] Using the boundary conditions on the function uo(r), derive an equation
that gives the bound state energies for the [ = 0 states. Hint: Considering that
f{r) = u(r)/r, what is the boundary condition on u as r — 07

(e) [2 pts] For a fixed radius for the potential, ag, calculate the minimum depth, Vo = Vipin,
for the potential to have a bound state.



Quantum Mechanics
Qualifying Exam - August 2013

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.

Write your alias, the name you selected at the start of this test, on the top of every
page of your solutions. DO NOT put your own name on your answer sheets.

Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3)

You must show your work to receive full credit.
Possibly useful formulas:

Spin Operators

R (o - (10
§=3% ”””‘(1 o)"’“(i o)"”—(o 1) (1)

Angular momentum operators in 3D obey

[Li, Lj] = ihesjp Ly, (2)
In spherical coordinates,
19 ,0 1 9,. 0¢ 1 o2
2 2
= 7T e —(SIN 0 —=) + ——5— 5.
vy 2 or 5r¢+r2sin030(sm 6‘9>+rzsin208¢2¢ ) .
In cylindrical coordinates,
9 10 ( 0 ) 1 62 02
== pz¥ |+ 57a¥t s 4
Harmonic Oscillator States (8 = /%),

,32 14 1 2.2
Yn(z) = <———~> me“ﬂx /2Hn([)’w)

s

Hy(z) =1, Hi(z) = 2z, Hy(z)= 4z® — 2, Hi(x) = 8z° — 12z (5)

Spherical Harmonics,

Y()O(ev¢) = ﬁ, Y10(9,¢) = \/;—3;:6080, Y1i1(97¢) = :F\/gsinee:tw (6)

Hydrogen Atom States (ag is the Bohr Radius),

\I/n,é,m(f) Rn,é(r)yl,m(e’ d))
2
Rl’o(’[‘) = '((;(‘)')3_/2'6 /0«0
_ 2 (1)
Rao(r) = (2ag)3/2 <1 2ao) ¢
1 T —r/2a9
Rg,l('r) = (7)

(2a0)*/% v/3ao



Problem 1: 1D Square Wells

(a) {1 pt] Consider an electron confined to an infinitely deep 1D well with walls at z = 0
and = = L. In the ground state, the electron has an energy of 2.5 eV (the bottom of
the well is defined as V' = 0). What is the width of the well?

(b) [L pt] A proton is confined to an infinite 1D square well of width 10 fm. What is the
wavelength (or frequency) of a photon emitted when the proton undergoes a transition
from the first excited state to the ground state of the well?

(c) [2 pt] Sketch the probability density as a function of « for the first 3 energy eigenstates
for an electron in an infinite well of width L. Describe qualitatively (or draw) how
the probability densities for these states will differ (from the infinite well case) for a
square well with an infinite potential barrier at = 0 and a finite potential barrier at
z=0L.

(d) [2 pt] Consider an electron in the nth energy eigenstate of an infinitely deep well with
walls at £ = 0 and « = L. Calculate the probability that the electron will be measured
between z = 0 and = = ¢ L, with 0 < € < 1. Your answer should be a function of
both n and e.

Give a physical explanation for your solution as n — co.

(e) [2 pt] The eclectron is in the ground state of the infinite well when the wall at © = L
is very suddenly moved to = = 2L. What is the probability that the electron will be
found in the ground state of the expanded box?

(f) {1 pt] What energy eigenstate in the expanded box will have the highest probability
of being occupied by the electron? What is this probability? Hint: You should be
able to determine this result without doing an integral, but you should explain your
answer.

(2) [1 pt] Suppose the electron is in the ground state of the infinitely deep well when the
walls are suddenly removed completely. Write down an expression for the probability
distribution for the momentum of the freed electron. Setup but do not solve the
integral.



Problem 2: Quantum Operators

In this problem you will work with the ladder operators for angular momentum:
Li=Ly+iLy, L_=L;—1ily (1)
where

L* = LZ+I12+4 L
Le,m) = £(£+1)R%e,m)
L,|/tm) = mhl|t,m) (2)

(a) [1 pt] Show that the eigenvalues of any Hermitian operator are real.

(b) [2 pt] Is the the operator Ly L, the product of the angular momentum ladder opera-
tors, Hermitian? Show your work to justify your answer.

(¢) [4 pt] Determine the results of the operations: L6, m) and L-.|¢,m). Show all of your
work and make sure you determine all constants correctly.
Hint: The commutation relation [L,, L+] and the matrix elements (¢, m|LyLz|6,m)

might be useful.

(d) [3 pt] Using the results from part (c), prove that —¢ < m < +£. Explain the physics
of this result in terms of the operators L? and L.
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Problem 3: Barrier Scattering

Consider a particle of mass m in one dimension scattering off of a square barrier of
width L:

Vi) = 0, z<0
Viz) = V, 0<z<L, V>0
Viz) = 0, z>L (1)
Assume the particle has an energy E > V and is incoming from the left (z < 0}.
Define the usual wavenumbers for this problem:

thz h2k}’2
AL - F -
om T 2m v 2

(a) [1 pt] Write down general expressions for the scattering wave function, the un-normalized
eigenfunction of the scattering Hamiltonian, in the three regions, z < 0,0 <z < L,

and z > L.

(b) [1 pt] Using the expressions from part (a), write down the boundary conditions on the
scattering wave function. Explain the physics of each of these boundary conditions.

(¢) [2 pt] Using your boundary conditions from part (b), show that

A . K2k
=€ (cos K'L)— AT sin(k'L) (3)
where A is the amplitude of the incoming wave (from = —occ) and E is the amplitude

of the outgoing wave (to x = 00). Hint: We’re not interested in the amplitude of the
reflected wave.

(d) [3 pt] Solve for the transmission coefficient, T, for the barrier scattering. You may
express this in terms of k, K/, and L, but it will be useful for later parts of the
question to write it in terms of E, V, L, and constants in the problem.

(e) [1 pt] What is the limit for the transmission coefficient 7" in the limit that £ > V7
Show your work and explain the physics of this result.

(f) [1 pt] There are energies where 7' = 1. What are these energies and the wavelength
of the particle wave function? Give a physical argument of why the transmission
coefficient is a maximum for these energies.

(g) [1 pt] What is the value for the transmission coefficient, T, in the limit that £ — V7
Hint: To solve this you might define § = £ — V.



Problem 4: Properties of the Hydrogen Atom

The wavefunctions for the ground state and first excited states of the hydrogen atom
are given on the first page of this test.

(a) [2 pt] For the ground state of the hydrogen atom, determine the expectation value for
the radial position of the electron, (1,0,0|r(1,0,0).

(b) [3 pt] Define the radial probably density for the electron in a hydrogenic eigenstate:
P,,.0m(r)dr as the probability of the electron being measured in the spherical shell
between r and r + dr.

Write down expressions for Py go(r) and Py1,1(r), and sketch these as functions of r.

Hint: Remember that the integral of the probability density over r must be equal to
one,

/ * Prgm(r)dr =1 (1)
0

(c) [3 pt] For the ground state of the hydrogen atom, determine the most probable radius
for the electron. Compare your result to part (a) and explain the similarities and
differences.

(d) [1 pt] What is the functional form for P1go(r) in the limit as r — 07 Explain your
result considering that the ground state wavefunction is non-zero at r = 0.

(e) [1 pt] What are the functional forms of Pioo(r), P21,1(r), and Pooo(r) as r — 07
Explain the similarities and differences.
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Problem 5: Two Level Systems

Consider the Hamiltonian for a two-state system:

e A
HZ()\A —e> ()

where A (a unitless parameter) determines the strength of the perturbation on the two-level
system and ¢ and A are constants with the unit of energy.
The energy eigenvectors for the unperturbed Hamiltonian (A =0) are

¢+=(é>,w~=<?> | )

(a) [2 pt] Solve for the energy eigenvalues Ey and Ej for the full Hamiltonian (for any A).

What is the functional form of the eigenenergies in the limits A — 0 and A — oo?

(b) [2 pt] For the case that A\|A| < ¢, solve for the energy eigenvalues to first order and
second order in A.

Compare these results with the exact results obtained in part (a) and show that they
are in agreement.

(¢) [1 pt] For the case that A|JA| < ¢, what is the change in the unperturbed eigenstate
1y to first order in A?

(d) [2 pt] For the case that the unperturbed Hamiltonian is nearly degenerate, € < A4
show that the exact results obtained in part (a) agree with the results of applying
first order degenerate perturbation theory with € = 0.

(e) [3 pts] For the case that ¢ < A|A|, it would advantageous to use a different set of basis
states to describe the system. Using basis states that are approximately eigenstates
of the Hamiltonian for small ¢, determine the Hamiltonian matrix in this new basis.
Show that the exact solutions for the eigenenergies are the same as in part (a) in this
basis.
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Problem 6: Harmonic Oscillators in 1D

A quantum harmonic oscillator is described by the Hamiltonian

2
1
H= _213% + ~2-m(.u2:c2 (1)

where p is momentum, z is position, m is mass, and w is the oscillation frequency.
The Hamiltonian has the usual eigenstates and energies:

1
Hin) = hw <n + 5) [n), n=0,1,2,.. (2)

Let the system be perturbed by a potential in the form V' = Az?® where A is a real
constant.

(a) [2 pt] What is the change in the energy of the unperturbed eigenstates [n) to first order
in A? Show your work.

(b) [2 pt] If the perturbation is time-dependent, V(t) = A(t)x?, it can cause transitions
between the harmonic oscillator states. To study these transitions, it is helpful to use
the time-dependent expansion:

() = 3 cu(t)e™ RE ) (3)

The ¢, (t) are time-dependent probability amplitudes for the states |n’) and the en-
ergies E,s are the unperturbed eigenenergies. Use the Schroedinger equation to show
that the expansion amplitudes satisfy a set of coupled equations:

itaren(®) = 3 cur(t)e HE BTV (1)) @

(¢) [3 pt] Consider the case where the oscillator starts at time ¢ = 0 in the ground state,
en(t = 0) = 80. Use the result from (b) to write down the time dependence of the

excited state probability amplitudes to first order in V, cgll)(t), n > 0. This will be
an integral equation, as we have not yet defined A(t).

