E & M Qualifier

August 17, 2016

To insure that the your work is graded correctly you MUST:

. use only the blank answer paper provided,

use only the reference material supplied (Schaum’s Guides),
write only on one side of the page,

start each problem by stating your units e.g., SI or Gaussian,
put your alias (NOT YOUR REAL NAME) on every page,

when you complete a problem put 3 numbers on every page used for that problem as
follows:

(a) the first number is the problem number,

(b) the second number is the page number for that problem (start each problem with
page number 1),

(¢) the third number is the total number of pages you used to answer that problem,

DO NOT staple your exam when done.



1. This problem asks you to compute electrostatic potentials and fields on the z-axis
produced by two different continuous charge distributions located in the xy-plane.
The two calculations are remarkably similar even though the first is for a
line of charge and the second is for a charged disc. Choose the center of each
distribution as your origin and the reference point for the potentials at infinity, e.g.
lim, o, ® = 0. You will need the indefinite integral

d:
/ ——\/ﬁrﬁ = In[z + V2% + z%] + constant.
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(a) [2 pt] For the line charge distribution shown above with a uniform linear charge
density A and length 2 L, calculate the potential ®(z) at point P a distance z
above the center of the line charge.

(b) [1 pt] Calculate the electric field E(z) at point P from your potential (use sym-
metries).

(¢) [2 pt] Show that ®(z) and E(z) reduce to the expected values when z > L.

(d) [3 pt] For the thin disc, shown above, with radius R that has a non-uniform surface
charge distribution ¢ = o¢ R/p, where p = /22 + 42 is the radial distance from
the center of the disc, calculate the electric potential ®(z) at a point P at a
distance z above the center of the disc.

(e) [1 pt] Calculate the electric field E(z) at point P from your potential (use sym-
metries).

(f) [1 pt]) Write ®(2) as a function of the total charge @ on the disc when z > R.
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2. A thin linear (full wave) antenna of length d = ) is centered on the origin and aligned
along the z-axis as shown in the figure. An oscillating current density of the form

I(r,t) = Ipd(z)é(y) sin (3?) et

is produced in the antenna by applying an oscillating voltage of angular frequency
w = 2mc/d.

The resulting oscillating sinusoidal current makes one full wavelength of oscillation
within the antenna with nodes at z = £d/2.

(a) [4 pt] At any point r which is a large distance from the antenna (d/r << 1),
calculate the radiation part of the retarded vector potential. Recall that the
retarded vector potential at r caused by a current at r’ (in SI units) is

Afr,t) = (£2) / et e ~rl/e) o, (1)

4rr lr — /|

In Gaussian units the factor (p/47) is replaced by (1/c). To obtain the radiation
parts you will need to approximate [r — /| ~r —f% '+ .- =71 —cosfz2 + .-,
and keep only the appropriate terms. You will also need the integral

[ s (22 Oyt - (£ Snlreoet)
~ 4 @ sin?f

(b) [3 pt] Calculate the radiation part of the magnetic induction using B = V x A =
(VA?) x 2.

(c) [3 pt] Use the Poynting vector S to calculate the time averaged power radi-
ated per unit solid angle in the # direction. Recall that in Gaussian units S =
(¢/4m)E x H) and in SI units the (¢/4) factor is missing. Also recall that in SI
units E,q.q = ¢Breg X T and in Gaussian units the factor ¢ is missing.




May 7, 2016 Electrodynamics

Electrodynamics Qualifier — Solution

l A thin linear anntenna of length d is excited in such a way that the sinusoidal current makes a full
wavelength of oscillation as shown in the figure (frequency w = 2mc/d). The current can be written in
the following form

J = I8(2)8(y) sin (%) pet

(a) Calculate the retarded vector potential keeping only the radiation term.
The retarded vector potential is

Aot / I =r'fe) ko / It —r'fe) . _ _5_7% Joeits /*/2 sin(kz) _skr g0

4T i " a2 7

where k = 27/d. The term +' is

P =12 — 22 cosf + 2%~ r — 2 cos b
1 N 1
T

Substitute the approximation and perform the integral

i(wt ke A/2
L g Tpetwikr) / / sin(ke/) it 99 ot — g o To sm(7rcos9) gilwt—kr)

