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PROBLEM 3: Time-Dependent Perturbation Theory

Consider a non-relativistic particle of mass m and charge ¢ with the potential energy:

V(z) = %sz

A homogeneous electric field £(¢) directed along the x-axis is switched on at time ¢ = 0.
This causes a perturbation of the form

H' =—qXE&(t)
where £(t) has the form

E(t) = EeT

where &, and 7 are constants.

The particle is in the ground state at time ¢ < 0. This problem will deal with calculating
the probability that it will be found in an excited state as t — oo.

The probability that the particle makes a transition from an initial state i to a final state
f is given by:

2

1 t iwpit!
Pri(t,to) = = /t dt' (g H'(t')|¢s) €77

where the particle originally is in state ¢; and finally in state ¢y.
(a) [2 points] In terms of known quantities, what is the value of wy; 7
(b) [2 points] How many excited states can the particle make a transition to?

(c) [6 points] Derive an expression for the probability that the particle will be found in any
allowed excited state as t — 00.
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PROBLEM 5: Stationary Perturbation Theory

Consider a particle of mass m confined in a 2D infinite square well:

V(z,y)= 0, for0<z<Land0<y<L,

00, otherwise,

with energy eigenfunctions

Vo, (T,Y) = %sin (n—f—[m> sin (%Ey) .

(a) What are the energies and degeneracies of the first four energy levels (eigenenergies) of the

particle? Explain your answer. [1 point]

Impurities in the well will shift these energy levels. Assume we can model the effect of an

impurity through a local potential:

W(z,y) =—Vo L 6(z — 20)0(y — o)

where the point (zo,yo) is the position of the impurity.

(b) For the case where xo = yo = L/2, what are the energy shifts (including splitting of energy
levels) to first order in Vp for the first two energy levels of the particle? Show your work. [3

points]

Which of the energy eigenstates will not be changed by this impurity? Explain. (You should

not have to do any calculations to answer this second question.)

(c) Again for zg = yo = L/2, what is the shift in the ground state energy that is second order in
Vo? You should write your result in terms of sums, and approximate the result by summing

over the largest terms. [3 points]

(d) For the case where zg = L/3 and yo = L/4, what are the energy shifts (including splitting
of energy levels) to first order in Vp for the first two energy levels of the particle? Show your

work. [3 points]
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PROBLEM 4: Stationary Perturbation Theory

Consider a non-relativistic particle of mass m moving in the three dimensional potential:

1
V(z) = Ek(m2 + 9%+ 2%).

(a) [1 point] What is the ground state energy and first excited state energy for this potential?

Now there is a perturbation applied so the potential becomes
1
Viz) = —2—k(w2 + 97+ 2%) + Azy

where A is a small parameter.
(b) [1 point] Calculate the ground state energy to first order in A.
(c) [4 point] Calculate the ground state energy to second order in A.

(d) [4 point] Calculate the first excited state energies to first order in A.
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Problem 2: Near Degenerate Perturbation (10 Points)

Consider a system with two energy levels that are very close to each other while all others are
far away In this system, the unperturbed Hamiltonian (Hp) has two eigenstates |¢ ) and
lq,bz ) with energy eigenvalues E§ ) and E(O) that are very close to each other

B - B ~0. (1)
We often choose a state of the form
) = alp?) + blw”) )
and try to diagonalize the complete Hamiltonian (H = Hp + H1) with
Hly) = El¢) (3)
Hlp®) = B W) @
Hy = @OHWW),0,5=1,2 (5)
as well as
2Hq2
an 3 Hy — Hao ()

(a) (2 Points) Solve the characteristic equation and find the energy eigenvalues £, and Fj.

(b) (3 Points) Show that the normalized states corresponding to the energy values Ey and

FEy are

) = cos(8/2)[w”) + sin(8/2)[y5”) (7)
o) = —sin(8/2)[”) + cos(8/2)[95”) . (8)

In (c) and (d), consider the limit
|H11 — Hao| > |Hio| = |(H1)12| - 9

(c) (3 Points)

Find the energy eigenvalues E; and Ey for the Hamiltonian H to the order of H%, in
terms of Hyq, Hog, and Hig as well as in terms of E(O) and |¢(0)) i=12.

