Quantum Mechanics
Qualifying Exam - January 2017

Notes and Instructions

e There are 6 problems. Attempt them all as partial credit will be given.

o Write on-only one-side-of the paper for your solutions
e Write your alias on the top of every page of your solutions.

e Number each page of your solution with the problem number and page
number (e.g. Problem 3, p. 2/4 is the second of four pages for the
solution to problem 3.)

e You must show your work to receive full credit.

Possibly useful formulas:

Spin Operator

. h., [0 1 [0 —i (10
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In spherical coordinates,
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Harmonic oscillator wave functions

'HLA).Z
ug(z) = (Fg) /e 5

2
ui(z) = () \ e ge i

Spherical Harmonics:.

Yo,0(0,¢) = 7117 Y2,0(0,9) = |/ 1ez (3cos® 0 — 1)
Yio(0,¢) = f’; cosd Yo 11(0,¢) = F -é‘—;eiid’ cosfsinf
Y1,1(0,9) = T/ gz sind Voi2(0,8) = 1/ gore™>?sin 0



Problem 1: Harmonic Oscillator (10 Points)

Consider the quantum mechanical simple harmonic oscillator.

a. Using the raising and lower operators, @ and &' find the average value of
X and P for the state |n >. (1 Points)

b. Using the raising and lower operators, & and af, find the average value
of X? and P? for the state |n >. (2 Points)

c. Using the raising and lower operators, & and af find the root mean square
deviations of X and P for the state |n >. (2 Points)

d. Find the uncertainty product for the state |n > (2 Points)

e. Fine the average potential energy and average kinetic energy for the
oscillator when it is in state |n > (3 Points)
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Problem 2: Variational Method (10 Points)

The Hamiltonian of a one-dimensional harmonic oscillator is

7 P_Z+ mw?X?
2m 2

The ground state energy is Fy = hw/2.
Let us employ the variational method with the following trial function

as the ground-state wave function
() = p(z) = Ne Il

a. Determine the constant N by applying the normalization condition. (2
points)

b. Find the value of B that minimizes (¢|H|¢). (2 points)
c. What is the ground-state energy calculated with the variational method?
(5 points)

N.B. The derivative of the trial function has a discontinuity.

d. How close do you get to the true ground-state energy? (1 points)
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Problem 3: Angular Momentum Hamiltonian (10 points)

Consider the following Hamiltonian for a spinless particle with orbital an-
gular momentum £=2.

A 3a » A 2 29

where a is a constant greater than 0 and L; denotes the ith component of

the angular momentum operator.
/ a) Calculate the energy spectrum of this Hamiltonian (2 pts)

b) Suppose a particle with this Hamiltonian has the wavefunction
(0, ¢) = A(sin @ cos 0 cos ¢ + sin’ 6 sin ¢ cos ¢)

where @ is the polar angle, ¢ is the azimuthal angle, and A is a normalization
constant. What is the average energy obtained in energy measurements on
an ensemble of particles described by the wavefunction above? (3 pts)

c) Assume the particle is in the lowest energy state (with £=2) for ¢t <
0. Starting at t=0, an external magnetic field is applied with

Vi(t) = %ﬁxe"tﬁ

where 7 is the decay constant and X is a constant. Calculate the transition
probabilities to possible excited states after a very long time (7 < ¢ — o0)
using first order time-dependent perturbation theory. (5 pts)
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Problem 4: Hydrogen Atom (10 points)

Schrodinger’s equation in spherical coordinates where the potential is only a
function of r can be solved by using separation of variables: W(r, 0, ¢)=R(r)Y (0, ¢).

‘/a) In units 2m = 1 and h=1, show that using the change of variables

u(r) = TR(r), one can obtain the radial Schrodinger’s equation for the
hydrogen atom. (1 pt)
g% 0+ 1
[—— — g + u]u(?") = eu(r)

dr? 7 72
where ¢? is the Coulomb strength and ¢ is the energy.

b) The lowest eigenstate of a given £ is known to have the form

241

ug = Cor*texp(—r/ay)

For a given £, determine the eigenvalue 62 and the size parameter ag, in
terms of g2 (2 pts).

Consider that the initial 3-dimensional wave function at time t=0 is a
superposition of the above states

2

U(r,0) = D(e_gzg + g*re™9" 7 cos f)

¢) Determine ¥(r, ) (1 pt)
d) Determine (cos0) as a function of time (3 pts).

e) Consider the hydrogen atom. Determine the most probable value of
r for the ground state. (1 pt)

f) Consider a hydrogen atom placed in a weak constant uniform external
electric field. Determine how the energy levels shift for the n=2 state of
hydrogen due to the electric field. (2 pts)
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Problem 5: 1/x potential (10 points)

An electron moves in one dimension and is confined to the right half space
(x > 0) where it has potential energy

62

Viz) = ——

(z) 4z

where e is the charge on an electron.

a) What is the solution of Schrodinger’s equation at large 7 (2 pts)
b) What are the necessary boundary conditions (1 pt)

¢) Using the results of part a) and b), determine the ground state solution
of the equation. (3 pts)

d) Determine the ground state energy (2 pts)

e) Find the expectation value (z) in the ground state (2 pts)



Problem 6: Measurements and Probability (10 points)

A three-level quantum system has a non-degenerate ground state and a two-
fold degenerate excited state, defined by:

HI0Y =0, Hla)=cla), HIb) = ep)

where ¢ is a positive constant energy.

(a) (1 pt) Write down the matrix representation of H in the basis

10}, [a), [b).
(b) (2 pts.) Define the observable C by its operation on the eigen-
states of H.
Cl0) =~la) , Cla) =~/0), CJb) = —7|b) (3)

v > 0. What are all the possible outcomes of a measurement of
C?
(¢) (2 pts.) For each of the eigenstates of H, calculate the probability
~of measuring the different possible values for C' if the system is
in that eigenstate.

(d) (1 pts.) Do H and C have common eigenstates? Are H and C
compatible observables? Explain.

(e) (2 pts.) At time ¢t = 0, the system is in the eigenstate of C' with

"~ the largest eigenvalue. Calculate the probabilities, as functions of
time, of obtaining the different possible results of a measurement,
of C.

(f) (2 pt.) At timet = 0, the system is in the state 1) = % (la)y +10)).
Calculate the probabilities, as functions of time, of obtaining the
different possible results of a measurement of C. Explain the
differences in this result and what was found in part (e).
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