Show that, to first order, there is a transition only to the n = 2 excited state.
(d) [3 pt] Finally, consider a time dependent perturbation with A(¢) of the form
A(t) = Ae ¥l Tt : (5)
Q! and I" being real and positive.

Compute the probability that the n = 2 state is populated for ¢ — oo, and explain
the dependence of your result on €2 and I,

Note: In this problem, it is useful to use

atz——\%<'—;~i%p>, a:%<—§+i%> (6)

where A = \/th- is the length scale in the problem.
You do not need to derive the properties of these two operators, but you should state
the results you are using.
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Quantum Mechanics
Qualifying Exam - January 2014

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.

Write your alias (not your name) on the top of every page of your solutions.

Number each page of your solution with the problem number and page number (e.g.
Problem 3, Page 2 of 4, is the second of four pages for the solution to problem 3)

e You must show all your work to receive full credit.
Possibly useful formulas:

Pauli matrices

Laplacian in spherical coordinates
1 92 1 0 o 1 0
2, _ + 9 A Ll W T A
VY= or? T+ r2sin g 50 (sin0 o0 )+ r2sin? 3¢2¢‘

r

One dimensional simple harmonic oscillator operators:

hmuw
— i - 4 _qat
X = 2mw(a—|—a), P W (a —a")
Spherical Harmonics:
1
),00(6’(}5) = —_47?
0 3
YP(6,¢9) = 7(:050
YEN6,9) = Ty o sinbeti
YY(0,4) = —5—(3c0829—1)
230 167
+1 5. +i¢
Y55 0,¢4) = F —8-—7;(sm€cos(~))e
15 | 5

Y20, 4) = g——2~7;sin g e*2?



PROBLEM 1: Rigid Rotator

A free molecule of NaCl can be approximated as a dumbell, or rigid rotator. Attach a
reference frame to its center of mass, with z-axis oriented in an arbitrary direction. The
Hamiltonian can be taken to be H = —é; where L is angular momentum and [ is the (fixed)
moment of inertia.

a) Write the Schroedinger equation for the molecule. (1 Point)

b) What are the energy eigenvalues? (2 points)

¢) What are the steady-state eigenfunctions? (2 points)

d) Sketch an energy level diagram for the rotator. Note any possible degeneracies. (2 points)
e) The rotator, with electric dipole moment D oriented along the dumbell symmetry axis,

is placed in an electric field E = E3. The dipole interaction is Hp = —D.E. What is the
first order perturbative correction to the lowest energy level? (3 points)



PROBLEM 2: Particle in a Box

A particle of mass m is in the ground state of a one dimension box of length L. At ¢ =0,
the box suddenly expands symmetrically to three times its size, leaving the wavefunction of
the particle undisturbed. Assume the particle was in the ground state before the expansion.

a) Solve the Schrodinger equation and calculate the eigenenergies and eigenfunctions in the
box before and after the expansion (show all your work). (3 Points)

b) What is the probability of finding the particle in the ground state immediately after the
expansion? (4 Points)

¢) Compute the wave function of the particle #(z,t) for ¢ > 0. Hint: express your answer
as a superposition of eigenstates. (3 Points)

q

Hint: fl/r% d0 cos 0 cos(qf) = 125 cos (g3),

fl/r% df cosdsin(gh) = 0.
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PROBLEM 3: Matrix Mechanics

Let A, B and C be three ensembles that are represented in the orthonormal basis |e1),
leg) and |es),

1 0 0
ley=1 0 ], leay =1 1 |, lesy ={ O
0 0 1
by
010 1 -3 0 2 00
A= 1 0 0 , B = -3 1 0 , C= 010
0 0 1 0 0 -2 0 0 1

The eigenvalues of A are doubly degenerated, a = 1, 1, —1, with eigenvectors

1 1 0 1 1
a=1L,0)=—1{(1 1], a=1,2)=4{ 0 |, a=—1)=-—1 —1
| ) 7 | ) X | ) 7\
The eigenvalues of C' are also doubly degenerate, ¢ = 2, 1, 1, with eigenvectors:
1 0
lce=2)=1{ 0 |, fe=11)=1{ 1], le=1,2)=1 0
0 1

Assume that all particles in the ensemble are in the state [},
1 1 1
) = §|€1> - '2‘|€2> + EI%)-
Answer the following questions:
a) Find the probability of measuring C' and obtaining a value ¢ = 2; then immediately
measuring A and getting a = 1, i.e. find Pyy(c = 2,a = 1). Identify the intermediate state

[¢') after C' is measured. (2 Points)

b) Now find the probability if those measurements are performed in the reverse order, i.e.,
find Piy)(a = 1,c = 2). Identify the intermediate state [¢)") after A is measured. (2 Points)

c) Compare the results of parts a) and b) and explain why this happened. (1 Point)

d) If you are told that the eigenvalues of B are b = —2, —2, 4, justify whether or not the
following 2 probabilities Pyy(a = —1,b = 4) and Py)(b = 4,a = ~1) will be equal (do
NOT explicitly calculate the probabilities). Will the final states be the same or different?
Explain. (2 Points)

e) Does { A, B} constitute a complete set of commuting observables? Demonstrate explicitly.
(3 Points)
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Problem 4: Clebsh-Gordon Coefficients

Consider a system with two distinguishable spinless particles with angular momentum
51 = 1 and jo = 1. Suppose the system is prepared in a state with total angular momentum
7 = 2 and total angular momentum projection m = my + mg = 0. The state in the total j
basis |J1, j2; 4, m) i8
11»/)) = |171;j =2,m= 0>

a) Express |¢) in terms of products of single particle states, namely in the direct product
basis [j1 = 1,m1)|j2 = 1,m3). (4 Points).

b) If the angular momentum projection of particle 1 is measured along the z direction, what
is the probability of finding a non-zero result? (2 Points)

¢) If J; is the angular momentum operator of each particle (¢ = 1, 2), compute the expecta-
tion value of Jq - J2 in the [¢)) state. (2 Points)

d) If the |¢) state is rotated by an infinitesimal angle §6 around the z direction, compute
the probability of measuring the |1,1;j = 2, m = 1) state in leading order in 6. (2 Points)

Raising and lowering angular momentum operators:

Jelj,m) =b/(G Fm)(j £m +1)|j,m £ 1)
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PROBLEM 5: Zeeman Field

Consider the eight n = 2 states of Hydrogen. This problem is on the strong field Zeeman
effect with spin-orbit interaction. Assume that the constant magnetic field B lies along the
z-direction. The spin orbit coupling term is

1 1dv

Hso = o—5-—"L"
2mic?r dr !

where V' (r) is the Coulomb potential, c is the speed of light and m, is the angular momentum
projection quantum number. Remember:

1
adndl(l+ (1 + 1)

1
(rn’v l77nl|;§|n) l) ml> =

for I # 0.

a) Find a general expression for the energy due to the spin-orbit term in the physical limit of
strong magnetic field, where the strong field Zeeman splitting expressions are valid. Express
your answer in terms of the good quantum numbers in this problem. Recall that because
of the strong magnetic field, the good quantum numbers in this regime are n, [, m; and mg
and not j and m;. (Hint: compute (Hgp) in the proper basis) (3 Points)

b) Explicitly write down the quantum numbers for all eight n = 2 states. Find the energy
of each state under strong field Zeeman splitting. Express the energy of each state as the
sum of 3 terms: the Bohr energy, the spin-orbit interaction, and the Zeeman contribution.
(4 Points)

c) If you ignore the spin-orbit interaction, how many distinct energy levels are there and
what are their degeneracies? (3 Points)
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Problem 6: Perturbation Theory

54

An isotropic Harmonic oscillator in two dimensions has the Hamiltonian

2 2 2
p Py  mw” o 2
Hy= Pz v MY
0= gm T am T g @ Y,
where x and y are position operators in Cartesian coordinates x and y.

a) What is the energy of the three lowest energy levels and their respective degeneracies? (2
Points)

b) Consider a perturbative potential of the form:
Viz,y) = Amwizy.

Compute the energy correction of the lowest level in the lowest order in perturbation theory
where the result is non-zero. (3 Points)

c¢) Compute the energy splitting of the first excited energy level (which is degenerate), due
to the perturbation. Compute the split ket states in terms of the original unperturbed kets.
(3 Points)

d) Suppose that there are three indistinguishable spin 1/2 particles in the system. Compute
the total energy of the ground state in first order in perturbation theory. (2 Points)
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Quantum Mechanics
Qualifying Exam - August 2014

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.