A=—-nn—nuw 7
47 r z ~/2 Yo kr sin @

(b) Calculate the magnetic field B and electric field B at the field point.
From V - B = 0 we have B = V x A, which for this specific vector potential gives

B iExA- ~ po Lo sin(m cosH)ei(m_k,,)(z)
2n r sinf ’
where k = kt, 2 = rcost — 0 sin 6, and £ x 2 = —F x Osinf = -—&)sin@ were used. Next use the
Maxwell equation
OE
B = huain
Vv x Hoco,
gy -y k=
-tk x B = zuerwE = z——E
which leads to
ﬁ E o s
E=-ZxB=cBxi
k
(c) Finally, calculate the average radiated power per unil solid angle.
Start by calculating the time average Poynting vector
. : 2
3 | = . pocld [sin(meos6)]” .
= —Re(E* x B) = B? =
<S> 210 Re(E 2 By ')/10 crmilRs T Riky2 sin f

Finally, the radiated power per unit solid angle is

“dP _ ,/a\ . 12 [ig [sin(rcosd)]?
o " <S> r= o3 60[ =

Qualifier Problem-2
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Conducting strip

Thin Conducting Strip|of width b
Grounded Plane Insulator of thickness h

R -y
Enlarged end view of Strip

3. A transverse electromagnetic (TEM) wave is transmitted using a conducting micro-
strip built into a printed circuit board as illustrated above. The circuit consists of a
large grounded conducting plane and a thin flat conducting ribbon of width b kept at a
fixed distance h (h << b) above the grounding plane by an insulating dielectric mate-
rial. The conductors are perfect, i.e., 0 ~ 00, and the region between the conductors is
filled with a polarizable material of real permittivity and permeability (e, ), indicated
by the green b x h rectangle in the bottom figure. The TEM wave propagates in the
% direction (into the page in the bottom figure) and is confined to the volume between
the conductors defined by the green rectangle b x h (i.e., neglect edge effects).

(a) [1 pt] For a wave traveling in the Z direction (into the page in the bottom figure)



wd

(a) [1 pt] For a wave traveling in the 2 direction (into the page in the bottom figure)
redraw an enlarged picture of the insulator (the green rectangle) and sketch the
E and B field lines within it for some fixed value of ¢{ and z.

(b) [2 pt] Give expressions for E(t, z) and B(t, ) inside the volume defined by the
green rectangle b x h that satisfy Maxwell’s equations.

(c) [3 pt] Show that the instantaneous value of I(t) * V(¢) at a given value of z is
equal to the Poynting vector integrated over the rectangular area (b x h). V/(t)
is the potential of the strip at z relative to the grounded plane and I(t) is the
current flowing in the strip at that same value of 2.

(d) [3 pt] Derive an expression for the characteristic impedance, Z = V(t)/I(t), of
the microstrip.

(e) [1 pt] What would the characteristic impedance be if a second grounded plane
was added symmetrically (including the insulating material) above the strip?
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Conducting Sphere, charge = Q
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4. Consider a point charge ¢ located a distance d from the center of an isolated (i.e., not
grounded) conducting sphere of total charge @ and radius R where R < d. Assume
the sphere is centered on the coordinate origin and that the point charge ¢ is on the
positive z-axis at r = d Z.

(a) [3 pt] Using spherical polar coordinates (r,6,¢) give the electrostatic potential
® inside and outside the sphere assuming the boundary condition lim® — 0 as
r — oco. Hint: Use image charges.

(b) [2 pt] Show that your potential is constant on the surface of the sphere.
(c) [2 pt] Show that the electrostatic force on the point charge g is

po_4 [@FeR/d __ qR 5
deo a2 d(d - REjdy2 [~

In Gaussian units 4meg — 1.

(d) [3 pt] Find the configuration energy of the system, i.e., find the total amount of
external work required move the static point charge ¢ from r = oo to r = d.

