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Problem 3: The Variational Principle: (10 Points)

Tf the case where you would like to calculate the ground state energy (Eg) for a system described
by the Hamiltonian H but you are unable to solve the Schrodinger equation, the variational
principle will give you an upper bound for the ground state energy.

For any normalized function ¥, the variational principle states:

B, < (V|H|T)
1.(2 Points) Prove the variational principle. i.e show that

Ey < (Y|H|T)
Hint (Write ¥ = X,c,¢n where ¢y, are the (unknown) eigenfunctions of H )

Now consider a specific case:
In the x-basis, a one-dimensional operator

d?

© da?

has an eigenvalue A and an eigenfunction 9(z) with ¢(z) — 0 for |z| — oo.
Let us choose an unnormalized trial function

Q= + |z|

a—|z|, for|z| < a, and

b(@) = (zly) = {0, for |z| > @

where « is the variational parameter.

2. (2 Points) Find (|¢).

3. (3 Points) Find the expectation value of the operator .

4. (3 Points) Determine the best bound on the lowest eigenvalue (}) of the operator Q
with the trial function (z). (Note your answer cannot depend on a.)
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PROBLEM 6: Variational Method

Consider a Hamiltonian H that may or may not be solved exactly. The variational theorem
states that the expectation value of energy obtained from a trial wavefunction will always be greater
than or equal to the ground state energy.

Consider a trial wave function ¢ consisting of two basis wavefunctions ¥; and Wy such that

p=c1V1+ ¥y

where ¢; and ¢ are constants.

(a) Find the expectation value of the energy for this system. [1 point]

(b) Now assume (U;|Ws) = (Up|¥y) = 0, (¥1]|H|Up) = (¥2[H|¥1) and c; and cp are real.
Determine a 2x2 matrix relationship for the best bound on the energy. [3 points]

(c) Now also assume ¥; and Wy are orthonormal. Solve the matrix relationship you found in
part (b) to determine 2 solutions for the best bound energy. [2 points]

(d) Note that there are 2 solutions to the best bound energy found in part (c). What additional
constraint can you apply to remove one of the solutions? [2 points]

(¢) Confirm your answer to part (c) by using a Simple Harmonic Oscillator Hamiltonian and set-
ting ¥y to be the ground state eigenfunction and ¥; to be the first excited state eigenfunction
of the Simple Harmonic Oscillator [2 points]
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Problem 2: Variational Method (10 points)?

Let us consider the hydrogen atom without spin. The Hamiltonian is

P C

Since the ground state is an S state the wave function must be spherically symmetrical.
Suppose you could not solve this problem exactly. Estimate the ground state wave function

with a Gaussian:
W(F) = Ne™ /P
a) Compute the normalization constant N so that 1(7) is correctly normalized. (2 pts)

)
b) Evaluate the expectation value of H in this state. (3 pts)
¢) Find the best estimate for Ey by applying the variational method. (4 pts)
)

d) The true ground state energy is

EO = —%(sz) .

How much does your estimate in (c) differ from the correct answer? (1 pt)
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PROBLEM 5: Variational Method

In the z-basis, the Hamiltonian for a hydrogen atom is

P2 e?
H= —-%
2m T

2 _, e

= Ty

Let us choose

as a trial wave function for the ground state.
(a) [2 points] Find (¢a|ta). (N.B. This wave function is not normalized.)
(b) [4 points] Find the expectation value of the Hamiltonian (H ).

(¢c) [4 points] Determine the best bound on the energy for the ground state of this system using
the variational method and the trial wave function given above.
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PROBLEM 6: Variational approach

A particle with mass, m, moving in one dimension finds itself in a potential given by,
V= for <0

and
V=382 for >0

where [ is a positive constant.
a) Find an approximation to the ground state energy, using the trial wavefunction

=0 for <0

and
U =Cxe ® for z>0.

where C and o are positive constants. (5 Points)

b) Would you expect the exact ground state energy to be less than your answer to part (a),
or greater than it? Justify. (3 Points)

c¢) How would you go about finding an excited state in this system using the same approach?
(2 Points)

Hint: [;° 2% = 2473, for a > 0.
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