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PROBLEM 2: Harmonic Oscillator

A particle of mass m is confined to one dimension. Its potential energy is

V(z) = —;—mw%z,

where w > 0 is a real parameter. At time ¢ = 0, the state of the particle is represented by the real

wave function )
T
¥(o,0) = = (1- %) dla).

where ¢(z) is a normalized function of odd parity.

'On each question, to receive any credit you must fully justify your answer.|

(a) At t = 0, what is value of the position probability density P(x,0) at the origin, z = 07 [2
points]

(b) Describe the parity of the wave function at ¢ = 0 and at any ¢ > 0. [2 points]

(c) The region probability P(la,b], t) denotes the probability that a position measurement at time ¢
would detect the particle in the finite region = € [a,b]. What are the initial values of this
quantity for the left and right halves of the z axis: P( (—o0,0], 0) and P ([0, 00), t)? [2 points]

(d) At what time tygne > 0, if any, is P( [0, 00), tright) =17 [1 point]
() At what time tier, > 0, if any, is P( (=00, 0], tieft) = 17 [1 point]

(f) At what time tsame > 0, if any, are the two region probabilities equal:
P( (—OO’ 0]7 tsame) - 73( [O, OO), tsame)? [2 pOintS]
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Problem 6: Harmonic Oscillators in 1D

A quantum harmonic oscillator is described by the Hamiltonian

2
p 1 22
H=* =
5 +2mw:r (1)

where p is momentum, x is position, m is mass, and w is the oscillation frequency.
The Hamiltonian has the usual eigenstates and energies:

Hin) = fw (n—}—%) n), n=0,1,2,.. )

Let the system be perturbed by a potential in the form V = Az? where A is a real
constant.

(a) [2 pt] What is the change in the energy of the unperturbed eigenstates |n) to first order
in A? Show your work.

(b) [2 pt] If the perturbation is time-dependent, V(t) = A(t)z?, it can cause transitions
between the harmonic oscillator states. To study these transitions, it is helpful to use
the time-dependent expansion:

(1)) = 3 cu(t)e FE ) 3)

The ¢y/(t) are time-dependent probability amplitudes for the states |n’) and the en-
ergies F, are the unperturbed eigenenergies. Use the Schroedinger equation to show
that the expansion amplitudes satisfy a set of coupled equations:

it Deult) = Sew e HE N @l @l S

(c) [3 pt] Consider the case where the oscillator starts at time ¢ = 0 in the ground state,
cn(t = 0) = 6n0. Use the result from (b) to write down the time dependence of the

excited state probability amplitudes to first order in V, csll)(t), n > 0. This will be
an integral equation, as we have not yet defined A(t).

Show that, to first order, there is a transition only to the n = 2 excited state.
(d) [3 pt] Finally, consider a time dependent perturbation with A(t) of the form
A(t) = Ae 88Tt (5)

Q and I being real and positive.

Compute the probability that the n = 2 state is populated for ¢ — oo, and explain
the dependence of your result on { and T'.

Note: In this problem, it is useful to use

an:%(;—i%p), a=%<—§+i%p) (6)

where A = \/—75% is the length scale in the problem.
You do not need to derive the properties of these two operators, but you should state
the results you are using.
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PROBLEM 3
A particle of mass m has a potential energy represented by two one-dimensional
harmonic oscillator potentials centered at 4a :

V(z) = —12—K(x —a)? + %K(a: +a)?

[a] (3 pts) What are the eigenvalues of the particle given this potential V7
You may derive this result from first principles or deduce the result from
the well known eigenvalues of a particle moving in a single harmonic-
oscillator potential.

[b] (3 pts) The normalized ground-state eignefunction of the particle is given
by

_ 1 z?
d)(m) - 7T1/4A1/2 €xXp '—'2—A_2

Use Schrodinger’s equation to determine the constant A in terms of K,
m, and fundamental constants.

[c] (4 pt) The potential well at = —a suddenly disappears, leaving the
particle in a new potential

Ulz) = %K(az — a)?