(d) (2 Points) Find the eigenstates [¢;),¢ = 1,2.
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PROBLEM 3: Perturbation Theory

Consider a particle of mass m trapped inside a 1D parabolic potential

1
V(z) = —2-mw2a:2,

where w sets the frequency of oscillation inside the potential.

a) If the particle is perturbed by a static potential
Vi = az,

with « small, compute energy correction of the energy levels in the lowest order where the
result is non-zero. (3 Points)

b) What is the pertubed ket in the ground state? Compute the expectation value (x) in this
state. Interpret the sign of (z). (3 Points)

¢) Assume from now on that a = 0. Imagine that the particle is charged and sits in the
ground state at ¢ = —oo. Suppose an electric field is gradually tuned on, increases to a
maximum at t = 0 and then slowly dies away,

VI(t) = —e[Elze /7,

where e is the electric charge, and E is the electric field . Write down the general expression
for the amplitude of transition from a generic level i to level f. (Do not solve the integral
yet) (2 Points).

d) Evaluate the probability of having the particle in the first excited state at ¢ = +-o0. (2
Points).

Hint: 7 dt e—t2 /it — [T e~ T /A
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Problem 5: Perturbing a Square Well

Consider a particle of mass m in a 1D infinite square well of width a,
V(z)=0, 0<z<a V(z)=o00, 2<0, z>a. (1)

(a) [2 pts] Derive the eigenfunctions and eigenenergies of the particle in this potential. Be
sure to normalize the states.

(b) [2 pts] Show that if the well is perturbed by a potential V/(z) = «a «, the energy
of all the unperturbed states shift by the same amount to first order in c. Find an
expression for this energy shift. Give a physical explanation for why this perturbation
results in an equal first-order energy shift for all states.

(c) [3 pts] Next, instead of the perturbing potential from part (b), the well is perturbed
by a potential
V(z) = Ve, g—(sgxggw V(z) =0, z<§—5, w>g+6 2)

Compute the energy shift to first order in a for the unperturbed energy eigenstates
¥ (). Explain the limit of this result as n, the unperturbed energy level, gets large.

(d) [2 pts.] What is the energy shift of the states ¥, (z) to first order in Sasd— 0?7 (W
is constant.) Give a physical explanation of this result. Note: You should be able to
answer this question even if you did not get a solution to part (c).

(e) [1 pt] What is the energy shift of the states vn(x) as 6 — 57 (Vo is constant.) Give
a physical explanation of this result. Note: You should again be able to answer this
question even if you did not get a solution to part (c).
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Problem 6: Perturbations in a 2D well

Consider a spinless particle of mass m and charge g confined to a hard-walled square
well (in two dimensions) with sides of length L. The potential can be written:

L L L L
= —_—— < <D Ll Ll y<L —
V(z,y) = oo otherwise

(a) [2 pts] Write down the eigenenergies, eigenstates, and degeneracies of the first three
energy levels for this well. You do not have to solve for these explicitly, but you must
explain and justify how you obtained these results.

(b) [2 pts] Consider applying a constant electric field in the z-direction to this system,
E = Eoé, 1

Assuming that Fy is small, determine the first order shift in the energies for the ground
state and first excited states. Be sure to show your work.

(c) [3 pts] The second-order, in Ey, energy shift of the ground state can be written in
terms of a sum. Write down an expression for this sum using the general form for
the eigentstates you determined in part (a). Calculate an approximate value for this
energy shift by solving for the largest term in the sum. Your answer should be in
terms of the parameters given in the problem, and fundamental constants.

(d) [1 pt] Considering the sum you wrote down in part (c), what is the next largest term
that will contribute a non-zero value to the sum? Explain your answer, but you do
not need to compute this term.

(e) [2 pts] Finally, instead of an electric field, consider the effect of a localized perturbation:
V(z,y) = VoL*6(x — £0)d(y — o) (2)

where (g, o) is some point in the well. Write down an expression for the first order
energy shift for the ground state, showing how the energy shift depends on the position
of the perturbation (zo, yo)-

Determine a position for the perturbation where the ground state energy changes, but
the first excited state does not.

Determine a position for the perturbation that splits the degeneracy of the first excited
state.
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PROBLEM 6: Stationary Perturbation Theory

Let us consider the Hamiltonian H for a harmonic oscillator with a charged
particle in a constant electric field (E):

H = Ho+H;

P2 1 9
H;, = —2’7?—% + 3 kX* and
H; = X

where )\ = ¢E and ¢ is the electric charge.
The non-perturbed Hamiltonian has the following eigenvalue equation

Ho|n) = EQ |n®), EO = hw(n + %) and w=/k/m.