Write your alias on the top of every page of your solutions

Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

¢ You must show all your work to receive full credit.
Possibly useful formulas:

Pauli matrices

Laplacian in spherical coordinates
1 9 1 0 o 1 02

2, _ 107 o Lo
VY= r8r2r¢+ rzsinﬁé?@(smea@) t rQSin26’8¢2¢'

One dimensional simple harmonic oscillator operators:

X = L (a+al), P=—i (a —al)

2mw 2

Spherical Harmonics:

Y90,4) = \/_i—;;

Y2(0,6) = 1 o cost
Yii6,4) = ¢\/gsin6eﬂ¢
Y20(9’¢) = \/—1—65‘—7;(300526—1)

15 ;
YN0, 4) = T4 —8—7;(sin 0 cos f) e*®

Y;72(0,¢) = ,/3—12% sin® § e



PROBLEM 1: Stationary and Non-Statonary States

Consider a quantum system whose particles are in the following state:

\I/(.T:, t) - %"/fl (m)e—iElt/ﬁ _ i\/gl/);;(z)e_iEat/ﬁ' + _\}_5¢5(m>e—iE5t/ﬁ’ (1)

where ¥y, (z), n = 1,2, 3... are stationary states of the Hamiltonian governing the system,
Hipp(z) = Enp(z).
Answer the following questions:

a) Do you expect (z), {(z?) and (E) to be time dependent or time independent? Discuss
briefly, but do not calculate. (2 Points)

b) Is the uncertainty AF positive, negative or zero? Is AE time dependent or time inde-
pendent? Again, discuss briefly but do not calculate. (2 Points)

¢) Is ¥(t) above a solution of the time dependent Schroedinger equation? Demonstrate. (2
Points)

d) If the stationary states ¥1(z), ¥3(z) and 5(z) are eigenstates of the harmonic oscillator,
will any of your answers to part a) change? Justify. (2 Points)

e) Now assume the particles are in the state
U(z, t) = Py(z)e B/,

Answer parts a) and b) for this state. (2 Points)
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PROBLEM 2: Oscillator Model of Angular Momentum

Arbitrary angular momentum can be constructed from spin-1/2. The latter can be described
in terms of the Pauli matrices 5

The construction of a general angular momentum can be done by introducing two sets of
independent harmonic oscillators, in terms of creation (aZ) and annihilation (a¢) operators,

[a+, a_] = O, [a-l:*., aT_] = Oa [CLC,G/Z/] = 5()0’

with ¢, (' = 4 indexing oscillators of type . Now define
h
J= Eafaa,

where a is a two component operator,

a) Given the form of the Pauli matrices, give the explicit form for Jz, Jy, J, in terms of a,z
and a¢ operators (2 Points).

b) Show that Ji = Jy =+ ¢Jy have particularly simple forms in terms of a; and az operators
(1 Point).

¢) Compute the commutator [Jy, J,]. How is this generalized for the other components? (2
Points)

d) Show that
JE =02 4 I do i, Ay,

and then write this in terms of the number operators for the two harmonic oscillators,

Ny = aLaJF, n.=aa_.
Show that this implies that the eigenvalues of J2 are j(j + 1)k, where j is an integer or an
integer plus % (Hint: apply the J2 operator in the two harmonic oscillator state |n,,n_))
(3 Points).

e) Using the properties of the harmonic oscillators, show that the state in which J 2 has the
eigenvalue (4 -+ 1)A and J, = mh can be constructed from the state in which both ny and
n— have the value zero, |0), by

ay

TG Ami VG - m)

T yi+m a,T j—m
@y

|gm)

(2 Points)
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PROBLEM 3: Perturbation Theory

Consider a particle of mass m trapped inside a 1D parabolic potential

Viz) = §mw2x2,

where w sets the frequency of oscillation inside the potential.
a) If the particle is perturbed by a static potential
V} = oz,

with o small, compute energy correction of the energy levels in the lowest order where the
result is non-zero. (3 Points)

b) What is the pertubed ket in the ground state? Compute the expectation value (z) in this
state. Interpret the sign of (). (3 Points)

c) Assume from now on that o = 0. Imagine that the particle is charged and sits in the
ground state at £ = —oo. Suppose an electric field is gradually tuned on, increases to a
maximum at ¢ = 0 and then slowly dies away,

Vi(t) = —¢|Elze /7,

where e is the electric charge, and E is the electric field . Write down the general expression
for the amplitude of transition from a generic level ¢ to level f. (Do not solve the integral
yet) (2 Points).

d) Evaluate the probability of having the particle in the first excited state at ¢t = +oco. (2
Points).

Hint: ffooo dt e_tz/"'ze’iwt — \/7—1_?9_“,27,2/4
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PROBLEM 4: Two Particles in a 1D Box

Consider two noninteracting particles of mass m inside a 1D box,

V(x):{O ,O<|w|<a‘

oo, otherwise

Make sure to consider the spin part of the wavefunction in this problem.

a) Let ny and ny be the quantum numbers of particle 1 and 2 respectively. What are the
wavefunctions of the single particle states for the each particle in the box? What are the
single particle energies? (2 Points)

b) If the particles are distinguishable what is the two-particle wavefunction that describes
the state? What is the energy? Write out explicitly the state (or states) and energies for
the ground state and first excited states of the system. (2 Points)

¢) If the two particles are identical spin 0 bosons what are the ground state and first excited
state wavefunctions and energies? (2 Points)

d) If the two particles are identical spin 1/2 fermions what are the ground state and first
excited state wavefunctions and energies? (2 Points)

e) Write down the Hamiltonian for the two particles in the box and show that when the
particles are identical H commutes with the exchange operator. (2 Points)



ﬁr‘lﬁ (cmwg
G} ‘&Quw 0( {) = CYE/E' pfto, Br é{

T o (L P
E & oin ( 7.0 \) N ENED |

P odd

= F;x Qm\;}) &K‘“\\ﬁi@, '%30(““%1(::,?@ .‘ 7%( x3 z

e |
., ozl ST 4 TR
b\) QS‘DU“\M £ @&‘* \Q ‘ﬁ ‘gz.‘_‘j o %t(l&”.} ) ool ?}l}“*“ﬁ ‘ el 31( gvg S5 T AL {/;rg' O i 'f/ig 57 w’;‘f?

[
Prgp@\pc“} (A\ %x@ 1430 6ﬂﬁe i)/)(f‘[ e, fﬁf,dﬁc }Ua Lo SRR fore by on

7/&))& - %i é[‘”?}j% &: . fimb >:w;

&)
q.n Spes, &

/—l\ﬂz 3?{‘»&9& (‘« f G4 TR V)k(’,\(\ \(\ = N, e l

E Wx
7%&32,” 2;%" (Oq 2a> oS “"‘“3”

L—_A . E\ﬁ» G4 T.

The diﬁ exeibed. 6%&&, oreoes When (N =7, ny = 1) or 6“1""/ V\L"Zj

”L/>% - _Lr &in ( YE(}Cl> oS (.‘ ;fi } i:‘: =

S -
of
A ; 5\ LS 6 71 %
x.,7

W2 ITeT Yot E@‘ﬁaﬁf i"g’wﬂé gf\ﬁ)‘ﬂ }qu et Soin ]QL)(\C.JIW)VW
i i

whz}x. e il (ﬁﬂ”%ff?, ' , S)Irxcg our besons ane. fd{” Ouncﬁ W‘f /“"/ :

wowill be o soper p%;‘%ew S osseble ﬁmgﬂ pal fiche states

U

= ,LV\ ‘X\)v\\-@, G g‘mx}?‘-,ej,.i, ‘Ex%r)
03




o 20 Ooortom 4

et

6) Tor oo ren-indeccling poctices in o bor, where

Vi) -4 o oclxl<a

. @0 Henwing,

SRS | —— HY = EY

|

’\\J\.é’\

-t 6

- " ()} -
T EY

7, . Vaee o
- klr%
La 7: ﬂ'&iﬁ (L’\X\} T %UX} <’é§(\‘x \3

#Oue hmwgfa‘\ tonckitinre e Yl(sy = O

/
O = )‘\&m( lka)‘ Weos (- ke
0= Fonlke) v % eos (ke
L Oor Five Curac;t,i\* rons will be O When ke = 7 ol
u =

. TT . ' . T F ’ Ly
s ("TY = 0 il ne even (024 e

Py ; Foowy g
-~} ] i("s, e (:’l\f;{é ‘{ §e i;d 2 @

o> (%\E} } = O rv

rib ne eveny,

| = R lo)r 3(‘0&(““ = B0
= ] e (%) o
a DM o " Jf‘“
= [%‘ Sin UY\}
F\ T L6~ “WMY\J}}‘)) (-a- HMQWZ\BJ
| - ﬁj_ (9.1 = A= T

o



Y (cond §

T ——

¢) = L Ye (\((% exci M&. b“%z«fi"gv S S et

WY *l
Fogp = AL Lo (5 )con (%) + & () Yot (52))

& With two n;i,, Heo opin Yo me g, We- ﬁe‘{?ﬁ?&{;% are Ot supameli spin “ welron,
. , : w |

1!

Aélr\c‘)ugé “2][9?\;&\1 (‘A\()j o ol ii’ |

d

S Tn the goond stade, o= o

wi(l violabe- exelosion ?/’“iﬁﬁ

‘ L i T y
?7[%5 = Ef iR {fixw “’“&3 o ( e j%m{ _“a"éé?\j
= O




PROBLEM 5: Addition of angular momenta

Consider an electron. We know its orbital angular momentum ¢ = 1 and the z component
m = 1/2 of its total angular momentum j.

a) What are the possible values of j? (2 Points).

b) Write down the kets |[¢ = 1, —%; jm= %) in terms of products of spin and orbital angular
momentum states (3 Points)

¢) Calculate the expectation value of the spin operator S in the state [£ = 1, %—; jym = %)
Consider all possible values of j. (3 Points).

d) The magnetic dipole moment of the electron is

[
= L +2S
7 2mec( +28),

with L the orbital angular momentum operator, e the electron charge, me the mass and ¢
the speed of light. Calculate the expectation value of p in the states |[£ = 1, —%;j, m = %) (2

Points)

Raising and lowering angular momentum operators:

Jeljym) = h/(G Fm)(G £ m+1)|j,m £ 1)
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PROBLEM 6: Variational approach

A particle with mass, m, moving in one dimension finds itself in a potential given by,
V=0 for <0

and
V=pz> for >0

where § is a positive constant.
a) Find an approximation to the ground state energy, using the trial wavefunction
V=0 for <0

and
U =Cre *® for z>0.

where C and « are positive constants. (5 Points)

b) Would you expect the exact ground state energy to be less than your answer to part (a),
or greater than it? Justify. (3 Points)

¢) How would you go about finding an excited state in this system using the same approach?
(2 Points)

Hint: f;° 2% ™% = 2073, for a > 0.
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Quantum Mechanics
Qualifying Exam - January 2015

Notes and Instructions
e There are 6 problems. Attempt them all as partial credit will be given.
e Write on only one side of the paper for your solutions.
o Write your alias on the top of every page of yéur solutions.

Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

You must show your work to receive full credit.
Possibly useful formulas:

Spin Operator

s A, (01 (0 - (10
§=39 ”””’“(10)"’?/“(@ 0>’”Z“<0 1) (1)

In spherical coordinates,

1 62 1 9 ) 1 92

o, _ 10° 9 i g?? LN 2
VY r8r2r¢+r2sin06‘0(8m089)+r2sinz()8</)2¢ 2)



Problem 1: Solving the Harmonic Oscillator

Solving the differential equation form of the time-independent Schrédinger equation for
the eigenstates of the harmonic oscillator Hamiltonian in 1D requires solving a second order
differential equation. By using operator algebra, it is possible to simplify the solution to
this problem.

The 1D harmonic oscillator is described by the Hamiltonian

P2 m 22

Define the unitless variables

X A h

——— =P A=/ —.
T PERS o )
such that the Hamiltonian has the form
B hw [ o 9
H=— (v +2?). (3)

Note that z and p are conjugate observables, [z,p] =i

(a) [2 pt] Using the harmonic oscillator operators

1 1
s , o . IS N
4d=—(x+1ip), @' =—=(x—1p), N=2a'q, 4
T(e+w), i = (i) @
and their commutation relations, show that the Hamiltonian can be written as
1
H = hw(f + 5) (5)

(b) [2 pts] Define the eigenstates of the operator #:
filn) = nin), (6)
with n some (unitless) numbers. Use the operator commutation relations to show that
In) = ¢(n)ln—1)
In) = d{n)ln+1). (7)

a
Al

Derive expressions for ¢(n) and d(n). Show your work.
(c) [3 pts] The potential, V(z) = %222 > 0 for all 2. Explain why this implies that:

1. The eigenenergies of the Harmonic Oscillator must be positive
2. The eigenvalues of 7 must be non-negative integers
3. There is a lowest eigenstate of A, |0) defined by a|0) = 0.
(d) [2 pts] Show that results above define a first order differential equation in X that can

be solved for the ground state harmonic oscillator wavefunction to(X). Determine
this equation and solve for this wavefunction.

(e) [1 pt] Use the result from (e) and the operators to determine the first excited state
wavefunction for the harmonic oscillator, ¥1(X).
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Problem 2: Angular Momentum States

Consider the electron in a hydrogen atom in the presence of a homogeneous magnetic
field B = Bz. In this problem, ignore the electron spin and only consider the orbital angular
momentum. The Hamiltonian of the system is

H = HO - UJLz, (1)

where Hp is the Hamiltonian for the hydrogen atom, w = |e|B/2mec, and L, is the angular

momentum operator along the z direction. The eigenstates |n, £, m) and eigenvalues E7(L0 ) of
the unperturbed hydrogen atom are to be considered as known. Assume that, initially (at
¢t = 0) the system is in the state

IMW=§§ML%%MAD% (@)

(a) [1 pt] Write down the time-dependent state for this atom, [(t)), given the initial state
and the full Hamiltonian.

(b) [2 pts] Calculate the probability of finding the atom at some later time ¢ > 0 in the
state

I%w=§§ML—D+MLm- (3)

When is the probability equal to 17
(c) [3 pts] Define the state |es) defined by
(e - L)|eg) =Thileg),  Lleg) = 28%ey). (4)

e, is a unit vector in the z — y plane, ey = cos(¢)ex + sin(¢)ey.
This state has quantum number £ = 1 and angular momentum projection along the
direction ey equal to +7i. Solve for the state |eg) in the basis of states [2,1,m), with
m = £1,0.
d) [2 pts| Calculate the time-dependent probability of finding the system in the state |eg),
M ¢

if it starts in the state |[4(0)) above, and show that this is a periodic function of time.
Calculate the times when the probability is maximum and minimum.

(e) [2 pts] If the electron starts in the state |1(0)), calculate the expectation value of the
magnetic dipole
e

(B)(H) = 5—(L)(®), L= Loex+ Lyey + Lse, %)
€
as a function of time,
Hint: It will be useful to use:
Jy = JyxilJy

i

Jeljym) = my/i(G+1) —m(m£1) [jm+1) (6)
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Problem 3: Double Step Potential

Consider a single particle of mass m in a one dimensional well of width a and a potential,
V(z), given by:

o0, <0
Vo, 0<z <%
V(z) = : 2 1
@)=91%0 2<z<a (1)
00, T>a
V(x|
VO
a/2 a ‘;X

In this question, you will consider the special cases where this potential well has a bound
state at the energy E = Vj. There are only certain values of Vo and a where this will happen.

In this problem, use the constant
[2mVy
k= hz (2)

(a) [2 pts] For the energy E = Vj in this potential, determine the general eigenfunction
solutions to the time-independent Schrédinger equation in all regions of x. Show your
work.

(b) [3 pts] Apply boundary conditions to determine relationships between the constants
you introduced in writing the wave functions in part (a).

(¢) [2 pts] From your results above, derive a transcendental equation that gives the values
of Vy where there is an energy eigenstate with E = Vp, for a fixed well width a. This
equation will have the form z = f(z) with z = k%. Plot this function and determine
a relationship between the first energy Vj that satisfies this equation and the bound
state energies of a square well of width a.

(d) [2 pts] Qualitatively sketch the wave function that corresponds to the smallest value
of Vi that satisfies the transcendental equation from part (c), for a fixed value of a.

(e) [1 pt] Finally, consider the case where the width of the well is fixed but the potential
step, Vo, can be changed. There are an infinite number of possible values of Vo where
the well contains an energy eigenstate with E = Vj. Describe, qualitatively, the
changes in the wavefunctions of these eigenstates as Vp gets larger.
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Problem 4: Finite Quantum System

Consider a quantum system that can be described by three basis states, |n), n =1,2,3,
and the Hamiltonian in this basis:

Ao 2 0 0
H==-|0 1 i (1)
0 — 1
(a) [3 pts] Solve for the energy eigenvalues and eigenstates of this system.
(b) [2 pts] If the system starts in the state
1
0)) = —= (J1) + |2 2
WO = 750+ 12) @)

determine the time-dependence of the state |¢(¢)). You may write your answer in
terms of either the states |n) or the eigenstates you found in part (a).

(c) [3 pts] Calculate the time dependent probabilities for measuring the system to be in
each of the states |1), |2), and |3), if the system starts in the state given in part (b).
Explain why the different states can or cannot be measured and the frequency of the
oscillations you found.

(d) [2 pts] Finally, assume that the states |n) are the eigenstates of some observable O
where

Oln) = (=1)"n[n) (3)

If, again, the system starts in the state given in part (b), what is the time dependent
expectation value of O, (O)(t)?
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Problem 5: Interaction Picture of Quantum Mechanics

The “Interaction Picture” of quantum mechanics is in some ways in-between the Schrédinger

formulation and the Heisenberg formulation.

Consider a system with the Hamiltonian H = Hy + V(t) where Hy is independent of
time and V(t) may or may not be time dependent. The Interaction Picture is defined by
the transformation of the Schrédinger states:

Wy = U™ [¥)s
Uy = e wlt-to)llo, 1)

The subscripts / and S refer to the Interaction Picture and Schrédinger Picture respectively.
to is a time when the pictures coincide, and we will set to = 0 for this problem.

(a) [1 pt] Show that Up is a unitary operator. Why is it important for the transformation
between pictures be unitary?

(b) [3 pts] The transformation between |¢)s and [¢)s implies that there is also a trans-
formation of the observables between the pictures. If Ag and Ay are operators for an
observable in the Schrédinger and Interaction pictures respectively, derive the relation
between Ag and A;. Show that this implies that Hy is the same in the two pictures.

(¢) [3 pts] Derive the differential equation that determines the time dependence of the
Interaction Picture states, | (t));. Be sure to show and explain your work. Explain
why the Interaction Picture may be particularly useful when V(t) is “small”.

(d) [1 pt] Define the eigenstates of Hp to be
HolM\)s = Ex|\)s (2)

Show that if V(t) = 0, the Interaction Picture energy eigenstates |\); are equal to
|A(t = 0))s and independent of time.

(e) [2 pts] Consider a potential of the form
V() =0, t<0 V(t)#0, t>0 (3)

The system is in a state |to); for ¢ < 0. For ¢ > 0 the Interaction Picture state will
depend on time. It can be expanded as:

ONEDINOION 4)
A

In this expression, cy(t) are time-dependent expansion coefficients for the state and
|A(0))s is the complete set of time-independent eigenstates of Hy in the interaction
picture.

Use the time dependence found in part (c) to derive a set of coupled equations relating
cea(t) and Oen(t).
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Problem 6: Perturbations in a 2D well

Consider a spinless particle of mass m and charge ¢ confined to a hard-walled square
well (in two dimensions) with sides of length L. The potential can be written:

L L L L
(z,y) 0, ~3<es3, —5SYsS3
V(z,y) = oo otherwise

(a) [2 pts] Write down the eigenenergies, eigenstates, and degeneracies of the first three
energy levels for this well. You do not have to solve for these explicitly, but you must
explain and justify how you obtained these results.

(b) [2 pts] Consider applying a constant electric field in the z-direction to this system,
E = Eqé, Q)

Assuming that Ep is small, determine the first order shift in the energies for the ground
state and first excited states. Be sure to show your work.

(c) [3 pts] The second-order, in FEy, energy shift of the ground state can be written in
terms of a sum. Write down an expression for this sum using the general form for
the eigentstates you determined in part (a). Calculate an approximate value for this
energy shift by solving for the largest term in the sum. Your answer should be in
terms of the parameters given in the problem, and fundamental constants.

(d) [1 pt] Considering the sum you wrote down in part (c), what is the next largest term
that will contribute a non-zero value to the sum? Explain your answer, but you do
not need to compute this term.

