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Electrodynamics Qualifier Preparation

Sara D. Barber
Ahmed A. Hasib

1 Mathematical Reminders

e Spherical

~h =1
- h2=7'
— hg =rsind

e Cylindrical

— hy =1
/*h2=’l“
— hy=1

~u

1%

e Unit Vector Cross Products: €, = (see Schaum’s)

=L

|

. v% = —473(%)

. (% .
e To solve an inhomogeneous differential equation:

—f4+ar=boritat+br=c

— z(t) = Homogeneous Solution + Non-homogeneous Solution

— Homogeneous Solution is simple

— Non-homogeneous solution: Whatever = should be so LHS=RHS — usually a constant

e Divergence Theorem: f E-di= / V- Edr
s v

e Stoke’s Theorem: / (Y7 A 1')’) -dd = 7{ gdl
s P

2 Electrostatics
The primary task of electrostatics is to find the electric field of a given stationary charge distribution. In
principle, this is accomplished by: - :

e First calculating the potential, V, then solving for E

- o Exploiting symmetry and using Gauss’s law

¢ Calculating E directly using Coulomb’s law

One can solve Poisson’s equation in a region with no charge distribution for the potential by:
e Method of Images

e Separation of Variables



2.3 Electric Potential
¢ NOT the same thing as potential energy

- W=QV

—

. V(F)E—/TE-df

Q

— where O = oo for finite charge distributions
.
e Poisson’s Equation: | V2V = —4mp

— Derived from Gauss’s Law

¢ Laplace’s Equation: m

— For regions with no charge

1
e Solution to Poisson’s Equation: | V() = / ;dq

e Obeys superposition principle: V = V1 + Vo + - -
e Boundary Conditions:

— Normal Component: Ex .. — Eiqlow = 470

— Parallel Componentzﬁgbove :”Egelow

e Unitss N-m-Ct=J.C'=V

2.4 Work and Energy in Electrostatics

b
e Work Done to Move a Charge in an Electric Field: [W = / F.dl

— Force you must exert on the charge: F= —QE

— To bring a charge in from infinity: | W = QV(7)

1 n
o Energy of a Point Charge Distribution: W = 5 Zqu(Fi)

i=1

e Energy of a Continuous Charge Distribution:

1
-W=3 / Vdq
—|W = L / Fidr
8
all space

* Work does not obey the superposition principle.



3.3 Separation of Variables
e Poisson’s Equation: V2V = —4np

e Properties of Separable Solutions:

—~ Completeness: f(y ZC faly

— Orthogonality: / fo@)fh(y)dy =0 forn' #n
0

e Method for Finding Separable Solution:

— Find differential equations for all components of separable solution and solve.

— Use boundary conditions and orthogonality to solve for all constants.
e General Solution to Laplace’s Equation:

~ Spherical Coordinates with azimuthal Symmetry:

s B,
vmwzij@ﬂ+lﬂ>ﬂmw)
=0
where Pj(cos0) is the Legendre Polynomial(see Schaum’s for properties)

e Green’s Function in Azimuthal Symmetry:

— G(r——r’)— _Z l+1 2 (cosy)

where, cos«y = cos 9 cos 9 +sin@sin @ cos(¢p — ¢')

— If there is no azimuthal symmetry we use Associated Legendre Polynomial and Spherical Har-
monics

Y0, 4) =

m+1a m)!

U-:—)le (cos §)e™®

The properties of P is in Schaum’s.

¢ Addition Theorem of Spherical Harmonics:

{

dn . (g
= | Pi(cosy) = TR > Va0, ¢)Yim (6, ¢)

where, cosy = cosf cos 8 + sin 0 sin 6 cos(¢ — ¢')

e Green’s Function without Azimuthal Symmetry:

0 l
—GF-7) = 1N:4w2:§:—i—,ﬂmmewnmw¢)

¢ Dipole Moment:

- ﬁs/f”p(f')dv'

o Electrostatic Potential of a Point Dipole:



— Differential Equation: V.-D= 47 ps

Interface Condition of Perpendicular Displacement Vector: D oo — Digjow = 470¢

Polarization for Linear Materials: | P = XeE

L]

— where X, is the electric susceptibility

Electric Permitivity: |e = 1 + 4mx,

1 oo
Energy Stored in an Electric Field: W = o /E - Ddr
.

Magnetostatics

e Lorentz Force Law: | F = Q {E%— l(17/\ E)]
c

Magnetic forces do no work. 1

Current Units: C-s" =4

¢ Current Densities:

| I=x=1
t
— ”Mm-;.__dz
o T dly
N T i dr
=P mdaJ_

e Continuity Equation: |V -J = ——=

— V. J =0 for magnetostatics

- 1 TA% |
o Biot-Savart Law: | B(7) = —'/U:g)&dq
¢

¢ Divergence of Magnetic Field:

¢ Ampere’s Law:

— Differential Form: |V A B =

— Integral Form: %E cdl = ilzfenc
c

* Derived from differential form using Stoke’s Theorem
e The magnetic field outside of a solenoid is zero.

e Magnetic Vector Potential:

— Definition:



¢ If your geometry has a piece missing try superposition with reverse current.

