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PROBLEM 1: Motion of a Particle in One Dimension
Consider a particle of mass m moving along the +x direction in free space.

(a) [2 points] Suppose the particle is in a momentum eigenstate where the particles momentum
is known precisely to be po. Write a wavefunction ¥(z,t) that describes such a state.

(b) [2 points] Suppose the particle is in a state where it is equally probable for the particle
to have any momentum between po — Ap/2 and po + Ap/2 at time ¢ = 0. Construct a
wavefunction ¥(z,t) that describes such a state.

(c) [2 points] Suppose a beam of particles, each in the state described in part (a), encounters
an abrupt step in potential energy at x = 0. The step height V4 is less than the particles
total energy E. Construct the wavefunction, U(z,t) with —oo < z < oo, that describes
this situation.

(d) [2 points] Calculate the probability that a particle is reflected by the potential energy step
described in part (c).

(e) [2 points] Consider the situation described in part (c), except with Vj greater than E.
Compare the probability of finding a particle at a distance x inside the barrier to the
probability of finding a particle at z = 0.

V(x)
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PROBLEM 5
A particle of mass m is confined to a two-dimensional plane. The potential
energy of the particle is

_J 0 p<p
vo={ % I3

where p is the radial coordinate of plane polar coordinate (p,%). This potential
confines the particle to the region of space p < p,. The particle in this “circular
square well” is the quantum analog of a marble on the head of a drum. The
stationary-state Hamiltonian eigenfunctions of the particle are Wp,m, (p, p) with
eigenenergies F.

a) [4pts] Write down a second-order differential equation for the radial func-
tion Ry, m,(p) in the bound-state Hamiltonian eigen functions

"»bn,'mg (pa 90) = R’n,ml (p)éme (‘P)’

where ®,,, (i) is an eigenfunction of the orbital angular momentum oper-
ator L = —ihd/dp. Write down and justify the boundary conditions that
physically admissible solutions to your differential equation must satisfy,
and write down the normalization integral for the radial functions.

b) [2pts] What, if anything, can you conclude from your differential equation
about the degree of degeneracy of the bound-state energies Ey m,. Justify
your answer.

¢) [2pts] Derive an equation for the bound-state energies En,m, in terms of
the zeros ¢y, of the cylindrical Bessel function of the first kind, Ji,(2).
(See the hint below.)

d) [2pts] Estimate the energies of the lowest three bound states of the cylindri-
cal square well. Express your answers in terms of fundamental constants,
the mass m, and the well radius p,,.

Hint: The cylindrical Bessel functions are solutions of Bessel’s equation
d? d
[*7 a7 =17 T (2) =0

The so-called cylindrical Bessel functions of the first kind, J+,(2), are regular
at the origin and normalizable. These functions oscillate with increasing z and
have an infinite number of nodes, i.e., values for which z = ¢y, > 0 at which
J1,(z) = 0; these nodes are indexed by n =1,2,... The figure shows the first
four cylindrical Bessel functions.
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First four cylindrical Bessel functions of the first kind (for use in problem 5.)
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Problem 3: Barrier Scattering

Consider a particle of mass m in one dimension scattering off of a square barrier of
width L:

V(i) = 0, <0
Vi) = V, 0<z<L, V>0
Viz) = 0, 2>1L 1)

Assume the particle has an energy E >V and is incoming from the left (z < 0).
Define the usual wavenumbers for this problem:

21.2 212
hek _E, hk _

2m 2m E-V )

(a) [1 pt] Write down general expressions for the scattering wave function, the un-normalized
eigenfunction of the scattering Hamiltonian, in the three regions, z < 0, 0 < z < L,
and z > L.

(b) [1 pt] Using the expressions from part (a), write down the boundary conditions on the
scattering wave function. Explain the physics of each of these boundary conditions.

(c) [2 pt] Using your boundary conditions from part (b), show that

A _. ikL ! ~k2 + klz s /
F=¢ (cos KL)y—1 Sk sin(k'L) (3)
where A is the amplitude of the incoming wave (from & = —o0) and E is the amplitude

of the outgoing wave (to z = 00). Hint: We’re not interested in the amplitude of the
reflected wave.

(d) [3 pt] Solve for the transmission coefficient, T', for the barrier scattering. You may
express this in terms of k, &, and L, but it will be useful for later parts of the
question to write it in terms of E, V, L, and constants in the problem.

(e) [1 pt] What is the limit for the transmission coefficient T in the limit that E > V7?7
Show your work and explain the physics of this result.

(f) [1 pt] There are energies where T = 1. What are these energies and the wavelength
of the particle wave function? Give a physical argument of why the transmission
coefficient is a maximum for these energies.

(g) [1 pt] What is the value for the transmission coefficient, T, in the limit that £ — V7

Hint: To solve this you might define 6 = E — V.
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Problem 1: Quantum Currents

For a 1D quantum mechanical system of particles with mass m, the current in a state
U(z,t) can be defined as:

1
j(@t) = —Re (¥ (x, 1) P¥(2,1)) 1)
where P is the momentum operator and Re signifies the real part.