(e) [2 pts] Finally, instead of an electric field, consider the effect of a localized perturbation:
V(z,y) = VoL*6(z — 20)3(y — yo) (2)

where (o, yo) is some point in the well. Write down an expression for the first order
energy shift for the ground state, showing how the energy shift depends on the position
of the perturbation (zg, o).

Determine a position for the perturbation where the ground state energy changes, but
the first excited state does not.

Determine a position for the perturbation that splits the degeneracy of the first excited
state.
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Quantum Mechanics
Qualifying Exam - August 2015

Notes and Instructions

e There are 6 problems. Read and attempt all problems, starting with problems you
feel the most comfortable doing.

e Partial credit will be given so be sure to complete all parts of the questions you can.
It is possible to earn points on latter parts of problems even if you have not completed
earlier parts.

e Write on only one side of the paper for your solutions.
e Write your alias on the top of every page of your solutions.

e Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

e You must show your work to receive full credit.
Possibly useful formulas:

Spin Operator

s h. (01 (0 —i (1 0
S"i“"”"( 1 0)’ ”y"(i 0 >’ ”Z“(() -1) ()

Angular Momentum Operators,
J?2 = J2JZ4 TR i Jj) = dhegrdy, Je=Jotidy
JHjymy = (G + 1R, m), Jelj,m) = mhlj,m)
Jeljm) = h/i(i+1) -mmE1) [jm+1) (2)

i

In spherical coordinates,
162 1 3, . 0P 1 0

2 - "= 5 T e et
V= T Or? Tt r2sin 6 660 (sin 09 )+ r2sin? § 3¢2¢. )
In cylindrical coordinates,
s, 10 ( 0 1 9 o2
=—-—|pz — = 1. 4

Harmonic Oscillator Operators (8 = 1/%2)

az%(ﬁm%—ﬂihp), aT:%<ﬁm——éﬁp>, la,a] = 1 (5)

HU = hw (aTa + %) D) = <n + é—) 19,

1 - B 3242
Un(e) = i\ g B0

ho(z) = 1, hi(z) =2z, ha(z)= 472 — 2, hs(z) = 82° — 12z... (6)

il



Problem 1: Quantum Currents

For a 1D quantum mechanical system of particles with mass m, the current in a state
U(z,t) can be defined as:

1
j(z,t) = —T-n—Re(\I/*(ac, t)PY(x,t)) (1)
where P is the momentum operator and Re signifies the real part.

(2) [2 pts] Consider a 1D step-potential
V{z) = 0, z<0,
V) = Vo, z>0 (2)

where Vy > 0, and the 1D scattering eignestates for the Hamiltonian for particles
incident from z < 0

Up(z) = v¢r(z)+Yr(z), =<0,

Uplz) = yr(z), x>0,

HUp = EUg 3)
where 11, ¥r, and 7 represent the incoming, reflected, and transmitted waves re-
spectively.

Write down the functional form for ¥g(z), and solve for the amplitudes of 17 and
g in terms of the amplitude of ¢y for E > V.

(b) [2 pts] What is the ratio of the transmitted to incoming currents,

. (4)

JI

as a function of the energy E, for E > V47 Check your result for £ >> Vp and
E - W.

(c) [1 pt] What is Jp for E < V7 Show your work.

(d) [2 pts] Next, consider a 1D Hamiltonian, H, that has a series of bound, non-degenerate,
real eigenfunctions ¥y, (z): Hin(z) = Eptn(x). Show that the current for these states,

. 1 .
Jn(z,t) = ERe(\Iln(xv t)P¥,(z,t)) =0 (5)
(e) [3 pts] Now consider a bound state of H from part (c) given, at ¢ = 0, by

Y(z,t = 0) = % (1(z) + a(2)) (6)

where 11 () and () are the ground state and first excited state of H.

Show that the current for this state will not be zero, and derive the time-dependence
of the current.



Problem 2: Confined Harmonic Oscillator

Consider a particle of mass m confined in the potential

. m
V(r) = 5w2 (2 + 92 + Va(2)
Vi(iz) = 0, 0<z<a, Vi(z)=00, 2<0,2>a (1)

(a) [2 pts] Show that the energy eigenstates for this potential can be separated into a
product of three functions, each depending on a single coordinate: X (x), Y(y), and
Z(z). Using this product, determine the energy eigenvalues for the Hamiltonian, and
the general form for the corresponding eigenstates. Show your work, although you
don’t need to solve the three 1D problems giving all the details.

(b) [1 pt] Define the energy:
2h2
=T 2)
2ma?
What are the first four energy eigenvalues and their degeneracies for this potential in
the case that E, = %hw? Give your answer in terms of the parameters in the problem.

Eq

(c) [3 pts] Using standard cylindrical polar coordinates, p, ¢, and z, where = pcos(¢)
and y = psin(¢), show that the eigenstates of this potential can also be written as a
product of three functions, R(p), F(¢), and Z(z). Hint: Consider the ¢ dependence
of the system.

(d) [2 pts| Show that the energy eigenstates of this Hamiltonian can be also be eigenstates
of the z-component of the angular momentum, L, = -—ih%.
What is the angular dependence, F(¢), for the simultaneous eigenstates of H and L,7
(e) [2 pts] The ground state you found in part (b) is an eigenstate of L, but the first

excited states are not eigenstates of L,. Write down two eigenstates of L, from linear
combinations of the first excited states from part (b).

What possible values of L, can be measured for a particle in the ground state?

What possible values of L, can be measured for a particle in the first excited states?



Problem 3: Vector Spaces and Dirac Notation

Consider a quantum system that can be described by three basis states, |n), n = 1,2,3,
and an operator defined by its action on these three states:

All) = —iqf3)
A2) = af2)
A3) = iall) (1)

where « is real.

(a) [2 pts] Write the operator A as a matrix using these basis states:

1 0 0
=10, 2={1], B={0 (2)
0 0 1

(b) [1 pt] Show that A is Hermitian.

(c) [3 pts] Compute the eigenvalues and corresponding eigenvectors of A.

(d) [2 pts] In your result for part (c), you found one non-degenerate eigenstate, call it |v),
with eigenvalue . The other eigenstates are degenerate.

Define the projection operator Py = |y)(y|. Write the operator P, as a matrix using
the basis states |1), |2), and |3).

Check your results to show that this matrix form for the projection operator is correct.
(e) |2 pts] Consider the system in the state:

2

¢) = 211) + 212) - £13) (3

Write down an expression for the probability that a measurement of A would result
in the value 7 in terms of the projection operator P,. Solve for this probability.
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Problem 4: Square Well Expansion

Consider a 1D quantum particle of mass m in a square well of width a:
V(z) = 0, |z<

V(e) = oo lal>3 ¢y
(a) [L pt] Write down the energy eigenvalues, E,, and energy eigenstates, in(x) for this
well. You do not need to derive the states in all detail.

You might want to write the solutions for even and odd values of n separately.

(b) [2 pts] The well expands very suddenly to a new width L > a. The expansion is
uniform about z = 0 so that for the new well, V(z) =0 for z < &.

Assuming the particle is in the state n initially, for the well of width a, write an
expression for the probability for the particle to be in the state n' after the expansion,
for the well of width L. You don’t have to solve for this probability yet, but write this
expression in as much detail as you can. Explain why, for half of the possible values
of n' this probability is zero.

(c) [2 pts] Consider the case where the particle is initially in the ground state of the well of
width a. Show that the probability that the particle will end up in the ground state
of the expanded well, of width L is

oD

£)
_ 200 8 \91) 2)
w2 L 2\ 2 (
(1- @)
(d) [3 pts] Calculate the limiting functional form for Py1(a/L) from part (c) for L >>
a, % — 0. (Calculate the lowest order non-constant term in £.)

Calculate the limiting functional form for Pi1(a/L) from part (c) for  — 1. It might
be helpful to define ¢ = 1 — §. (Calculate the lowest order non-constant term ind.)

Py (_%) 16 a 0032(

e

Explain physically why you would predict the two limiting values of the probability.

(e) [2 pts] Consider the case where the particle is initially in the ground state of the well
and the potential well is completely removed suddenly (V(z) = 0 for all z).

Write down an expression that can be solved for the probability density of the particle
having a momentum p after the well disappears. Just as in part (b), provide as much
detail as you can, without actually solving for the probability.
Show that this will be very similar to the result in (b) so that calculating this proba-
bility would be a simple modification of the results in part (c).

Hint: The fact that cos(a + b) = cosacosb F sinasinb and sin(a + b) = sinacosb +
cos a sin b might be useful.
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Problem 5: Simple Harmonic Oscillator with External Perturbations

Consider a one-dimensional simple harmonic oscillator of mass m with a natural angular
frequency w. If there is no external perturbation, the Hamiltonian for this system is
h2 62 m 9 o 1
(a) [2 pts] Consider the case where there is an external potential on the oscillator of the
form Vi(z) = y1z. Calculate the exact eigenenergies of Hy + V).

Describe the difference between the new eigenstates of this total Hamiltonian and the
eigenstates of Hy.

(Hint: The new Hamiltonian can be transformed back into a harmonic oscillator of
frequency w plus an extra term).

(b) [4 pts] Using perturbation theory to the first non-zero order, calculate the perturbed
eigenenergies of Hy + V1. How do these compare with the exact solutions from (a)?

(¢) [1 pts] Now consider the case where there is an external potential on the oscillator of
the form Va(z) = v2x%. Calculate the exact eigenenergies of Hg + V5.
Describe the new eigenstates of this total Hamiltonian, comparing them with the

eigenstates of Hy.

(d) [3 pts] Using perturbation theory to the first non-zero order, calculate the perturbed
eigenenergies of Hy + V3. How do these compare with the exact solutions from (¢)?
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Problem 6: Hydrogen Atom Measurements

Consider a hydrogen atom, ignoring the spin of the electron, with the usual eigenstates
of H, L?, and L, written as |n, £, m,).

(a) [2 pts] If the hydrogen atom is in its ground state, |1,0,0), what is (r), the average
distance of the electron from the proton?

