PROBLEM 6: Hyperfine Splitting

The hyperfine splitting in hydrogen comes from a spin-spin interaction between the electron
and the proton. The total Hamiltonian can be written as

P2 PZ 62
=2 4+ ¢ — — 4+ Hyp
2m, 2me, T

where Hyp = AS’; . 5’;,, and A is a real constant.

(a) [1 points] What are the spin quantum numbers s and m, of the electron?
(b) [1 points] What are the spin quantum numbers s and m; of the proton?

(c) [1 points] What are the spin quantum numbers s and m, of the combined electron-proton
system?

(d) [5 points] Diagonalize Hyr in the total =23+ gp basis and compute the energy
eigenvalues.

(e) [2 points] Write an expression for the energy of a photon that would be emitted from a
hyperfine transition in terms of A, i, and any other relevant constants.
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PROBLEM 2: Hydrogenic Atoms with One Electron

In terms of the first Bohr radius, ag = h/(cam,), where « is the fine-structure constant,
the ground-state eigenfunction of a hydrogen atom is

—’I‘/ao

¢1,0,0(7", 0,p) = €

wad

(a) [3 points] Evaluate the probability of finding an electron in the ground-state of a hy-
drogen atom in the classically forbidden region. The classically forbidden region is the
region of space where the classical kinetic energy is negative.

(b) [4 points] For the ground state, evaluate the uncertainty in the Cartesian coordinate x
and the uncertainty in the corresponding component of the linear momentum, p;. Hint:
You need not use the explicit form of the operator for the linear momentum to evalu-
ate Ap,.

(c) [3 points] Show explicitly that the product of your uncertainties, Az Ap,, is consistent
with the Heisenberg uncertainty principle.
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Problem 6: Hydrogen Atom Measurements

Consider a hydrogen atom, ignoring the spin of the electron, with the usual eigenstates
of H, L?, and L, written as |n,£,m;).

(a) [2 pts] If the hydrogen atom is in its ground state, |1,0,0), what is (r), the average
distance of the electron from the proton?

(b) [3 pts] If the hydrogen atom is in its ground state, |1, 0,0), what is the probability of
measuring the electron’s position to be in the classically forbidden region of space?

The forbidden region is where the energy of the atom is less than the potential energy,
V (r), corresponding to a negative value for the classical kinetic energy.

(c) [2 pts] Consider the first excited states of the atom with £ = 1, |2,1,m). Calculate
the expectation value (z) for these states (where z = rcos § using standard spherical
coordinates).

(d) [3 pts] The state |2,1,0) has a rather different shape from the states 12,1,£1). This
can be seen by considering the spread in z, Az = /(2?) — (2)2, or the expectation
value (22).

Compute the ratio of (z2) in the state |2,1,0) to that in the state |2, 1, 1),

(2%)2,10 1)
(22)2,1,1
Hydrogen Atom States:
2 52 &2 2
T — = —— o ee— = — 2
V(T) r y G0 mega Ryd 2a07 « Fc ( )

The spatial representation of the Hydrogen Atom energy eigenstates can be written:

Ryd
Yrgm(r) = Rg(r)Yem(0, ), B == 5

1 3 3 ,

= . Y10 = —_ Y; = -1 +ig

Yo,0 T Yo \/47rcosé), 141 :F\/8W52n0 e
2 r 1 r
Rig = — —r/ag - 71— = ——r/2ao, Roy = —r/2a0
10 (a0)3/2e , Roo (Bac)? ( 2a0) e 21 (ag)l2 \/§aoe

A possibly useful integral:

n k
/oo tne—atdt —_ n! e~ T Z (am)
T

antl =t k!

where « is real and positive.
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PROBLEM 5: Zeeman Field

Consider the eight n = 2 states of Hydrogen. This problem is on the strong field Zeeman
effect with spin-orbit interaction. Assume that the constant magnetic field B lies along the
z-direction. The spin orbit coupling term is

11_(_1__‘_/_

Hop = ——r ™ .
50 2mic? r dr

?

where V (r) is the Coulomb potential, ¢ is the speed of light and m; is the angular momentum
projection quantum number. Remember:

1
adndl(l+ $)(1+1)

1
<n7 l’ mli;"g ‘nv l? ml) =

for [ # 0.

a) Find a general expression for the energy due to the spin-orbit term in the physical limit of
strong magnetic field, where the strong field Zeeman splitting expressions are valid. Express
your answer in terms of the good quantum numbers in this problem. Recall that because
of the strong magnetic field, the good quantum numbers in this regime are 7, I,m; and myg
and not j and m;. (Hint: compute (Hso) in the proper basis) (3 Points)

b) Explicitly write down the quantum numbers for all eight n = 2 states. Find the energy
of each state under strong field Zeeman splitting. Express the energy of each state as the
sum of 3 terms: the Bohr energy, the spin-orbit interaction, and the Zeeman contribution.
(4 Points)

c) If you ignore the spin-orbit interaction, how many distinct energy levels are there and
what are their degeneracies? (3 Points)
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Problem 4: Properties of the Hydrogen Atom

The wavefunctions for the ground state and first excited states of the hydrogen atom
are given on the first page of this test.