Suppose that before the sudden change, the particle was in the ground
state of the double-well potential V(z). Derive an expression for the
probability that after the sudden change the particle will be in the ground
state of the single well potential U(z). Express your answer in terms of
a and A.
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Problem 2: Confined Harmonic Oscillator

Consider a particle of mass m confined in the potential

V(@) = %7,_“)2 (22 + %) + Vi(2)
Viz) = 0, 0<z<a, V(z)=o00, 2<0,2>a (1)

(a) [2 pts] Show that the energy eigenstates for this potential can be separated into a
product of three functions, each depending on a single coordinate: X (z), Y (y), and
Z(z). Using this product, determine the energy eigenvalues for the Hamiltonian, and
the general form for the corresponding eigenstates. Show your work, although you
don’t need to solve the three 1D problems giving all the details.

(b) [1 pt] Define the energy:
w2h?
- 2
2ma? @)
What are the first four energy eigenvalues and their degeneracies for this potential in
the case that E, = %hw? Give your answer in terms of the parameters in the problem.

E,

(c) [3 pts] Using standard cylindrical polar coordinates, p, ¢, and z, where £ = pcos(¢)
and y = psin(¢), show that the eigenstates of this potential can also be written as a
product of three functions, R(p), F(¢), and Z(z). Hint: Consider the ¢ dependence
of the system.

(d) [2 pts] Show that the energy eigenstates of this Hamiltonian can be also be eigenstates
of the z-component of the angular momentum, L, = —iha%.
What is the angular dependence, F(¢), for the simultaneous eigenstates of H and L,?
(e) [2 pts] The ground state you found in part (b) is an eigenstate of L, but the first

excited states are not eigenstates of L,. Write down two eigenstates of L, from linear
combinations of the first excited states from part (b).

What possible values of L, can be measured for a particle in the ground state?

What possible values of Lg can be measured for a particle in the first excited states?
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PROBLEM 3: Harmonic Oscillator

A particle of mass m is under the influence of the following potential
V(z) = VoV A2+ 22

where Vy and A are constants. For small displacements z < A this potential can
be approximated by a simple harmonic oscillator.

(a) Determine the lowest energy this particle can have in terms of h, m, Vo and
a for z < A. (2 Points)

Now consider the Hamiltonian describing the true one-dimensional harmonic
oscillator

P2

H
2m

1
~kX?
+ 2
with eigenstates
H|n) = Epln) n=0,1,2,---.

(b) Using commutation relations, calculate the equations of motion for P and
X in the Heisenberg picture. (Find X and P.) (2 Points)

(c) Solve for P(t) and X (¢) in terms of P(0) and X (0) and show that [X (), X(0)] #
0 for t # 0. (2 Points)

A harmonic oscillator system is known to be in the state

1
) = —\/—i(lO) +13))

where |0) and |3) are the normalized ground state and the third excited state of
the harmonic oscillator respectively.

(d) What is the value of n > 0 for the first non-zero value of (X") with the state
vector |psi)? (2 Points)

(¢) What is the expectation value (X3) with the state vector |¢)? (2 Points)
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Problem 1: Solving the Harmonic Oscillator

Solving the differential equation form of the time-independent Schrédinger equation for
the eigenstates of the harmonic oscillator Hamiltonian in 1D requires solving a second order
differential equation. By using operator algebra, it is possible to simplify the solution to
this problem.

The 1D harmonic oscillator is described by the Hamiltonian

P2 m
H=—+—w?X2 1
2m + 2 wiX (1)
Define the unitless variables
X A h
= e—— fuceed -—P = —_— 2
=, p=3P, A — (2)
such that the Hamiltonian has the form
_ hw 2 2
H== (P +a ) (3)

Note that z and p are conjugate observables, [z, p| =i

(a) [2 pt] Using the harmonic oscillator operators
1 1
i=-—(z+ip), &' =—=(@—ip), n=d'a 4
7 (z+1p), 7 (z—ip), ; (4)
and their commutation relations, show that the Hamiltonian can be written as

H = hu(i +3). (5)

(b) [2 pts] Define the eigenstates of the operator 7:
fln) = nin), (6)
with n some (unitless) numbers. Use the operator commutation relations to show that
aln) = c(n)ln—1)
allny = dn)n+1). )
Derive expressions for c(n) and d(n). Show your work.
(c) [3 pts] The potential, V(x) = —@23:102 > 0 for all . Explain why this implies that:
1. The eigenenergies of the Harmonic Oscillator must be positive

2. The eigenvalues of 74 must be non-negative integers
3. There is a lowest eigenstate of 7, |0) defined by |0) = 0.
(d) [2 pts] Show that results above define a first order differential equation in X that can

be solved for the ground state harmonic oscillator wavefunction o(X). Determine
this equation and solve for this wavefunction.