Hint:
/ d - + constant
= constant.
3 —a’z  2(a? — 2?)
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5. A uniform sphere of radius a, made of linear magnetic material of permeability u #
Lo, is placed in a region of empty space that contains an initially uniform magnetic
induction B = Bg%. When answering the following use spherical polar coordinates
and assume the sphere is centered on the origin.

(a) [5 pt] Use Legendre polynomials to find the magnetic scalar potential ®,s both
inside and outside the sphere. Recall that the magnetic field H is related to the
magnetic scalar potential by H = -V &y,

(b) [3 pt] Find the magnetic induction (B = pH) both inside and outside the sphere.
(c) [2 pt] Give the magnetization M inside the sphere.
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(@) D,y = Alrcosé+;—2‘—cosﬁ,®m = A2r0059+%0030

B,z Byrcosf

For r —> oo the magnetic field B, is equal to B,Z. Thus @, = ———=
Ho Ho

and A = —E"—. The potential ®,,, must be finite at the origin. Thus C,=0

Hy
@, =——%’—rcosﬁ+%‘cosa and  @,, = Ayrcos0
Hy 3
Boundary conditions at r = a:
[ B
o Hpg= g < 0y o otyq —9———0—asim9+92'~sin6’= A,asin 6 —>
00 00 Ho a
B G
—L4=t=A, (eqs.l)
Hy @
it B, =B, —» fi 0P . ,uaq)”’ atr=a—>
or or

-B, cosé’—gﬁ%—c’—cosé’ = pA,cos0 —
a
B+ 20—y (eas2)

We solve the system of equations 1 and 2 with A, and C, as unknowns and get:

3 f—
1=M and A2=~—-—:—$&—- Thus we have:
Ho (114 244) (u+24)
3(,, By,
(DlM=—£"—rcos@+Mcos@=—%+Mcosﬁ T74q
Hy r /Uo(/u'*'zzuo) Hy T Hy (,Lt+2,u0)
3B, 3B,z
2Py poosh = <
M (ut2m) (u+24) <!
— = Moy~ " Ba*(u~
b. B =—p,V®,, = Oinli —-————-—Boza (u 'UO)cos& 7 Mk ——————————(’za (u 'uo)cosﬁ 3
rog| r (p+244) or| r*(p+2u,)
= B, (u— 1) 3 - - 3uB,?
B =B 7 +———"— 22| 2Fcos@ +0sin 6 B, =—N®,, = 0
I_‘-O rS(#+2,u0)[ :] 2 M (ﬂ+2ﬂ0)
c. In general: l§=,u(,(1j1+1\71)w—>/\71=£—ﬁ=£——£=§(ﬁ1‘9—)
to Ho o M Fitly
M=1§2(ﬂ—ﬂ0j=330('u—#0)2
Hiy Ho (4 + 214)



6.

(a) [3 pt] Write Newton’s second law in 4-dimensional form for a point charges

of mass m and charge ¢ moving with a 4-velocity u® in an external E&M field
described by the Maxwell tensor F'%%,
For the remainder of this problem assume the particle is a fast moving electron
with total energy 10 MeV that enters a uniform magnetic induction By = Byz in
the lab and that it moves in a circular orbit of radius a = 10 cm, orthogonal to
the magnetic induction.

Fg X X By
! 4 : \'-. \\
.-"a a 4 \ h
I|II Py Il'u
| X X \
I |
|IIII I|III|
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"\___ /
Y x x x f;
\\.\ ) ;

(b) [1 pt] What are the electron’s v and f values?
(c) [3 pt] What is the value of By?

(d) [1 pt] Find the time the electron takes to move around a complete circle as seen
by a lab observer.

(e) [2 pt] How much total energy does the electron loose as radiation during one
complete revolution? Hint: The total power radiated by an accelerated point
particle is

L2216 + 18- Y] (s1)

g = 47eg 3 ¢

P(t) = ——’Y [|,3|2 +~2(8- B) ] (Gaussian)

mec? = 0.5MeV, 1 eV=1.6x10"1? ergs, e=4.8 x 1071® statcoul= 1.6 x 10~**
Coulombs, 1 erg = 10~7 Joules.
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