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Problem 3: Vector Spaces and Dirac Notation

Consider a quantum system that can be described by three basis states, [n), n =1,2,3,
and an operator defined by its action on these three states:

Ally = —ia3)
A2) = of2)
A3) = dall) (1)

where « is real.

(a) [2 pts] Write the operator A as a matrix using these basis states:

1 0 0
]1> = 0 ) '2> = 1 ) |3> = 0 (2)
0 0 1

(b) [1 pt] Show that A is Hermitian.

(c) [3 pts] Compute the eigenvalues and corresponding eigenvectors of A.

(d) [2 pts] In your result for part (c), you found one non-degenerate eigenstate, call it |7},
with eigenvalue v. The other eigenstates are degenerate.

Define the projection operator Py = |7v)(y|. Write the operator Py as a matrix using
the basis states |1), |2), and |3).

Check your results to show that this matrix form for the projection operator is correct.
(e) [2 pts] Consider the system in the state:

2

9 = 21+ 212) - 13 ©

Write down an expression for the probability that a measurement of A would result
in the value + in terms of the projection operator P.,. Solve for this probability.



[ . e J—
{ 2 ?
/ O ’ . ) .
! s Lot
) o ,
~ | o o b
/ /’///-W-‘—
O O Lo 6
V/ W
_ N /
S O
Lor o @ P ) Mo 5
E&’m/ [(Lé’(ﬁAZS Cylvmnm > O o o
9] o o
(’, & [ O

= Comflin Con gl D L\éj



> =AY s

\> o [
) o~ X &) t:}zf
L o O - b

cor )
Lo (O “‘(9?’”>7(~£c>{}3 :Q/

N Y v )+ L (Lqu ~’L'<>{><’§ =

W2 Z 2 2 s
Noe o -» - A X -7

5

o (Voo =\ Y o > PN =

> ?\2("‘**\ b a-=) =g




> =1
O P- v
. PVl IS YA
S NI R
“ \
R J v
YA ey )}
J. - i_(\w’ (o) %W %}
0 Ip ‘ L ;
L Mi(; 9 L 3: A
o - M;*L( \(:> i (3 r*



, ‘ O L
? - ; 5
O 0 ©
€ |
L O S
(3

N o - ¢ .
{DI }5 = ( 'dz_ /5_ ( _ "% \/
o & «? ™) o |
- > | :‘ )
\ A f

24

Ny

g - - L3>
@ M\ Eihwgi(t» %l




(Eé) & £C el

o> e LoD

2 \ ‘o(/(
1

f

Y’ nms,

5

-
7
+ ¢ r

67

v



Problem 2: Quantum Operators

In this problem you will work with the ladder operators for angular momentum:
Ly=Lg+iLy, L =1L;—1iLy )
where

= L2+Ly+ L}
L6, m) = £L(L+1)R%[¢,m)
L,[tm) = mhll,m) (2)

(a) [1 pt] Show that the eigenvalues of any Hermitian operator are real.

(b) [2 pt] Is the the operator Ly L, the product of the angular momentum ladder opera-
tors, Hermitian? Show your work to justify your answer.

(c) [4 pt] Determine the results of the operations: L|¢,m) and L_|¢,m). Show all of your
work and make sure you determine all constants correctly.
Hint: The commutation relation [L, Li] and the matrix elements (£, m|Li Lz |¢, m)
might be useful.

(d) [3 pt} Using the results from part (c), prove that —£ < m < +£. Explain the physics
of this result in terms of the operators L? and L.
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Problem 4: Measurement of Hermitian Observables: (10 Points)

Consider a system with three Hermetian observables that are represented in a three-dimensional
Hilbert space using the orthonormal basis |e1), |e2) and |e3)

with
1 0 0
161> = 0 ,‘62) = 1 ,|63) = 0
0 0 1
and
2 00 1 0 0 010
A=f010]|,B=|0 1 2% |[,C=|100
0 01 0 —2¢ 1 0 01

The system at time ¢=0 is in the state:

90) = Tele) = Jelew) + /e

1. Find the eigenvalues and normalized eigenvectors of B and C. (1 Point)

9. Find the probability of measuring B at time ¢ = 0 with the eigenvalue b = 1, and then
immediately measuring C and finding the eigenvalue ¢ = 1, i.e. find Py (o)) (b=1,c=1).
(2 Points)

3. Now find the probability if these measurements are performed in reverse order at ¢ = 0,
ie. find Pyy(c=1,b=1). (2 Points)

4. Are the probabilities obtained in part 1. and part 2. the same or different? Explain in
detail. (2 Points)

5. Use the Generalized Uncertainty Principle to determine a lower bound on ABAC for
the system in the initial state |¥(0)). Discuss your results. (2 Points)

6. Discuss in detail, the conditions that would result in obtaining a lower bound of zero
when using the Generalized Uncertainty Principle. Would you expect to get zero for a
particular pair of the observables, A, B, and C in this problem? Or for other conditions?
(1 Point)
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