(b) [3 pts] If the hydrogen atom is in its ground state, |1,0,0), what is the probability of
measuring the electron’s position to be in the classically forbidden region of space?

The forbidden region is where the energy of the atom is less than the potential energy,
V(r), corresponding to a negative value for the classical kinetic energy.

(¢) [2 pts] Consider the first excited states of the atom with £ = 1, |2,1,m). Calculate
the expectation value (z) for these states (where z = r cos f using standard spherical
coordinates).

(d) [3 pts] The state |2,1,0) has a rather different shape from the states |2,1,£1). This
can be seen by considering the spread in z, Az = /(2?) — (2)?, or the expectation
value (22).

Compute the ratio of (22) in the state |2,1,0) to that in the state |2,1,1),

<z2>271,0 (1)
(2%)2,11
Hydrogen Atom States:
2 2 2 2
e k e e
Vir)y=—— = —, Ryd=— = — 2
(’I") 7 ap me2’ yd 20,0, o Fic ( )

where « is real and positive.
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Quantum Mechanics
Qualifying Exam - January 2016

Notes and Instructions
e There are 6 problems. Attempt them all as partial credit will be given.
e Write on only one side of the paper for your solutions.
e Write your alias on the top of every page of your solutions.

o Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

® You must show your work to receive full credit.
Possibly useful formulas:

Spin Operator

< h, (01 [0 —i (10
§=3% U”_(l O>’0y—<i 0>’Uz_<0 1) (1)

In spherical coordinates,

1 62 1 9, o 1 o2

2, 29" 9 9y g,
v rarzﬂ’b—’—r23in989(8m989)+r2sin203¢2lp‘ )

Harmonic oscillator wave functions

2
uo(z) = (24 "5

12
ur(e) = ()4 /B e



Problem 1: Clebsh-Gordon coefficients (10 pts)

A system of two particles with spins s; = —g— and sg = % is described by the
Hamiltonian

H=uS1 Sy

with o a constant and S; (i = 1,2) is the spin operator of the i-th particle.

a) What are the allowed values for the quantum numbers of the total
spin S = Sy + S37 (2 Points)

b) Calculate the energy levels of the Hamiltonian. (2 Points)
c) Let us define the basis of eigenstates of the S%, S%, S1z, S2, operators,

|s182; m1ms), where my and mg are the quantum numbers of the projection
operators Sy, and Sy, respectively. The system at time ¢ = 0 is initially in

the state
11
8182, =, = ).
152555 5

Find the state of the system at times ¢ > 0. (4 Points)

d) Assuming the initial state above, what is the probability of finding
the system in the state
3 1>
818255975

27 2

at t > 07 (2 Points)
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Figure 1: U(x)

Problem 2: Perturbation to a Harmonic Oscillator
(10 pts)

Consider a particle of mass, m, moving in a l-dimensional potential (see
Figure 1)
Ulz) = At — ka®.
X and k are positive, and A <« &%7:1—/2). Approximate the potential near
the minima by a simple harmonic oscillator. Here are some useful integrals:

® 4 A@-a?, _ L 2 2

/_OO:L(, dx 4A5/2(3+4a A(3 + a*A))y/m, for A >0
~ gl A=)’ —Ale+a)® g _3 24 T for A >0
oo 16A5/2 2’

a. Sketch the wavefunctions of the state |t)g) which is defined as the state
when the particle is found at z > 0 and the state [¢r) which is the state
when the particle is found at z < 0. Only consider the lowest energy states
near the minima. (2 Points)

b. Since the potential is invariant under reflection about the origin, the
stationary states must be eigenstates of the parity operator. Express the
ground-state and first excited state wavefunctions in terms of |Yr) and |yr).
(2 Points)

c. Estimate the energies of the 2 lowest states using the approximations al-
ready described. Hint: use the space representation of the harmonic oscilla-
tor wavefunctions and carry out the integrals to find the perturbed energies.
(6 Points)



Problem 3: Identical particles (10 pts)

Two non-interacting particles of mass m are trapped in a l-dimensional
infinite box of length L situated between z = 0 and « = L. (In the cases
you are considering fermions, assume them to all be spin up.)

(a) [1 points] Write down the single particle energy eigenvalues and wave-
functions.

(b) [1 points] Write down the energy eigenvalues and wavefunctions for
two distinguishable particles. Label the states by n for particle 1 and
ng for particle 2.

(c) [2 points] An energy measurement of the two identical particle system
yields E = h%x?/mL?. Write down the state vector/wave function of
the system.

(d) [2 points] Suppose instead the energy of the two identical particle
system is measured to be E = 5i%n?/mL?. What is the wave function?
Hint: there are two possibilities.

(e) [2 points] Show that the fermion state you found in part (d) is an
eigenfunction of the Hamiltonian, with the appropriate eigenvalue.

(f) [1 points] Write down the wavefunction for two identical spin-up fermions
in the ny = 2 and ng = 2 state.

(g) [1 points] If instead you had three particles in the orthonormal states
W1, ¥y, and V3, construct the three particle state for identical fermions.
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Problem 4: Matrix Mechanics (10 pts)

Consider a system governed by a Hamiltonian H, with an observable C.
The Hamiltonian is represented in the |e;) basis as:

100
H=%/w|0 0 1
010
1 0 0
Where |e1) = (O) , le2) = (1), leg) = ( )
0 0 1

The eigenvalues and eigenvectors of H are

‘ 0 0
|E1:—hw>:~\}-§—(1),|E2:hw,1):% <1>,|E2:hw,2>: (o)
1 1 0

Let C be represented in the |e;) basis as

C:

N OO
<O = O

2
0
0
At t=0, the system is in the state: |¥(t = 0)) = %|61> + %|€2>

a) At time t=0, the observable C is measured. What results are possible
and with what probabilities? (2 pts)

b) Determine the representation of the time evolution operator U(t, to = 0)
in the |e;) representation. (2 pts)

¢) Determine |¥(¢)) in the |e;) basis. (2 pts)

d) If C is measured at some later time t, what results are possible and with
what probabilities? (2 pts)

¢) Are your probabilities time dependent or time independent? Explain (2
pts)
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Problem 5: Magnetic Moments and Spin (10 pts)

Consider a spin 1/2 particle with a magnetic moment. We can write the interaction
between the spin and an external magnetic field using the Hamiltonian:

H=-B-§ (1)

where B is the external field, S is the spin operator for the particle, and « is a real positive
constant. In this problem, use the usual basis states that are eigenstates of S,

h 1 0
Szx:f:—‘:l:_ixin X+"(0>a X“_(l) (2)

For this problem, assume the magnetic field lies in the x-z plane:
B = B.é, + B.é, (3)
(a) [1 pt] Solve for the eigenenergics for the Hamiltonian, showing your work. Explain
the physics of your results.
(b) [2 pts] Any state of the spin can be written in the x+ basis as:

a(t) )

(t) = 4

=5 @
Using the Hamiltonian, derive the first-order coupled differential equations that
give the time dependence for a(t) and B(t). In other words, derive the equations
for &(¢) and B(t).

(c) [2 pts] Show that you can re-write your results from part (b) as two uncoupled
second-order differential equations:

at) = —ffia(t)
je = -T2 ©)

where By = /B2 + B2 is the magnitude of the total magnetic field. How is this
result related to what you found in part (a)?
Of course, the solutions to these equations are:

at) = C)cos(wt) + Casin(wt)
A() = Cscos(wt)+ Cqsin(wt) (6)
with w = %T-.

(d) [3 pts] Consider the situation where the spin is in the spin-up S, state x. at time
¢ = 0. Using the boundary conditions at time ¢ = 0, determine the values for the
constants C1, Cs, Cs, Cy that will solve for the time-dependence of the state. Re-
member that the equations in part (c) are second-order, so you need two boundary
conditions at ¢ = 0 for each.

(e) [2 pt] Write down the time-dependent probabilities, Py of the spin being in the spin-
up and spin-down S, states. Show that your results are correct in the two cases
where B, = 0 and B, = 0.
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Problem 6: Electron in a Finite Square Well (10
pts)

Consider an electron of energy E incident from x=—00 on a symmetric one-
dimensional square well of depth Vp and width L.

0, x < -L/2
V(z) =< —Vo, -L/2<x<L/2
0, x>L/2

a) Write down the solutions to the time-independent Schrodinger Equation
for this situation. There should be five integration constants (2 points)

b) Apply boundary conditions to find the probability that the electron is
transmitted past the finite well (4 points)

c¢) For what values of E is there a 100% probability for transmission past
the well? (2 points)

d) Consider a potential well with V5 large enough for there to be two bound
states. For this well, what is the smallest electron energy (E > 0) for which
there is a 100% probability for transmission? Your answer will depend on
Vo and other parameters in the problem. (2 points)
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Quantum Mechanics
Qualifying Exam - August 2016

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.

Write on only one side of the paper for your solutions.

Write your alias on the top of every page of your solutions.

¢ Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2/4 is the second of four pages for the solution to problem 3.)

You must show your work to receive full credit.

Possibly useful formulas:

a0 (0 i (10 )
by 02={ 1 0 ) %=\i 0 )"0 <1

In spherical coordinates,

by 1O 1 0 e 1 9
V= T 8T2TT/J T Zsing 89(Sln6 39) t anZe 3¢2¢' (2

Spin Operator

S =

o o

Harmonic oscillator wave functions

2
/g

2
y1/4 /Qngw o T

uo(z) = (

3

ui(z) = (

3



Problem 1: Time dependent solutions to Schrodinger’s Equa-
tion (10 pts)

Consider a particle of mass m in an infinite square well.