(a) [2 pt] For the ground state of the hydrogen atom, determine the expectation value for
the radial position of the electron, (1,0,0|r|1,0,0).

(b) [3 pt] Define the radial probably density for the electron in a hydrogenic eigenstate:
Pyom(r)dr as the probability of the electron being measured in the spherical shell
between 7 and r + dr.

Write down expressions for P; g0(r) and Py 11(r), and sketch these as functions of 7.

Hint: Remember that the integral of the probability density over r must be equal to
one,

/°° Prom(r)dr =1 ey
0

(c) [3 pt] For the ground state of the hydrogen atom, determine the most probable radius
for the electron. Compare your result to part (a) and explain the similarities and
differences.

(d) [1 pt] What is the functional form for Pi00(r) in the limit as 7 — 07 Explain your
result considering that the ground state wavefunction is non-zero at r = 0.

(e) [1 pt] What are the functional forms of Py oo(r), Pa1,(r), and Pao(r) as r — 07
Explain the similarities and differences.
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Problem 6: The hydrogen atom (10 points) 7

< et The figure below shows the radial function Ry (r) for a stationary state of atomic hydrogen.
s £** \The normalized Hamiltonian eigenfunction for this state, in atomic units, is

1 /2
Pngm, (1) = 31 %(6 —) e™"/3 cos . (1)

0.10;
0.08
0.06
0.04}

0.02

R,(n) (au)

0.00!

-0.02}

-0.04¢L
r(ap)

Figure 1: A radial function for a stationary state of atomic hydrogen.

1. 3 points. What are the values of the quantum numbers n, £, and m, for this state?
To receive any credit, you must fully justify your answer.

2. 1 points. What is the energy (in eV) of this state?

3. 2 points. What are the mean value and uncertainty in r (in atomic units) for this
state?

4. 2 points. Calculate the value of r (in atomic units) at which a position measurement

would be most likely to find the electron if the atom is in this state.

5. 2 points. From Eq. 1, generate the normalized eigenfunction ¥y, ¢me+1(T)-

[o'e) 3 n+1
/0 e~ Bpm dr = nl (§> (2)

Hint: The following table gives the orbital-angular-momentum operators in Cartesian and
spherical coordinates.

Hint:



Component Cartesian coordinates Spherical coordinates
Em —1h (yg—z« - z%) 1h (sin ga% + cot 6 cos 3—%)
Ey -1k (z-a% - x%) —1h <cos go-ge— — cot fsin %)
X praizesz o [ (w0 ¢ Sl

Table 1: Components and square of the orbital angular momentum operator in Cartesian
and spherical coordinates.
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Problem 6: Spherically Symmetric States: (10 Points)

Consider eigenfunctions of the Hamiltonian of a particle in a three-dimensional central po-
tential. In particular, consider those eigenfunctions that depend only on the electron’s radial
coordinate r, that is ¥ g=Up(r). States represented by such eigenfunctions are called “spher-
ically symmetric states”.

1. Derive an equation for a function xg(r) defined by:

&
3
—~
=3
"
il
S | e
=
3
—~—
=
e

where 7 is the principle quantum number. (2 Points)

The remainder of this problem concerns a hydrogen atom in the approximation that
we neglect all interactions except the Coulomb interaction and treat the proton as an
infinitely massive point particle at the origin.

2. Sketch xn(r) for the lowest three spherical bound states of the hydrogen atom. Justify
the qualitative features of each function. (2 Points)

3. (2 Points). Consider the eigenfunction for the ground state. Prove that to be physically
admissible this function must decay exponentially as r becomes infinite.

x1(r) = e %, whenr — 00

where o is a constant, and that therefore x1(r) must have the form.

xi(r) = f(r)e™®".

4. Use f(r) = r. Justify why this is an appropriate choice and show that the above equation
is a solution of the equation you derived for x1(r) and determine the corresponding
eigenvalue E1. (2 Points)

5. Derive an expression for the constant o in terms of fundamental constants. (2 Points)
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Problem 6: Hydrogen Atom (10 Points)

The spatial component of the ground state wavefunction for the hydrogen atom is
o(r,0,9) = Ae™ (e
where A and a, (the Bohr radius) are constants.

a) Find A by normalizing the wavefunction. Express your answer in terms of a,. (2
Points)

b) Calculate the expectation value of the potential energy. (2 Points)
c) Calculate the expectation value of 7 and the most probable value for r. (2 Points)

d) What is the expectation value for L, the magnitude of the angular momentum? How
does this value compare to the prediction of the Bohr model? (2 Points)

e) Many solutions to the Schrodinger equation for the hydrogen atom are related to a z-axis
despite the fact that the potential energy is spherically symmetric. What defines the z-axis?
Explain your answer. (2 Points)
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