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PROBLEM 86: Variational Method

Consider & Hamiltonian H that may or may not be solved exactly. The variational theorem
states that the expectation value of energy obtained from a trial wavefunction will always be greater
than or equal to the ground state energy.

Consider a trial wave function ¢ consisting of two basis wavefunctions ¥ and Uy such that
g

¢ =c1W1 + ¥y

where ¢; and ¢ are constants.

(a) Find the expectation value of the energy for this system. [1 point]

(b} Now assume {U;|Wa) = (Uojly) = 0, (¥1|H|Uy) = (¥aiH|¥;) and 1 and cp are real.
Determine a 2x2 matrix relationship for the best bound on the energy. [3 points]

c} Now also assume lI"j and \Dg are orthonormal. Solve the matrix 1‘elationship rou found in
¥
part (b) to determine 2 solutions for the best bound CNergy. [2 pOiIltS]

(d) Note that there are 2 solutions to the best bound energy found in part (c}. What additional
constraint can you apply to remove one of the solutions? [2 points]

(e) Confirm your answer to part {c) by using a Simple Harmonic Oscillator Hamiltonian and sot-
ting ¥ to be the ground state cigenfunction and Wy to be the first excited state eigenfunction
of the Simple Harmonic Oscillator [2 points]
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