Quantum Mechanics
Qualifying Exam - August 2017

Notes and Instructions

There are 6 problems. Attempt them all as partial credit will be given.
Write on only one side of the paper for your solutions.
Write your alias on the top of every page of your solutions.

Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

You must show your work to receive full credit.
Possibly useful formulas:

Spin Operator
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Harmonic oscillator wave functions
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Spherical Harmonics:
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Problem 1: Periodic Perturbation (10 Points):

Consider a two-level system under a periodic perturbation, V(t) = Vo™,
where Vj is real. Take the time dependent amplitude for the lower state |a)
to be a(t) and the upper state |b) to be b(t). Take the energy of the upper
level to be at Awg and the lower level to be at 0.

a. Find differential equations for the time-dependent probability amplitudes
to be in the upper state b(t) and the amplitude to be in the lower state a(t).
(3 Points)

b. Solve the equations you obtained in (a.) for the initial conditions a(0) =1
and b(0) = 0. These initial conditions correspond to the system starting
in the ground state. Take A = w —wp = 0. Use the following unitary
transformation to simplify the Hamiltonian you used in (a.) to solve for the
time dependent wavefunction:

1 0
U:(O e—iwt)

(3 Points)

c. Using your result in (b.) find the probability for the system to be in |b).
(2 Points)

d. Sketch the probability as a function of time that you found in (c.) and
interpret the result. (2 Points)



Problem 2: WKB approximation (10 Points):

The one-dimensional Schrodinger equation,

h2 d2,¢
——2——5*%—2— -+ V(:E)’(,Z) = FEy
can be rewritten as
G
dz2 ~ 2

where

p(z) = /2m[E - V(z)].

The wave function 1(z) is often expressed as ¥(x) = A(z)e®
where A(z) is the amplitude and ¢(z) is the phase. Both A(z) and ¢(z)
can be real.

. . . C
(a) Show that the amplitude is A = 75
where C is a constant and prime is the derivative with respect to z.
(2 points)
(b) (3 points) Let us assume that A”/A < (¢')? and A"/A < p®/h?. Show

that the wave function in the WKB approximation is

() ~ ¢ oEi [p(@)de
p(z)

In parts (c)—(e), the potential energy of the one-dimensional harmonic
oscillator is

1
V(z) = EmwQ:v?‘ :

(¢) Find the classical turning points z; < xg for an energy E. (1 points)

(d) Evaluate the phase ¢ in terms of E and w with the WKB method. (3
points)

(e) Apply the eigenvalue condition ¢ = (n+ %) wh and find energy eigen-
values F,. (1 points)
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Problem 3: Two-State Problem (10 Points): ¢

~

’ZE;J xe

Consider a two-state quantum system. In the orthonormal and complete
set of basis vectors |1) and |2), the Hamiltonian operator for the system is
represented by (w > 0)

H = 10hw|1){(1] - 3hw|1)(2] — 3hw|2) (1] + 2hw|2) (2|

_ Consider another complete and orthonormal basis |&), |5), such that
@ Hle) = Eila), and H|B) = FEs|B) (with By < Ej). Let the action of
operator A on the |a), |3) basis vectors be given as

Ala) = 2ia0|B)
AlB) = ~2iagler) — 3a0|6)
where ag > 0 is real.
/a) Find the eigenvalues and eigenvectors of H in the |1), |2) basis (1 pt).
J{)) Find the eigenvalues and eigenvectors of A in the |),|8) basis (1 pt).

Suppose a measurement of A is carried out at t=0 on an arbitrary state
and the largest possible value is obtained.

¢) Calculate the probability P(t) that another measurement made at
time t will yield the value as the one measured at t=0. (2 pts)

\/d) Calculate the time dependence of the expectation value (A). What
is the minimum value of (A)? At what time is the minimum value first
achieved? (3 pts)

Now suppose that the average value obtained from a large number of
measurements of A on identical quantum systems at a given time is -ap/4.

e) (3 pts) Construct the most general normalized state vector (just before
the measurement of A) for your system consistent with this information in
Dirac notation using the |a), |§) basis. Express your answer as

|T) = Cla) + D|B) [ 3 'ii] i: ;
[
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Problem 4: Indistinguishable particles (10 Points):

Consider a system of two indistinguishable spin-1/2 particles.

