
E & M Qualifier

January 13, 2011

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

8. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. A parallel plate capacitor has the region between its plates filled with
a dielectric slab of dielectric constant K = ϵ/ϵ0 and mass m. The
plate dimensions are: width w, length ℓ, and plate separation d. The
capacitor plates are connected to a battery of constant voltage V (∆ϕ =
V in the figure). Neglect the fringe field and friction, and assume the
slab is constrained to move in the plane parallel to the capacitor plates.

(a) {2 pts} Compute the capacitance C ≡ q/V of this capacitor as a
function of x.

(b) {2 pts} If the slab is withdrawn half way (to x = ℓ/2) and held
in place, what is the magnitude and direction of the force on the
slab caused by the electric field?

(c) {2 pts} At x = ℓ/2 the slab is released and given a velocity v0 to
the right. Find the current supplied by the battery at the instant
it is released.

(d) {2 pts} At x = ℓ/2 the slab is again released but with zero velocity.
Describe the motion of the slab (in words). What is the maximum
velocity achieved by the slab?

(e) {2 pts} Sketch the displacement of the slab versus time.
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2. This problem investigates the shifting frequency of electromagnetic ra-
diation that is reflected off a moving target. Incident and reflected
frequencies and angles are not the same if the target is moving.

Assume that in the lab frame of reference, the target is a flat mirror
traveling upward in the positive x-direction parallel to the mirror’s
normal with velocity v = βc x̂ (see the figure). Also assume the wave is
a linearly polarized plane wave traveling in vacuum towards the moving
mirror at angle θI (relative to the mirror’s normal). If the polarization
is in the ẑ direction, the incident electric field is given by

EI = E0 ẑ ei(kI ·r−ωI t),

with
kI =

ωI

c
(− cos θI x̂+ sin θI ŷ).

(a) {2 pts} Write the Lorentz boost A as a function of β and γ ≡√
1− β2 that transforms the Lab coordinates r and ct to coordi-

nates r′ and ct′ co-moving with the mirror. Also give the inverse
A−1 of the Lorentz boost A that transforms the moving coordi-
nates r′ and ct′ into Lab coordinates r and ct.

(b) {3 pts} By rewriting the above wave’s phase in both reference
frames, i.e.,

kI · r− ωIt = k′
I · r′ − ω′

It
′

as a function of the co-moving mirror coordinates r′ and ct′ (i.e.,
use A−1) find k′

I and ω′
I as observed in the co-moving frame. These

will be functions of β, γ, and θI as well as ωI .

(c) {2 pts} By writing the incident wave vector just obtained in the
moving frame in the form

k′
I =

ω′
I

c
(− cos θ′I x̂+ sin θ′I ŷ),

determine the incident angle θ′I as seen by observers moving with
the mirror (e.g., give cos θ′I as a function of θI , ωI and the Lorentz
parameters β, γ).
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(d) {3 pts} If, as seen by observers moving with the mirror, the re-
flected wave has the same frequency as the incident wave ω′

R = ω′
I

and a reflection angle that is the same as the incidence angle
θ′R = θ′I , i.e.,

k′
R =

ω′
I

c
(cos θ′I x̂+ sin θ′I ŷ),

what is the frequency ωR of the reflected light as measured in the
laboratory frame? Hint: again use

kR · r− ωRt = k′
R · r′ − ω′

Rt
′,

and the Lorentz boosts A.
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3. Consider a square with sides of length s and charges -q at the corners
as shown:

(a) {2 pts} What is the potential at the center of the square if the
potential is zero at ∞?

(b) {2 pts} How much work does it take to bring in another charge -q
from ∞ to the center of the square?

(c) {3 pts} How much work does it take to assemble the original
configuration of 4 negative charges (no charge at center)?