0, a
v {2 ;2

The solutions to the time independent SchrgdZianer Equation are:
H|¥,) = Ep|¥,) for n=1,2,3, ... where E, = —_Q_"Q;aﬁ and

2 2
(@]U,) = U, (z) = \/;cos(ﬁ”—x) n=1,3,5.. \/%sin(ﬁ;r—x) n=24,6, ..

a

Assume at t,, the particle is in the state:
[U(t, = 0)) = +/3/10 |¥1) — i1/7/10[¥3)

Answer the following questions:
a) Using Dirac notation, write down the expression for the time evolution operator,

U(t, t, = 0) in terms of energy eigenvalues and eigenstates. (1 pt)
b) Find |¥(2)) = U(t, to = 0)[¥ (o = 0)) (1 pt)

¢) Does your |¥(t)) in part b) satisfy the time independent Schrodinger Equation?
Demonstrate explicitly. (1 pt)

d) Does your |¥(t)) in part b) satisfy the time dependent Schrodinger Equation? Demon-
strate explicitly. (1 pt)

e) Is the uncertainty in the energy AE > 0, < 0 or = 0 for [¥(¢))? Discuss. (1 pt)

f) State whether the following properties are time dependent or time independent for a
system in the state [U(¢)). (4 pts)
) AE
i) (z?)
iti) (p)

iv) (P), where P is the parity operator

g) How do your answers to part f) change after the energy is measured at time t and
the result is E = 2287 7 (1 pt)

2ma?




Problem 2: Hydrogen Atom (10 pts)

In this problem you will calculate the relativistic correction to the energies of the hydrogen
atom. The hydrogen atom Hamiltonian is in terms of its electron in the field of the positively

charged nucleus

2 2

[ e
Hy = —
0 2m. Admegr

where p is the electrons momentum, r its position, me its mass, and e the charge. This
Hamiltonian is nonrelativistic (p/(mc) < 1). The correct relativistic expression to use for

the kinetic energy is
T = /p2c2 + m2c* — mec?

recall that ) 1+ 1)
+
(r)m = n’ao{l + sl ===}

(%) = a1+ S - LD 2L,

n
1 1
<;>nl ~ agn?
Ly = 1 1
p2/m aZndl+1/2
1 1 1

(Gl = a3n3 (1 +1/2)(1+ 1)

a. Use this information to find the first non-zero order correction to the Hamiltonian due
to the relativistic motion of the electron. (2 Points)

b. Show that this correction is diagonal in the |nlm) basis by proving that it commutes
with the angular momentum operator L. Why is it sufficient to prove that the perturbation
commutes with L to show that the perturbation is diagonal in the |nim) basis? (4 Points)

¢. Using the fact that
p? o2
H

1 +
2, 0 dregr

find the relativistic energy correction to the energy levels of the Hydrogen atom. (4 Points)



Problem 3: Angular momentum (10 pts)

One particle has spin j; and another particle has spin ja.

(a) [L point] What are the good quantum numbers for the two-particle system with J =
Ji1 + Jo in the direct product basis? Write down the basis vectors labelled according
to their eigenvalues.

(b) [1 points] Write down the basis vectors in the total j basis. What are the good
quantum numbers in this case? —_—

2 points] Write down the completeness relation for the direct product basis states.

e

prvduct
\2 points] Use the completeness relation to relate the total -j basis to the direct
_basis. Identify the Clebsch-Gordon coefficient. e

(e) [2 points] Write down the relation between total-j and direct product bases for j;
=1/2 and jp = 1/2. Recall s

Jeljm>=h/GFm)(GEm+1)|j,m+E1>

(f) [2 points] Suppose you have an interaction of the form Hy = Ay Jo where J = Ji+Js.
Which basis vectors are best to use and why?



Problem 4: 3D Attractive Potential (10 pts)

Consider a particle that moves subjected to a three dimensional attractive potential

2
Viz,y,z) = —;—m[)\lfs(iﬁ) + A28 (y) + A3 (2)],

where A1, Ag, Az > 0.

a) Find the energy and the wavefunction of the particle in this potential. (4 points)

b) Interpret the meaning of this state. Calculate the probability of finding the particle
inside a rectangular volume centered at the origin, with size ¢; = 1/X;, with ¢ = 1,2,3 for
the z, y, z directions respectively. (2 points)

¢) Compute the spatial and momentum uncertainties (Ax)? and (Ap)? for the state of
item a) and explicitly check Heisenberg’s inequality. (4 points)

Hint:
i b R —z- = sign(z) —sign(z) = 26(z)



Problem 5: Expanding Harmonic Oscillator (10 pts)

Consider a particle of mass m confined in a 1D harmonic oscillator potential with frequency

wo
P2 m 5
Ha = ‘% + —2—w0 X (1)
The raising and lowering operators are useful for harmonic oscillator problems:
1 /(X A L /X A
e — (2 —i2P) a=-=(%Z+iEP 2
a \/§<)\ Zh) Q \/§</\+Zh> (2)
where A = /-2 is the length scale for the harmonic oscillator:

Mo

(a) [2 pts] Use the raising and lowering operators to derive the ground state wavefuction,
o(x), and the first excited state wavefuction, 11 (z), for the Hamiltonian H,. Be sure
to show your work.

(b) [1 pt] Consider a sudden change in the potential, modeled by a change in the original
frequency of the oscillator by some multiplicative value f, to the new Hamiltonian:

2

P m
Hy = o+ —w? X2, = 0<f<1 3
b= 5 kW wr = fwo, f (3)
“Sudden” in this case means that one can ignore the time it takes to change the

potential.

If ¢o(z) and ¢1(z) are the ground and first excited state wavefunctions of Hy, what
are the functional forms for these wavefunctions? Explain your answer.

() [3 pts] The oscillator is in the ground state tg(x) when the potential suddenly changes.
What is the expectation value of the energy of the oscillator after the potential

changes? Show your work.

(d) [2 pts] If the oscillator is in the state ¥o(x) when the potential suddenly changes, what
is the probability of the oscillator being in the ground state of Hy after the potential
changes? Show your work.

(e) [1 pt] If the oscillator is in the state 1o (z) when the potential suddenly changes, what is
the probability of the oscillator being in the first excited state of I} after the potential

changes? FExplain your answer.

(f) [1 pt] Finally, assume the oscillator is in the first excited state of H,, v1(z), when
the potential suddenly changes. What is the expectation value of the energy of the
oscillator after the potential changes? Is the change in the expectation value of the
energy, from H, to Hy, for 11 larger than, smaller than, or the same as 17 Explain.

Remember that the Gaussian integrals have the form:

[o@]
/ ey =
—00
/OO 2 —as™ 1 '3~5...(§n~ l)\/? @)
o0 2"a a

NE




Problem 6: Delta function in a 1-D well(10 pts)

A particle of mass m is placed in an attractive 1-D delta function potential

V(z) = —h*\é(z)/m
with positive A. The particle and the potential are located in an infinite box with walls at
x=% a/2 (i.e V(a/2) = V(-a/2) = 00)

a) Determine the condition on the parameters for which the system will have exactly
one bound state with negative energy eigenvalue E and give its wave function (4 pts).

b) For the same system, determine the energy eigenvalues and eigenvectors for states
with positive E. (3 pts)

¢) If the coefficient A < 0, explain in detail how your results change for parts a) and b)
(3 pts)



Quantum Mechanics
Qualifying Exam - January 2017

Notes and Instructions

e There are 6 problems. Attempt them all as partial credit will be given.

o Write on-only one-side-of the paper for your solutions
e Write your alias on the top of every page of your solutions.

e Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

e You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

. h., [0 1 [0 —i (10
o=39 U“"<1 O>’0y_<z’ 0>’(’Z”<0 1> (1)

In spherical coordinates,

1 62 1 0 o 1 2

L0 A Doy L2y,
r8r2m/j+r251n089(sm 30)+r251n293¢2¢ )

V2

Harmonic oscillator wave functions

'HLA).Z
ug(z) = (Fg) /e 5

2
ui(z) = () \ e ge i

Spherical Harmonics:.

Yo,0(0,¢) = 7117 Y2,0(0,9) = |/ 1ez (3cos® 0 — 1)
Yio(0,¢) = f’; cosd Yo 11(0,¢) = F -é‘—;eiid’ cosfsinf
Y1,1(0,9) = T/ gz sind Voi2(0,8) = 1/ gore™>?sin 0



Problem 1: Harmonic Oscillator (10 Points)

Consider the quantum mechanical simple harmonic oscillator.

a. Using the raising and lower operators, @ and &' find the average value of
X and P for the state |n >. (1 Points)

b. Using the raising and lower operators, & and af, find the average value
of X? and P? for the state |n >. (2 Points)

c. Using the raising and lower operators, & and af find the root mean square
deviations of X and P for the state |n >. (2 Points)

d. Find the uncertainty product for the state |n > (2 Points)

e. Fine the average potential energy and average kinetic energy for the
oscillator when it is in state |n > (3 Points)
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Problem 2: Variational Method (10 Points)

The Hamiltonian of a one-dimensional harmonic oscillator is

7 P_Z+ mw?X?
2m 2

The ground state energy is Fy = hw/2.
Let us employ the variational method with the following trial function

as the ground-state wave function
() = p(z) = Ne Il

a. Determine the constant N by applying the normalization condition. (2
points)

b. Find the value of B that minimizes (¢|H|¢). (2 points)
c. What is the ground-state energy calculated with the variational method?
(5 points)

N.B. The derivative of the trial function has a discontinuity.

d. How close do you get to the true ground-state energy? (1 points)
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Problem 3: Angular Momentum Hamiltonian (10 points)

Consider the following Hamiltonian for a spinless particle with orbital an-
gular momentum £=2.