7

/a) Which of the following two-particle spin states are eigenstates of the
operator of the scalar product 57 - Sz of the spin vectors? What are their
eigenvalues? (1 point)

el =Dl

Y =1neln »
el =Inel [ &
I =iheln
el =1hell

7
v’b) Show that the states:
|s4) = Z5(1 T1) +1 11) and [s-) = Z5(| 11) — | 1)) are eigenstates of

Sy - S5. What are their eigenvalues? (1 point)

These two particles, separated by a distance a, interact with one another
via the field of their magnetic dipole moments. This interaction is described

by the Hamiltonian

; Ho . N A . N A
H= T3 (g 10,2 + Ty, 1770y 2 — 210517002 2)

where m; = ﬂyS} and v is the gyromagnetic ratio of the particles.

e}
v ¢) Show that the anti-aligned states | T1) and | |T) are not eigenstates

of the Hamiltonian. (1 point)

d) Derive the Hamiltonian in the basis of the anti-aligned states. (2
points)

¢) What are the eigenvalues of this Hamiltonian? (1 point)

f) Find a unitary transformation matrix which diagonalizes the Hamil-
tonian. (2 points)

g) Use this transformation to diagonalize the Hamiltonian. (1 point)

h) What are the eigenstates of the Hamiltonian in this basis? (1 point)
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Problem 5: Angular Momentum (10 Points):

Suppose an electron is in a state described by the wave function

L g
= ——(e"Psinf + cosf)g(r
P J4_7r( )g(r)
where [;° |g(r)|?r?dr = 1
and ¢, 0 are the azimuth and polar angles respectively.

4&) Express 9 in terms of spherical harmonics functions. (2 pts.)

\ﬁ)) What are the possible results of a measurement of the z-component L,
of the angular momentum of the electron in this state? (2 pts.)

70) Determine if [||2 d37 = 1. (2 pts.)
(

d) Use the result in (c) to find the probability of obtaining each of the
possible results in part (b). (2 pts.)

Y(e) What is the expectation value of L,? (2 pts.)
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Problem 6: 3D Square Well (10 Points):

Consider a particle of mass m moving in a 3D spherical well given by the
potential

V(i) ==V 0< | <ao, V(7)) =0 |f]>a0
where Vy > 0 and ag > 0.
5 In this problem, only consider bound states in this well, so —Vp < £ <0.
o i \/(a) (1 pt.) Show that the energy eigenstates for this potential can
be written in the form:

Wigm (F) = fre(r)Y7"(0,¢)
r, 8, ¢ are the usual spherical coordinates. and Y;™ the
spherical harmonics.

(b) (1 pt.) Defining the function ug¢(r) = 7 fie(r), write the radial
7 Schrodinger equation for uge(r).

Qe

/(c) (2 pts.) Consider the zero angular momentum states, £ = 0.
Write down the functional form for the states uyo(r) in the two
regions, 0 < r < ag and r > ag. Define any constants that you

9 use in these functions.

\(d) (1 pt.) What are the boundary conditions on the functions
uk,0(r) as r — 0, at 7 = ao, and as r — oo? Hint: Consider the
function fi(r) as v — 0.

() (2 pts.) Using your boundary conditions, derive an equation
that can be solved to give the bound state energies for the £ =0
states.

(f) (2 pt.) For a fixed value of the radius of the well, ag, calculate
the minimum depth, Vo = Vinin for the potential well to have a
bound state.

(g) (1 pt.) give a physical reason why there is always a bound state
in a symmetric 1D quantum square well, but not in the 3D well
studied in this problem.

In spherical coordinates, L? is the usual angular momentum operator)
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