(d) {3 pts} Now suppose that instead of the 4 charges being located
at the corners of a square, a net charge of −4q is distributed
uniformly on the surface of a sphere of radius s. How much work
does it take to bring in another charge q from ∞ to the center of
the sphere?
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4. Consider an isolated spherical surface of radiusR centered on the origin,
that is kept at a known potential V (θ), i.e.,

Φ(r = R, θ) = V (θ)

where (r, θ, ϕ) are the usual spherical polar coordinates, i.e., θ is mea-
sured with respect to a z-axis passing through the center of the sphere
and ϕ is the azimuthal angle about the z-axis measured from the x axis.

(a) {2 pts}Write down expressions for the general solution to∇2Φ(r, θ) =
0 for the electrostatic potential as a linear combination of Legen-
dre polynomials in the respective regions 0 ≤ r < R and r > R.
Assume that the potential vanishes at r → ∞ and has azimuthal
symmetry i.e., no dependence on the angle ϕ. Do not include
terms that must vanish. Do not attempt to evaluate the constants
that appear in the linear combination but do give the correct r
dependence of each term.

(b) {2 pts} What boundary conditions must your two expressions sat-
isfy at the junction r = R to have a unique solution to Maxwell’s
equations?

(c) {2 pts} If the particular surface potential imposed is

Φ(r = R, θ) = V0 cos θ

where V0 is a constant, what is the explicit form of your potential
for both regions r ≤ R and r > R?

(d) {2 pts} Determine the resulting electric field on both sides of the
r=R surface.

(e) {2 pts} What is the surface charge density σ(θ) on the spherical
shell at r=R.
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5. A plane polarized monochromatic light wave traveling in the +z direc-
tion enters a large flat slab of transparent crystal of thickness d, located
between z = 0 and z = d. This crystal has the property that the index
of refraction depends on the direction of polarization as follows: Plane
waves traveling in the z direction but polarized in the direction

ês = cosϕ0x̂+ sinϕ0ŷ,

travel with speed vs = c/ns < c but those polarized in the orthogonal
direction

êf = − sinϕ0x̂+ cosϕ0ŷ,

travel with the faster speed vf = c/nf < c where ns = nf + δn.

Assume the wave, just after entering the crystal (i.e., for very small
z << λ < d), is polarized in the y direction and hence has the form

E(z ≈ 0, t) = E0 ŷ e−iωt.

(a) {4 pts} Prove that in general the initial plane wave becomes ellip-
tically polarized when it reaches z = d by deriving the following
expression

E(z = d, t) = [Ex x̂+ Ey ŷ] e
i(k̄d−ωt),

where

k̄ ≡ ω

c

(
ns + nf

2

)
,

and
Ex = iE0 sin 2ϕ0 sin δ,

Ey = E0(cos δ − i cos 2ϕ0 sin δ),

with

δ ≡ ωd

2c
δn.

Hint: Write the wave at z=0 as a combination of slow and fast
plane polarized parts using ŷ = sinϕ0ês + cosϕ0êf .
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(b) {3 pts} For what values of δ and θ0 will the wave emerge from the
crystal as a circularly polarized wave? (Ex/Ey = ±i).

(c) {3 pts} For what minimum crystal thicknesses d = dmin will the
wave emerge as a plane polarized wave (Ex/Ey = real) and what
will its polarization direction be?
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6. A permanent magnet in the shape of a solid sphere of radius a is ori-
ented on the z-axis as shown in the figure. The magnetization of the
magnet is given by M⃗ = M0ẑ. [Recall that ∇×H = 0 implies the ex-
istance of a magnetic scalar potential Φm(r, θ) related to the magnetic

field by H = −∇⃗Φm(r, θ).]

(a) {4 pts} Compute the scalar magnetic potential Φm(r, θ) at all
points r < a and r > a.

(b) {3 pts} Compute the magnetic FieldH = −∇⃗Φm(r, θ) at all points
r < a and r > a.

(c) {3 pts} Compute the magnetic induction B, where

B/µ0 = H+M, (SI)

B = H+ 4πM, (Gaussian)

at all points r < a and r > a.

Hints: The magnetic potential is axial symmetric about the z-axis and
satisfies the Laplace equation at all points except r = a. Legendre
polynomials are useful.
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