(a) Apply perturbation theory and determine the first order energy EY. [2

Points]
(b) Apply perturbation theory and evaluate the second order energy Ey(LZ). (3
Points|

(c) Solve this problem exactly and find the energy En. [3 Points]

(d) Determine the eigenvector to the first order |n) = [n©@) + [n()). [2 Points|
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PROBLEM 5: Time Dependent Perturbation Theory

A particle of charge g, undergoing simple harmonic motion along the z-axis
(1-D), is acted on by a time-dependent homogeneous electric field,

E(t) = Eoe ¥/ %

where Ey and 7 are constants.

(a)

(b)

()

(d)

What is the new interaction term in the Hamiltonian for the simple harmonic
motion due to the specified electric field? [1 Point]

If the oscillator is in its ground state at ¢ = —oo, find the probability that it
will be in an excited state at ¢t = co. Assume the interaction can be treated
as a time-dependent perturbation. [3 Points]

Consider the same charged particle linear harmonic oscillator as in (a). As-
suming that dE/dt is small, and that at ¢ = —oo the oscillator is in the
ground state, use the adiabatic approximation to obtain the probability that
the oscillator will be found in an excited state as ¢ — oco. Compare your
result with the one you obtained in (b). [3 Points]

Again consider the charged particle harmonic oscillator but with a slightly
different perturbation. For ¢ <0
29 1,
Hy = o B + §km .
Fort>0 5 g
h* 0 1
H(t) = ——=—— + ~k(z — a)* — ka®
®) 2m Oz? + 2 (¢~ a) @
with
gk
a = CE)
mw

where w = 1/k/m. Show that in the weak coupling limit for ¢ > 0 that the
only eigenstate of Ho which will be excited with any sizable probability is the
first excited state, 11(z), and that the corresponding transition probability
is

20°Ef
Pro(t) = rghwg sin?(wt/2).

Assume the perturbation is turned on suddenly (fast). [3 Points]




g "o B
/T PAW E /T
g(t\: F.¢ X - F* 1 Fol ¥

. . 1 o ) ’
g C‘/\'W"M ’._L_.. g Q'Lw v\/\b(f »J\(

TJ
, A -
NIV :FPMQ @mw]
1 Z2ww ’

g iﬂ JT/JH MI C(‘/,/L"H - L:J
i

é-/‘}i > =]

(| Zaw
Co= ol ‘;L_jw ~ Lo it F (<4 ~‘c/z> it
t 2

Sl = e e, = (e - te) = L (T Lt )

t. t
= (D
o
- »u”({:/ 2
¢, =ttt { ‘7EF M&( e
‘?,mlz-‘
_ 00 )
S (-0 Y 9/
rEr e



_

i

() Mevore Mg = Gidet Clon o s,
Ay - . o4 LWV,L{( )
Cm Vm_é’.\ \/,,‘L” £, At
%
e .
- me(f’"
5 ‘QCLU/»L"’[ _ Q'L 9(
by
Lo ¢
(%2} )
o o ( Cuine €
(p = — S Vi, Je AT
AP T
- ot
comtl 17 | P et
=l Ve e = e Ju st
’ e —
i ~ . 2T
Ly Ceamed oo
Al ’Ol) 4‘/}/(
ol P «T o2
Y '\/a,l;(hif
— s
() v e o el lne
¢, - - ; iy_,ﬂ‘l‘n g ¢ At ——
Lt It an A A <ty N
A :
k < gl (R & (oot

e



CM = f_L—s «va‘_, ' /L“ <

PR _af

o9

L(WM(,t”/
Wi e | e

Ls =4, s To Vsl T owdercs

()= ‘,,ti 45 e Lk St

2 /K

e X +4_k T~ B xalc —fe<”

e

2 Tz .,
2 Z
2 Z

N
o v

> Lnlvii> = %‘(Zlm%/zés + L lseare [(v.',\(



! e =2l re
- \N
Sy
v
Tac Seers 77 =
A =z 7~ (oSt
I
2
‘/V”ST)'ZZ )\ \/ﬂﬁ/
f\’”g i
Some el
Co Mes o \ et
JefGastuly W T o st

Ao ¢



F*Z@“t’?