(e) [1 pt] Use the result from (e) and the operators to determine the first excited state
wavefunction for the harmonic oscillator, ¢1(X).
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Problem 4: Operator Solutions to the Harmonic Oscillator

Consider the Harmonic Oscillator Hamiltonian in one dimension:

P2 mw?
= ——X? 1
Hho 2m + 2 )

To simplify this problem, define the new observables:

1 mw
p—\/mp, Q—\/‘h—X (2)

This gives the dimensionless Hamiltonian,

H= ?i%Hho = % (p2 + q2) (3)

(a) [1 pt] Calculate the commutation relation for these new variables, lg,p]. Be sure to
show your work.

(b) [1 pt] Define the non-Hermitian operators a = —\}—E(q +ip), o = —\}—i(q — ip) and the

Hermitian operator n = a'a. Compute [a,a'], [n,a!], and [, d]

(c) [1 pt] Write the dimensionless Hamiltonian H in terms of a and af. Write the dimen-
sionless Hamiltonian H in terms of n.

(d) [3 pts] Define the eigenvalues and eigenvectors of n as:

nfA) = AlA). (4)
and assume that these eigenvectors form a complete set.
Show that
allA) = AX+1)
aldy = BlA-1) (5)

Determine the normalization constants A and B.

(e) [2 pts.] Show that n = ata must have non-negative eigenvalues, A > 0. Explain why
this implies that there must be a state where a|0) = 0 and that the eigenvalues of n
must be non-negative integers.

(f) [2 pts.] Write the definition for the state |0)
al0) =0 (6)

as a differential equation, in g, for the ground state wavefunction of H. Solve this
expression for the normalized ground state wavefunction.
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Problem 3: The Harmonic Oscillator(10 Points)

A one dimensional harmonic oscillator has a potential given by
V(z) = mwiz?/2.
where w is the oscillator frequency and m is its mass. Derive all results.

a. Write the Schrodinger equation for a single particle in a one dimensional harmonic oscillator
potential. (1 Point)

b. Consider the raising and lowering operators

and
mw

. P
B 2h$+Z\/2mhw’
respectively, where p is the momentum operator. If ¥ is an eigenvector of the Hamiltonian
with energy eigenvalue E, find the energy eigenvalues of alUg and a¥g. (You may need to
use the fact that [z, p] = ih). (2 Points)

c. Using the raising and lowering operators find the energy eigenvalues for a single particle in
a one dimensional harmonic oscillator potential. (2 Points)

d. Find the normalized ground state wave function. (2 Points)
e. The harmonic oscillator models a particle attached to an ideal spring. If the spring can only

be stretched, and not compressed, so that V = oo for 2 < 0, what will be the energy levels of
this system? (3 Points)
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PROBLEM 2: Harmonic Oscillator with Two Particles

Consider a Hamiltonian for two non-interacting particles:

P2 1 P2 1
1,2) = b 4 Zimw?X?4 2 4 —muwiX?
H(1,2) 2m+2mw1 1+2m+2mw2 5
= H +H,

where wy = 2w; = 2w.
Defining the raising and lowering operators:

1 - _
A = (X +iPy)

(X, —iPB,)

S

where n = 1,2 and

such that [am, al] = Gmn, m,n = 1,2,
Answer the following questions:

(a) [2 points] Write the Hamiltonian in terms of raising and lowering operators.

(b) [2 points] Write the eigenvector [n, n,) in terms of the ground state o,0) = |$n;=0)|Pna=0)
where |¢,,) is the eigenvector for particle 1, i.e.,

Hy|¢n,) = (nl + %) hwi|n,)

and similarly for particle 2.

(c) [1 points] Write a formula for the energy levels of this oscillator, E, with n defined in terms
of n; and ne.

(d) [1 points] Determine a formula for the degeneracy, g. , of an energy level En,.

() [2 points] Using your results from part (d) determine the degeneracy g, for the energy,
E = 15/2hw and list all the eigenfunctions |, n,) that have this energy.

(f) [2 points] Determine AX;, the uncertainty in X; for the state |tn;=1,n,=2) using raising
and lowering operators. Discuss the dependence of AX;, on the frequency ws and explain
why it makes sense physically.
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