(a) [2 pts] Consider a 1D step-potential

Viz) = 0, <0,
V) = Vo, z>0 (2)

where Vo > 0, and the 1D scattering eignestates for the Hamiltonian for particles
incident from z < 0

Up(x) = i1(z)+¢r(z), <0,
\I]E(m) ¢T(w)7 z > O,
HVp = EUg (3)

i

where 97, ¥r, and 7 represent the incoming, reflected, and transmitted waves re-
spectively.

Write down the functional form for ¥g(z), and solve for the amplitudes of ¢r and
g in terms of the amplitude of 91 for E > Vj.

(b) [2 pts] What is the ratio of the transmitted to incoming currents,
Jr
=, 4
JI )
as a function of the energy E, for E > V3? Check your result for E >> Vp and
E = W.
(c) [1 pt] What is Jp for E < Vp? Show your work.
(d) [2 pts] Next, consider a 1D Hamiltonian, H, that has a series of bound, non-degenerate,
real eigenfunctions ¢n(x): HYn(x) = Enthn(z). Show that the current for these states,
1
Jn(z,t) = —T—n—Re (UF (z,t)PUp(z,t)) =0 (5)

(e) [3 pts] Now consider a bound state of H from part (c) given, at ¢ =0, by
L
V2

where 1 () and () are the ground state and first excited state of H.

U(z,t = 0) = —= (¥1(2) + ¢2(2)) (6)

Show that the current for this state will not be zero, and derive the time-dependence
of the current.
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Problem 3: Double Step Potential

Consider a single particle of mass m in a one dimensional well of width a and a potential,
V(z), given by:

oo, <0
Vo, O0<z< %
= 1
V@) =19, es<z<a (1)
00, T>a
V()
Y%
a/2 a X

In this question, you will consider the special cases where this potential well has a bound
state at the energy F = V;. There are only certain values of V and a where this will happen.

In this problem, use the constant
/2mV0

(a) [2 pts] For the energy E = Vp in this potential, determine the general eigenfunction
solutions to the time-independent Schrédinger equation in all regions of x. Show your
work.

(b) [3 pts] Apply boundary conditions to determine relationships between the constants
you introduced in writing the wave functions in part (a).

(c) [2 pts] From your results above, derive a transcendental equation that gives the values
of Vo where there is an energy eigenstate with E = Vj, for a fixed well width a. This
equation will have the form z = f(z) with z = k%. Plot this function and determine
a relationship between the first energy Vp that satisfies this equation and the bound
state energies of a square well of width a.

(d) [2 pts] Qualitatively sketch the wave function that corresponds to the smallest value
of V, that satisfies the transcendental equation from part (c), for a fixed value of a.

(e) [1 pt] Finally, consider the case where the width of the well is fixed but the potential
step, Vo, can be changed. There are an infinite number of possible values of V;; where
the well contains an energy eigenstate with £ = Vj. Describe, qualitatively, the
changes in the wavefunctions of these eigenstates as Vp gets larger.
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Problem 1: Step Potential (10 points) '

Consider the potential V(z)

0, <0
V(w):{_v’ i>0

A particle of mass m and kinetic energy E approaches the step from z < 0 .
a) Write the solution to Schrodinger’s equation for z < 0. (1 pt)
b) Write the solution to Schrodinger’s equation for > 0. (1 pt)

c) Sketch the wave function for < 0 as well as z > 0. Making sure to describe how the
amplitude and frequency of the wave function changes. (1 pt)

d) What is the probability that particle will reflect back if £ = V/87 (2 pts)

¢) What is the probability that the particle will be transmitted if £ = V/8. (2 pts)
(Determine the transmission probability directly by using the flow of probability current
and do not simply use 7' =1 — R)

f) Show that T+ R = 1. What does this mean physically? (1 pt)

g) If instead the particle approached the step from z > 0, how do your answers to parts
a), b), d) and e) change? (2 pts)
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PROBLEM 1

v

Consider the step potential shown in the figure.

a) [1 pts] Consider a particle traveling from z = —oco to the right with an
energy E. The appropriate wavefunction for this particle is given by

b= etkre 4 Ae~krLT for x < 0
"~ | Betkr® forz >0

Give expressions for ky, and kg and define any undefined parameters /constants
given in your expression.

b) [3 pts] For the case that E > V, use appropriate boundary conditions to
find the coefficients A and B.

c) [2 pts] For the case that E > V,, find the probability that the particle will
be reflected.

d) [2 pts] For the case that E > V,, the probability that the particle will be
transmitted is given by T'= 1 — R. Determine and explain the physical
meaning of the ratio |B|?/T.

e) [2 pts] What is the probability for reflection when E < V,?
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