Problem 6: Measurements and Probability (10 points)

A three-level quantum system has a non-degenerate ground state and a two-
fold degenerate excited state, defined by:

HI0Y =0, Hla)=cla), HIb) = ep)

where ¢ is a positive constant energy.

(a) (1 pt) Write down the matrix representation of H in the basis

10}, [a), [b).
(b) (2 pts.) Define the observable C by its operation on the eigen-
states of H.
Cl0) =~la) , Cla) =~/0), CJb) = —7|b) (3)

v > 0. What are all the possible outcomes of a measurement of
C?
(¢) (2 pts.) For each of the eigenstates of H, calculate the probability
~of measuring the different possible values for C' if the system is
in that eigenstate.

(d) (1 pts.) Do H and C have common eigenstates? Are H and C
compatible observables? Explain.

(e) (2 pts.) At time ¢t = 0, the system is in the eigenstate of C' with

"~ the largest eigenvalue. Calculate the probabilities, as functions of
time, of obtaining the different possible results of a measurement,
of C.

(f) (2 pt.) At timet = 0, the system is in the state 1) = % (la)y +10)).
Calculate the probabilities, as functions of time, of obtaining the
different possible results of a measurement of C. Explain the
differences in this result and what was found in part (e).
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