E & M Qualifier

August 15, 2013

To insure that the your work is graded correctly you MUST:

o

. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias (NOT YOUR REAL NAME) on every page,
4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,
number every page starting with 1 for each problem,

put the total # of pages you use for that problem on every page,

© N o

do not staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. A plane monochromatic electromagnetic wave of wave vector k;, ampli-
tude Eq;, and angular frequency w is incident at the planar interface of
two dielectric, non-magnetic (1 = po in SI units), non-absorbing media

(i.e.,

have real indices of refraction n; and n;). The angle of incidence

is equal to 6;. Part of the incident wave is reflected at an angle 6, = 6,
and part of it is transmitted into the second medium at a transmis-
sion angle #;. Assume the electric fields of the incident, reflected, and
refracted waves lie in the plane of incidence as shown in the figure.
Assume coordinates are chosen so that the dielectric interface is the
z = 0 plane and the polarization is in the z-z plane.

(a)

[2 pts] Use Maxwell’s equations to derive an expression for the
magnetic induction B associated with a plane monochromatic
electromagnetic wave whose electric field is

E =Egexpi(k-r — wt)

traveling in a homogeneous material described by a real index of
refraction n. Give the relationship of |k| to w.

[2 pts] From the above figure give ki, ki, and k; in terms of their
% and 2 components, and evaluate k - r in the 2 =0 plane.

[1 pts] From the above figure give Eoi, Eor, and Eg; in terms of
their X and Z components.

[1 pts] State the 4 boundary conditions satisfied by the fields
E,B,H, and D at the above z = 0 junction.

[1 pts] Use one of these junction conditions to prove Snell’s law,
ng sin §; = n;sin 6; (only 2 of the 4 are independent).

[3 pts] Use two of the junction conditions to determine the ratio
of the magnitude of the amplitudes of the reflected and trans-

mitted to the incident electric fields, i.e., evaluate |Eq,|/|Eo| and
|Eo:|/|Eoi| as shown in the figure.
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2. (a) (3 pts| A circular loop of radius R, centered on the origin and z = 0
plane, carries a current /. Find the magnetic field B on the axis
of the loop as a function of the distance z from the center of the
loop.

(b) [4 pts] Use the result of part (a) to find B along the axis of a
solenoid of radius R and length L, uniformly wound with n = N/L
turns per unit length.

(c) [3 pts] Assume that instead of a solenoid you had a cylinder of
radius R and length L made out of a piece of uniformly magnetized
iron with magnetization M pointing along the axis of the solenoid.
Use the solution of part (b) to calculate the magnetic field strength
H and the magnetic induction B along the axis of the cylinder,
both inside and outside.

HINTS:

dw _ w
Bt w R o
The bound volume and surface current densities associated with a
smooth magnetization density are respectively

+ constant.

Jb|51 =V X M,

and
KblSI =M x n,

where n is the outward unit normal at the magnet’s boundary. The
Gaussian expressions for J, and K, contain an additional factor of c in
the numerators.
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3. A small spherical vacuum bubble of radius a exists inside an otherwise
homogeneous dielectric material whose electric polarization properties
are described by a constant permitivity e. Assume the bubble is cen-
tered on the origin and that the electric field far from vacuum bubble
but still in the homogeneous material is of the form E = EjZ. Because
of the axial symmetry the electrostatic potential ®(r,#) for this prob-
lem can be written as a linear combination of constants times Legendre
polynomials.

(a) [2 pts] What are the boundary conditions satisfied by the fields E
and D fields , and the potential ® at the junction r = a?

(b) [2 pts] Give the electrostatic potential inside the bubble as a com-
bination of constants and Legendre polynomials (keep only non-
vanishing ¢ terms).

(c) [2 pts] Give the electrostatic potential outside the bubble as a
combination of constants and Legendre polynomials (keep only
non-vanishing ¢ terms).

(d) [2 pts] Use the boundary conditions at the r = a junction from
part (a) to evaluate the non-vanishing constants in parts (b) and
().

(e) [2 pts] Express the electric field outside the bubble as an electric
dipole field plus the uniform field EyZ and give the value of the
dipole moment.
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4. (a) [2 pts] Write down any vector potential that produces the uniform
magnetic induction

B = B, z.

(b) [4 pts] What is the magnetic induction B and an associated vector
potential A (B = V x A) produced by a very long wire located
on the z-axis and carrying a current Ip in the +z direction?

(c) [4 pts] A small circular loop of wire of radius a, centered at the
origin and lying in the z = 0 plane, carries a current Iy as shown
in the figure. Derive an approximate expression for the vector
potential at large distances (r >> a) from the loop. Recall that
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5. An infinitely long, uniformly charged wire of radius a and total charge
per unit length A, is at rest on the z-axis of the lab frame.

(a) [2 pts| Compute the electric field E(z,y, 2) exterior to the wire in
the lab frame by solving Gauss’s law in that frame. What is the
magnetic induction B(z,y, 2) in this frame?

(b) [2 pts] If you are moving in the lab’s negative z direction with
speed v how are your spatial and time coordinates related to those
of the lab’s? To answer this question simply give the Lorentz boost
z' = Lzt that relates the two sets of coordinates.

(c) [2 pts] In your frame what is the radius o’ of the wire? What is

the charge/length X' of the wire and what is the current I’ in the
wire?

(d) [1 pts] Combine the E and B fields in the lab into a single elec-
tromagnetic field tensor F°f using Fo¥ = — and F% = —E".
In Gaussian units F12 = —B?, F?3 = —B® and F'* = BY, and in
ST units F2 = —c B?, F® = —cB® and F® =cBY, .

(e) [3 pts] What electric field E "(«',y,#') and what magnetic induc-
tion B /(z/,v/,2') will you measure exterior to the wire in your

frame? To answer this part you can use your answers for part (c)
or you can compute F' = LFL.
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6. This problem requires the use of Maxwell’s stress tensor T Xf,

(a) (3 pts] Compute Maxwell’s stress tensor T }\,7[ on the z = 0 plane for
a system of two equal and opposite point charges (£Q) located
on the z-axis at r = (0,0, +b) as shown in the figure. For this

application
2] 1 i 5ij
TI\ZI\Gaussi'an = (17—1_> {E FI — _‘2_.E2] ,

ij i i 6
Tyls1 = (o) {E B - ?Ez} :

or

(b) [4 pts] Evaluate the surface integral

//T%W:/ /zﬁmw

over the z = 0 plane.
Hint: Use cylindrical polar coordinates to do the integral.

(c) [3 pts] The following surface integral over the boundary of a closed
volume V3 is the total electromagnetic force on the F&M fields and
their sources contained within that volume

W:/zﬁmﬁ
A%

Use this fact to explain your answer to part (b).









