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PROBLEM 3: Angular Momentum Operators

Consider a state space formed from the direct sum of the two subspaces: £(j=0) spanned by

lj = 0,m, = 0) and £(j=1) spanned by |j = 1,my =1),|j =1,my = 0), and |j = 1,my = —1),:

ie.
E=E(G=1®E([=0)
where
ngj, my) =j{+ 1)fi2|j, my)
Jylj’ my) = myhlj7 my>
Let

1 V3 1
V)= ——2|j=1, =1 —li=1, =0) - —=|j =0, =0
I ) \/glj my >+ /—10].7 my > \/’2‘1.7 0 my )

(a) Consider the measurement of the two observables J 2 and Jy. Do these observables commute?
Demonstrate explicitly the value of the commutator of J? and Jy. (2 points]

(b) Determine the probability of measuring J* and getting 2k?, i.e. determine })l\p>(2h2 for J%).
What is the resulting normalized state vector, ') after this measurement? (2 points]

¢) If J, is then measured after the measurement in part (b), what is the probability of obtaining
Y ¥
my = 0, i.e. what is Py (0 for J,)? What is the resulting normalized state vector after this
measurement? [2 points]

(d) What is the composite probability of measuring J 2 and getting 2h2? and then measuring Jy
and getting zero, i.c. what is Pg)(2h? for J2, 0 for Jy)? (1 point)

(¢) Now starting with the original |¥) reverse the measurements, measuring Jy first and getting
zero, and then measuring J? and getting 2h2. Determine four quantities: 1) Pgy(0 for Jy);
2) the resulting normalized state |U"); 3) Pgn (20 for J?); and 4) the final normalized state
after both measurements have been taken. [2 points]

(f) What is the new composite probability when the measurements are reversed, i.e. what is:
Pyyy(0 for Jy, 212 for J%)? Are your two composite probabilities the same or different? Dis-
cuss in detail. [1 point]
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___—"Problem 4: Angular momentum (10 points) 4

A |jm) = |1,0) state scatters from a [jm) = |3, 1) state via a |jm) = |3, 5) resonance.

a) Relate the highest weight (highest possible m) states in the total j basis to the highest
weight states in the direct product basis for this system of % ® 1. (1 pt)

b) Acting on the highest weight states with lowering operators, give an expansion of each
total-j state in terms of direct product states and their Clebsch-Gordon co-efficients. (5 pts)
Hint: Ji|jm) = B[(j Fm)(j £m+ 1)]2|j,m +1)

c) How often do the above-mentioned spin states scatter elastically, and how often do
they scatter inelastically? (4 pts)
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PROBLEM 4: Angular Momentum

The hydrogen atom including hyperfine splitting can be described by a Hamil-
tonian
P2 P2 2
R AR < S
2mp  2me T
where Hyp = AS’;, . 5’; describes the spin-spin or hyperfine interaction and the

total spin angular momentum is given by S = gp + S.. The subscripts (p and e)
refer to proton and electron, respectively

(a) Write down the form of the spin-spin direct product state vectors. What are
the “good”, i.e. diagonal operators for this set of state vectors? [2 points]

(b) Write down the form of the “total-s” state vectors. What are the “good”,
i.e. diagonal operators for this set of state vectors? [2 points]

(c) Choosing an appropriate set of state vectors, calculate the HyF energy eigen-
values, and the energy splitting due to the hyperfine interaction. [5 points]

(d) If the photon wavelength () is 21 cm from the hyperfine transition, evaluate
the constant A in Hyp. Hint: ke = 1.97 x 10™° eV-em. [1 point]
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Problem 2: Angular Momentum States

Consider the electron in a hydrogen atom in the presence of a homogeneous magnetic
field B = B%. In this problem, ignore the electron spin and only consider the orbital angular
momentum. The Hamiltonian of the system is

H - HO - WLz, (1)

where H, is the Hamiltonian for the hydrogen atom, w = |e|B/2mec, and L, is the angular

momentum operator along the z direction. The eigenstates |n, £, m) and eigenvalues ET(LO) of
the unperturbed hydrogen atom are to be considered as known. Assume that initially (at
t = 0) the system is in the state

$(0)) = —j—é (12,1,-1) = 2,1,1)). 2)

(a) [1 pt] Write down the time-dependent state for this atom, [1(t)), given the initial state
and the full Hamiltonian.

(b) [2 pts] Calculate the probability of finding the atom at some later time ¢ > 0 in the
state

) = 75 (2.1, -1 +2.1,1). Q
When is the probability equal to 17
(c) [3 pts] Define the state |eg) defined by
(es L) leg) = hleg),  L’leg) = 2h%ley). (4)

ey is a unit vector in the z — y plane, eg = cos(¢)ex + sin(¢)ey.

This state has quantum number £ = 1 and angular momentum projection along the
direction ey equal to +h. Solve for the state |eg) in the basis of states 12,1, m), with
m = +1,0.

(d) [2 pts] Calculate the time-dependent probability of finding the system in the state leg)s
if it starts in the state |)(0)) above, and show that this is a periodic function of time.
Calculate the times when the probability is maximum and minimum.

(e) [2 pts] If the electron starts in the state [)(0)), calculate the expectation value of the
magnetic dipole
e

= 2 C<L>(t)’ L= Lxex + Lyey + Lzez (5)
€

() (2)

as a function of time.

Hint: It will be useful to use:

Jr = JpEiJy
Jelj,m) = By/ji(G+1)—m(m=£1) [jm*1) (6)

o
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PROBLEM 2: Oscillator Model of Angular Momentum

Arbitrary angular momentum can be constructed from spin-1 /2. The latter can be described

in terms of the Pauli matrices B
S =—-0.
2

The construction of a general angular momentum can be done by introducing two sets of
independent harmonic oscillators, in terms of creation (aZ) and annihilation (a¢) operators,

la4,a-]1=0, [ah,al]=0, lac,al]=06cc,

with ¢, ¢’ = % indexing oscillators of type £. Now define
h
J= §a10'a,

where a is a two component operator,
a
0= ( )
a-—
T

a) Given the form of the Pauli matrices, give the explicit form for Jg, Jy, J, in terms of a,
and a; operators (2 Points).

b) Show that Jy = J, & iJy have particularly simple forms in terms of a¢ and az operators
(1 Point).

¢) Compute the commutator [Jz, Jy]. How is this generalized for the other components? (2
Points)

d) Show that
J? = JZQ + JyJ-+ i[Jz, Jy}’

and then write this in terms of the number operators for the two harmonic oscillators,

ng = a1a+, n_=ala_.

Show that this implies that the eigenvalues of J 2 are j(j + 1)A?, where j is an integer or an
integer plus —% (Hint: apply the J? operator in the two harmonic oscillator state |y, n-))
(3 Points).

e) Using the properties of the harmonic oscillators, show that the state in which J 2 has the
eigenvalue j(j + 1) and J, = mh can be constructed from the state in which both n4 and
n.. have the value zero, |0), by

_(abyirm (@lym

VG rmIVG - m)!

|jm) 10)-

(2 Points)
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