A 3a » A 2 29

where a is a constant greater than 0 and L; denotes the ith component of

the angular momentum operator.
/ a) Calculate the energy spectrum of this Hamiltonian (2 pts)

b) Suppose a particle with this Hamiltonian has the wavefunction
(0, ¢) = A(sin @ cos 0 cos ¢ + sin’ 6 sin ¢ cos ¢)

where @ is the polar angle, ¢ is the azimuthal angle, and A is a normalization
constant. What is the average energy obtained in energy measurements on
an ensemble of particles described by the wavefunction above? (3 pts)

c) Assume the particle is in the lowest energy state (with £=2) for ¢t <
0. Starting at t=0, an external magnetic field is applied with

Vi(t) = %ﬁxe"tﬁ

where 7 is the decay constant and X is a constant. Calculate the transition
probabilities to possible excited states after a very long time (7 < ¢ — o0)
using first order time-dependent perturbation theory. (5 pts)
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Problem 4: Hydrogen Atom (10 points)

Schrodinger’s equation in spherical coordinates where the potential is only a
function of r can be solved by using separation of variables: W(r, 0, ¢)=R(r)Y (0, ¢).

‘/a) In units 2m = 1 and h=1, show that using the change of variables

u(r) = TR(r), one can obtain the radial Schrodinger’s equation for the
hydrogen atom. (1 pt)
g% 0+ 1
[—— — g + u]u(?") = eu(r)

dr? 7 72
where ¢? is the Coulomb strength and ¢ is the energy.

b) The lowest eigenstate of a given £ is known to have the form

241

ug = Cor*texp(—r/ay)

For a given £, determine the eigenvalue 62 and the size parameter ag, in
terms of g2 (2 pts).

Consider that the initial 3-dimensional wave function at time t=0 is a
superposition of the above states

2

U(r,0) = D(e_gzg + g*re™9" 7 cos f)

¢) Determine ¥(r, ) (1 pt)
d) Determine (cos0) as a function of time (3 pts).

e) Consider the hydrogen atom. Determine the most probable value of
r for the ground state. (1 pt)

f) Consider a hydrogen atom placed in a weak constant uniform external
electric field. Determine how the energy levels shift for the n=2 state of
hydrogen due to the electric field. (2 pts)



6)

Ton QA0L7

Qu&m Js'u m “4;%‘ (f




Problem 5: 1/x potential (10 points)

An electron moves in one dimension and is confined to the right half space
(x > 0) where it has potential energy

62

Viz) = ——

(z) 4z

where e is the charge on an electron.

a) What is the solution of Schrodinger’s equation at large 7 (2 pts)
b) What are the necessary boundary conditions (1 pt)

¢) Using the results of part a) and b), determine the ground state solution
of the equation. (3 pts)

d) Determine the ground state energy (2 pts)

e) Find the expectation value (z) in the ground state (2 pts)



Problem 6: Measurements and Probability (10 points)

A three-level quantum system has a non-degenerate ground state and a two-
fold degenerate excited state, defined by:

HI0Y =0, Hla)=cla), HIb) = ep)

where ¢ is a positive constant energy.

(a) (1 pt) Write down the matrix representation of H in the basis

10}, [a), [b).
(b) (2 pts.) Define the observable C by its operation on the eigen-
states of H.
Cl0) =~la) , Cla) =~/0), CJb) = —7|b) (3)

v > 0. What are all the possible outcomes of a measurement of
C?
(¢) (2 pts.) For each of the eigenstates of H, calculate the probability
~of measuring the different possible values for C' if the system is
in that eigenstate.

(d) (1 pts.) Do H and C have common eigenstates? Are H and C
compatible observables? Explain.

(e) (2 pts.) At time ¢t = 0, the system is in the eigenstate of C' with

"~ the largest eigenvalue. Calculate the probabilities, as functions of
time, of obtaining the different possible results of a measurement,
of C.

(f) (2 pt.) At timet = 0, the system is in the state 1) = % (la)y +10)).
Calculate the probabilities, as functions of time, of obtaining the
different possible results of a measurement of C. Explain the
differences in this result and what was found in part (e).
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Quantum Mechanics
Qualifying Exam - August 2017

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.
Write on only one side of the paper for your solutions.
Write your alias on the top of every page of your solutions.

Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

You must show your work to receive full credit.
Possibly useful formulas:

Spin Operator

g (01 (0 i (Lo
=59 %@={1 9/ %"\ 0 /)" o1

In spherical Coordmat )
oY 1 02

0]
7?2 <z
Vi = 7%@2%+T281n039(sn989)+’rzsin293¢2w

Harmonic oscillator wave functions

wz

uo(z) = () /4e™ "5

2
w(z) = ()4, Bpge~ 4

Spherical Harmonics:

Yo,0(0,¢) = ﬁ Ya0(0,¢) = 1/ o= (3cos? 6 — 1)
Y1,0(6,9) = 1/ 437r cos @ Yo +1(0,¢) = e+ cosfsin 0
Vi 41(0,0) = Fy/ et sing Va10(0,$) = 1/ 5= eF% sin 29



Problem 1: Periodic Perturbation (10 Points):

Consider a two-level system under a periodic perturbation, V(t) = Vo™,
where Vj is real. Take the time dependent amplitude for the lower state |a)
to be a(t) and the upper state |b) to be b(t). Take the energy of the upper
level to be at Awg and the lower level to be at 0.

a. Find differential equations for the time-dependent probability amplitudes
to be in the upper state b(t) and the amplitude to be in the lower state a(t).
(3 Points)

b. Solve the equations you obtained in (a.) for the initial conditions a(0) =1
and b(0) = 0. These initial conditions correspond to the system starting
in the ground state. Take A = w —wp = 0. Use the following unitary
transformation to simplify the Hamiltonian you used in (a.) to solve for the
time dependent wavefunction:

1 0
U:(O e—iwt)

(3 Points)

c. Using your result in (b.) find the probability for the system to be in |b).
(2 Points)

d. Sketch the probability as a function of time that you found in (c.) and
interpret the result. (2 Points)



Problem 2: WKB approximation (10 Points):

The one-dimensional Schrodinger equation,

h2 d2,¢
——2——5*%—2— -+ V(:E)’(,Z) = FEy
can be rewritten as
G
dz2 ~ 2

where

p(z) = /2m[E - V(z)].

The wave function 1(z) is often expressed as ¥(x) = A(z)e®
where A(z) is the amplitude and ¢(z) is the phase. Both A(z) and ¢(z)
can be real.

. . . C
(a) Show that the amplitude is A = 75
where C is a constant and prime is the derivative with respect to z.
(2 points)
(b) (3 points) Let us assume that A”/A < (¢')? and A"/A < p®/h?. Show

that the wave function in the WKB approximation is

() ~ ¢ oEi [p(@)de
p(z)

In parts (c)—(e), the potential energy of the one-dimensional harmonic
oscillator is

1
V(z) = EmwQ:v?‘ :

(¢) Find the classical turning points z; < xg for an energy E. (1 points)

(d) Evaluate the phase ¢ in terms of E and w with the WKB method. (3
points)

(e) Apply the eigenvalue condition ¢ = (n+ %) wh and find energy eigen-
values F,. (1 points)
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Problem 3: Two-State Problem (10 Points): ¢

~

’ZE;J xe

Consider a two-state quantum system. In the orthonormal and complete
set of basis vectors |1) and |2), the Hamiltonian operator for the system is
represented by (w > 0)

H = 10hw|1){(1] - 3hw|1)(2] — 3hw|2) (1] + 2hw|2) (2|

_ Consider another complete and orthonormal basis |&), |5), such that
@ Hle) = Eila), and H|B) = FEs|B) (with By < Ej). Let the action of
operator A on the |a), |3) basis vectors be given as

Ala) = 2ia0|B)
AlB) = ~2iagler) — 3a0|6)
where ag > 0 is real.
/a) Find the eigenvalues and eigenvectors of H in the |1), |2) basis (1 pt).
J{)) Find the eigenvalues and eigenvectors of A in the |),|8) basis (1 pt).

Suppose a measurement of A is carried out at t=0 on an arbitrary state
and the largest possible value is obtained.

¢) Calculate the probability P(t) that another measurement made at
time t will yield the value as the one measured at t=0. (2 pts)

\/d) Calculate the time dependence of the expectation value (A). What
is the minimum value of (A)? At what time is the minimum value first
achieved? (3 pts)

Now suppose that the average value obtained from a large number of
measurements of A on identical quantum systems at a given time is -ap/4.

e) (3 pts) Construct the most general normalized state vector (just before
the measurement of A) for your system consistent with this information in
Dirac notation using the |a), |§) basis. Express your answer as

|T) = Cla) + D|B) [ 3 'ii] i: ;
[

.
™ ipe

o]

Ll ) (a0
IO E
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Problem 4: Indistinguishable particles (10 Points):

Consider a system of two indistinguishable spin-1/2 particles.

7

/a) Which of the following two-particle spin states are eigenstates of the
operator of the scalar product 57 - Sz of the spin vectors? What are their
eigenvalues? (1 point)
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7
v’b) Show that the states:
|s4) = Z5(1 T1) +1 11) and [s-) = Z5(| 11) — | 1)) are eigenstates of

Sy - S5. What are their eigenvalues? (1 point)

These two particles, separated by a distance a, interact with one another
via the field of their magnetic dipole moments. This interaction is described

by the Hamiltonian

; Ho . N A . N A
H= T3 (g 10,2 + Ty, 1770y 2 — 210517002 2)

where m; = ﬂyS} and v is the gyromagnetic ratio of the particles.

e}
v ¢) Show that the anti-aligned states | T1) and | |T) are not eigenstates

of the Hamiltonian. (1 point)

d) Derive the Hamiltonian in the basis of the anti-aligned states. (2
points)

¢) What are the eigenvalues of this Hamiltonian? (1 point)

f) Find a unitary transformation matrix which diagonalizes the Hamil-
tonian. (2 points)

g) Use this transformation to diagonalize the Hamiltonian. (1 point)

h) What are the eigenstates of the Hamiltonian in this basis? (1 point)




ﬁuﬁ?f sort Quartow, 3 E”é

&) Guge hoo detngosholle spin o pacheles,
A%



Problem 5: Angular Momentum (10 Points):

Suppose an electron is in a state described by the wave function

L g
= ——(e"Psinf + cosf)g(r
P J4_7r( 