Problem 3: Artificial Atoms (10 points) °

Modern techniques in nanotechnology research can create artificial atoms, man-made
structures that confine electrons like real atoms but with properties that can be engineered.
In this problem, consider a 2D atom (electrons tightly bound in the z-direction) with a
parabolic potential in the x- and y-directions. The Hamiltonian is:

2 2
Yo mw 2 2
Hy = — 4 e . 1
0= 5 + 9 (x +y) ()

Note: In solving this problem, you might want to use the standard operators:

a -1 EC—4—'&'5 a -1 y—i—i-): (2)
a:—\/i \ hp:c ) y—‘\/i X hpy

h

and their Hermitian conjugates, where A = 4/ --.

a) What are the eigenenergies of this atom? What are the degeneracies of these energy
levels? If the separation between adjacent levels is 20 meV (0.02 eV), approximately
how large are the low-energy electron states in the atom (the radius)? (2 pts)

b) If the atom is put in a constant electric field, the Hamiltonian Hy is perturbed by a
potential:
H| = —eFEizx (3)

where E; is a constant (the electric field). Prove that to first order in the field, the
energy levels of the atom do not change. (2 pts)

¢) Next the atom is placed in a more complex field to study its properties. The new potential
is:

C:
Hy = X;my (4)

To first order in C,, what are the new eigenenergies of what were the first three energy
levels of Hy? Show your work. (4 pts)

d) If a different perturbing potential:
H; = =z (5)

is applied (rather than H,), how would your answers to part (c) change? No compu-
tations should be necessary to answer this question. (2 pts)
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Problem 5: Simple Harmonic Oscillator with External Perturbations

Consider a one-dimensional simple harmonic oscillator of mass m with a natural angular
frequency w. If there is no external perturbation, the Hamiltonian for this system is

B2 82 m 4 4

Hy = — + —w’z® Holn) = hw (n + 1) |n) (1)

" 2mox? ' 2 2

(a) [2 pts] Consider the case where there is an external potential on the oscillator of the
form Vi(z) = y1z. Calculate the exact eigenenergies of Ho + 1.

Describe the difference between the new eigenstates of this total Hamiltonian and the
eigenstates of Hp.

(Hint: The new Hamiltonian can be transformed back into a harmonic oscillator of
frequency w plus an extra term).

(b) [4 pts] Using perturbation theory to the first non-zero order, calculate the perturbed
eigenenergies of Hy + V4. How do these compare with the exact solutions from (a)?

(c) [1 pts] Now consider the case where there is an external potential on the oscillator of
the form Va(z) = fyzxz. Calculate the exact eigenenergies of Hp + Va.
Describe the new eigenstates of this total Hamiltonian, comparing them with the

eigenstates of Hy.

(d) [3 pts] Using perturbation theory to the first non-zero order, calculate the perturbed
eigenenergies of Hy + Va. How do these compare with the exact solutions from (c)?
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Problem 5: Perturbation Theory: (10 Points)

A single particle is in a one dimensional infinite well of length L. The potential V(z) is given
by:

0, f0o<z<L
V(=) = { 0o, otherwise
Suppose the potential energy inside the well is changed to
. L
V(z) = esin T

when 0 < z < L.

Note you may use your results from Problem 1 for this problem.

1. Calculate the energy shifts for the perturbed well to first order in e. (2 Points)

2. Which energy level is shifted the most to first order in €? (1 Point)

3. Calculate the second order (in €) correction to the ground state energy (2 Points)

4. Calculate the corrections to the ground state wavefunction to first order in e. (2 Points)

5. Suppose that e is larger than the energy of the first excited state. Carefully sketch the
wavefunction versus z for the ground state and for the first excited state. How many
nodes, maxima, and minima does the wavefunction have in each state. (2 Points)

6. Suppose the wavefunction is a linear combination of the ground state and the first excited
state from part 5. Describe how the maximum of the probability density depends on
time.(1 Point)
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Problem 6: Perturbation Theory

An isotropic Harmonic oscillator in two dimensions has the Hamiltonian

2 2
Dy py
Hy= =% 4L
0 2m+2m+

mw2

5 (=% +9?),

where x and y are position operators in Cartesian coordinates  and y.

a) What is the energy of the three lowest energy levels and their respective degeneracies? (2
Points)

b) Consider a perturbative potential of the form:
V(z,y) = Amw?zy.

Compute the energy correction of the lowest level in the lowest order in perturbation theory
where the result is non-zero. (3 Points)

¢) Compute the energy splitting of the first excited energy level (which is degenerate), due
to the perturbation. Compute the split ket states in terms of the original unperturbed kets.
(3 Points)

d) Suppose that there are three indistinguishable spin 1 /2 particles in the system. Compute
the total energy of the ground state in first order in perturbation theory. (2 Points)
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