Problem 3: Vector Spaces and Dirac Notation

Consider a quantum system that can be described by three basis states, |n), n = 1,2,3,
and an operator defined by its action on these three states:

All) = —iqf3)
A2) = af2)
A3) = iall) (1)

where « is real.

(a) [2 pts] Write the operator A as a matrix using these basis states:

1 0 0
=10, 2={1], B={0 (2)
0 0 1

(b) [1 pt] Show that A is Hermitian.

(c) [3 pts] Compute the eigenvalues and corresponding eigenvectors of A.

(d) [2 pts] In your result for part (c), you found one non-degenerate eigenstate, call it |v),
with eigenvalue . The other eigenstates are degenerate.

Define the projection operator Py = |y)(y|. Write the operator P, as a matrix using
the basis states |1), |2), and |3).

Check your results to show that this matrix form for the projection operator is correct.
(e) |2 pts] Consider the system in the state:

2

¢) = 211) + 212) - £13) (3

Write down an expression for the probability that a measurement of A would result
in the value 7 in terms of the projection operator P,. Solve for this probability.
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