E & M Qualifier

January 13, 2011

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

8. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. A parallel plate capacitor has the region between its plates filled with
a dielectric slab of dielectric constant K = €/ey and mass m. The
plate dimensions are: width w, length ¢, and plate separation d. The
capacitor plates are connected to a battery of constant voltage V' (A¢ =
V' in the figure). Neglect the fringe field and friction, and assume the
slab is constrained to move in the plane parallel to the capacitor plates.

(a) {2 pts} Compute the capacitance C' = q/V of this capacitor as a
function of x.

(b) {2 pts} If the slab is withdrawn half way (to 2 = ¢/2) and held
in place, what is the magnitude and direction of the force on the
slab caused by the electric field?

(c) {2 pts} At x = £/2 the slab is released and given a velocity vy to
the right. Find the current supplied by the battery at the instant
it is released.

(d) {2pts} Atz = ¢/2 the slab is again released but with zero velocity.
Describe the motion of the slab (in words). What is the maximum
velocity achieved by the slab?

(e) {2 pts} Sketch the displacement of the slab versus time.
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2. This problem investigates the shifting frequency of electromagnetic ra-
diation that is reflected off a moving target. Incident and reflected
frequencies and angles are not the same if the target is moving.

Assume that in the lab frame of reference, the target is a flat mirror
traveling upward in the positive x-direction parallel to the mirror’s
normal with velocity v = e X (see the figure). Also assume the wave is
a linearly polarized plane wave traveling in vacuum towards the moving
mirror at angle 6; (relative to the mirror’s normal). If the polarization
is in the 2 direction, the incident electric field is given by
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with w
k; = ?I(— cosf;x +sinf;y).

(a) {2 pts} Write the Lorentz boost A as a function of f and v =
\/1 — (2% that transforms the Lab coordinates r and ¢t to coordi-
nates r’ and ct’ co-moving with the mirror. Also give the inverse
A~1 of the Lorentz boost A that transforms the moving coordi-

nates r’ and ct’ into Lab coordinates r and ct.

(b) {3 pts} By rewriting the above wave’s phase in both reference
frames, i.e.,
kI-r—wlt:k'I~r/—w}t’

as a function of the co-moving mirror coordinates r’ and ct’ (i.e.,
use A1) find k) and wj as observed in the co-moving frame. These
will be functions of 3,7, and 8; as well as wy.

(c) {2 pts} By writing the incident wave vector just obtained in the
moving frame in the form

/

w
k), = ?I(— cos %X +sind; y),

determine the incident angle #} as seen by observers moving with
the mirror (e.g., give cos @} as a function of 07, w; and the Lorentz
parameters 3, 7).



(d) {3 pts} If, as seen by observers moving with the mirror, the re-
flected wave has the same frequency as the incident wave Wi = wj
and a reflection angle that is the same as the incidence angle

" =107, ie.,
/ W/I !/ A~ . RPN
ki, = ?(COS 07X +sinb; y),

what is the frequency wg of the reflected light as measured in the
laboratory frame? Hint: again use

kR~r—th:k’R«r’—w§%t’,

and the Lorentz boosts A.
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3. Consider a square with sides of length s and charges -¢ at the corners
as shown:

(a) {2 pts} What is the potential at the center of the square if the
potential is zero at oo?

(b) {2 pts} How much work does it take to bring in another charge -q
from oo to the center of the square?

(c¢) {3 pts} How much work does it take to assemble the original
configuration of 4 negative charges (no charge at center)?

(d) {3 pts} Now suppose that instead of the 4 charges being located
at the corners of a square, a net charge of —4q is distributed
uniformly on the surface of a sphere of radius s. How much work
does it take to bring in another charge ¢ from oo to the center of
the sphere?



4. Consider an isolated spherical surface of radius R centered on the origin,
that is kept at a known potential V' (0), i.e.,

O(r = R,0) = V(0)

where (7,0, ¢) are the usual spherical polar coordinates, i.e., 6 is mea-
sured with respect to a z-axis passing through the center of the sphere
and ¢ is the azimuthal angle about the z-axis measured from the x axis.

(a) {2 pts} Write down expressions for the general solution to V2®(r, ) =
0 for the electrostatic potential as a linear combination of Legen-
dre polynomials in the respective regions 0 < r < R and r > R.
Assume that the potential vanishes at  — oo and has azimuthal
symmetry i.e., no dependence on the angle ¢. Do not include
terms that must vanish. Do not attempt to evaluate the constants
that appear in the linear combination but do give the correct r
dependence of each term.

(b) {2 pts} What boundary conditions must your two expressions sat-
isfy at the junction » = R to have a unique solution to Maxwell’s
equations?

(c) {2 pts} If the particular surface potential imposed is
O(r=R,0) = Vycosb
where V| is a constant, what is the explicit form of your potential

for both regions r < R and r > R?

(d) {2 pts} Determine the resulting electric field on both sides of the
r=R surface.

(e) {2 pts} What is the surface charge density o(6) on the spherical
shell at r=R.
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5. A plane polarized monochromatic light wave traveling in the 4z direc-
tion enters a large flat slab of transparent crystal of thickness d, located
between z = 0 and z = d. This crystal has the property that the index
of refraction depends on the direction of polarization as follows: Plane
waves traveling in the z direction but polarized in the direction

€, = Cos ¢oX + sin ¢yy,

travel with speed vy = ¢/ngs < ¢ but those polarized in the orthogonal
direction

é; = —sin ¢gpX + cos po¥,
travel with the faster speed vy = ¢/ny < ¢ where ng = ny + on.

Assume the wave, just after entering the crystal (i.e., for very small
z << A < d), is polarized in the y direction and hence has the form

E(z ~0,t) = Eyye ™"

(a) {4 pts} Prove that in general the initial plane wave becomes ellip-
tically polarized when it reaches z = d by deriving the following

expression
E(z=d,t) = [E, % + E, 9] ¢k,
where
P=? (m> |
c 2
and
E, = iFEqysin 2¢g sin 9,
E, = Ey(cosd —icos2¢pgsind),
with J
= w—én.
2c

Hint: Write the wave at z=0 as a combination of slow and fast
plane polarized parts using § = sin ¢o€; + cos po€;.
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(b) {3 pts} For what values of ¢ and 6, will the wave emerge from the
crystal as a circularly polarized wave? (E,/E, = +i).

(c) {3 pts} For what minimum crystal thicknesses d = d,;,, will the
wave emerge as a plane polarized wave (£, /E, = real) and what
will its polarization direction be?



6. A permanent magnet in the shape of a solid sphere of radius «a is ori-
ented on the z-axis as shown in the figure. The magnetization of the
magnet is given by M = M,?. [Recall that V x H = 0 implies the ex-
istance of a magnetic scalar potential ®,,(r, @) related to the magnetic
field by H = —V®,,(r,0) ]

(a) {4 pts} Compute the scalar magnetic potential ®,,(r,0) at all
points r < a and r > a.

(b) {3 pts} Compute the magnetic Field H = —ﬁ@m(r, 0) at all points
r <aand r > a.

(c¢) {3 pts} Compute the magnetic induction B, where

B/j = HiM (s
B = H+47M, (Gaussian)

at all points r < a and r > a.

Hints: The magnetic potential is axial symmetric about the z-axis and
satisfies the Laplace equation at all points except r = a. Legendre
polynomials are useful.