5=

— where 0 < p < 1 for diamagnetic materials and g > 1 for paramagnetic materials

¢ Magnetization: m

— where Y., <0 for diamagnetic materials
o Magnetic Permeability: |p =1+ 4mxm

o Electromagnetic Energy Density: ttem = n

7 Electrodynamics

o Ohm’s Law: H

— where ¢ is the conductivity of the medium and fis the force per unit charge

-
o Power:

¢ Electromotive Force: | € = 7{ f,;ag dl

e Flux of B through a closed surface 8: | ®

it
0/\
(o]
2.
=)

e Faraday’s Law:

— Differential Form: |€ = ———

- 1d
— Integral Form: %E .dl = ___g

e Lenz's Law: {Nature abhors a change in flux.

— An induced flux will flow in the direction that cancels a change in flux

— Remember: Opposite currents repel

¢ Self Inductance: & = LI

1 [
e Energy Stored in a Magnetic Field: | W = " / B - Hdr
all space

¢ Maxwell’'s Equations

Gauss’s Law: V-E =dmp No Name: V-B=0
. - 10B . o 18E 47 .
Faraday’s Law: VAE —2— =0 Ampere’s Law: VADB - -—Q—— =
c Ot c Ot c

e | A changing electric field induces a magnetic field.




1 1 — — — —
e Maxwell Stress-Energy Tensor: | T3; = E[EiDj + H;B; — §(E <D+ B H)dyjl

— Momentum flux density

e The total force on the charges in volume V:

il dﬁmech 1 d o 3
— | F = Hmech T, -~ 2 [(EAB
dt ?{5; srsde = ) Jav

1 o~ e 1 .
— Momentum Stored in an Electromagnetic Field: Por = Z—é/ (EAB)dv = —E/Sd'u
T v C

the first integral is the momentum per unit time flowing in through the surface.

-

p) -
Differential Form: a(p‘mcch + Pem) =V T

I

5 the momentum per unit volume

Poynting vector has two quite different roles: S itself is<the energy per unit area, per unit
time, transported by the electromagnetic fields, whil

stored in those fields.

Similgfi;u%aﬁ itself is the electromagnetic stress acting on a surface, and —TP describes the

momentum transported by thé Tields.
nentum e by vhe &
s Angular Momentum in electromagnetic field:

—llem = 7 A Pem

9 Electromagnetic Waves

2
o Wave Number: k = _)7\r_
e Period: T = %
kv

v
e Frequency: v = X
e Angular Frequency: w = 2nv = kv

— Frequency is constant across interfaces

e Three Dimensional Wave Equation:

_|y2p. nE
VE_02 ot?
o2 n®B
VB_C2 ot?

Monochromatic Plane Waves: Sinusoidal waves of frequency w traveling in an arbitrary direction k
polarized in the 7 direction

(’F, t) — E”uoe(l—c'-f‘—wt-i—&)ﬁ

|
It

(7 t) = Ve kA E

* For transverse waves: 7. - k = 0

|
Sl

11



AY

o Length Contraction: | Az =
Y

— Moving objects are shortened.

— Only dimensions parallel to the velocity are contracted.

o General Lorentz Transformation:

v | =B

(

—yB | PL+vP

)

% and P

,82

where, | =

=0 = By

o Contravariant Vector: z** = (ct,T) , p* = (E/¢,D)

e Covariant Vector: z,, = (ct,

1
. ) . 0
¢ Minkowski Metric: g, = 0
0

— zh =gz,

Mj) y Pu = (E/C, ——ﬁ)

0 0
0 0
-1 0
0 -1

e Proper Length: (As)? = (cAT)? = (ct)? — z° — y? — 2*

e Charge Conservation:

0 L =
~ where 0, = Fym and | 5 = (¢p, )
s Proper Velocity:
dz'*  dz™
_ o = ———— =
o = ar = @000
dz®  dz®
- @ = — ]
Rl =ity v(¢, )

— | u%u, = c?

e Proper Acceleration:

[e3
o _ du

dr

= AR 5) +42(0,5)

[0

e Relation of E-B fields in rest and lab frames:

E= B+ (B, —BAB)

B=B|+7(BL+BNE)

[7=5r8

¢ Pield-Strength Tensor:

— | Fuw = 8uAs ~ 0, Au|

13




e Magnetic Dipole Moment:

I S
m= o FAJ(T)dr

e A point magnetic dipole at rest:

- ]p’(f’) =0 J(F)=—cm/(t) \V'EF - 7,) |

¢ A point magnetic dipole in motion:

= | p(F) = —c(B A )V (F = Fin(8)) |

_ | J(7) = —cim! AVE(F ~ fm(t)ﬂ

— A moving dipole has an electric dipole moment P = 3 A m/

13 Radiation
e Potential of a charge ¢ located at 7 in the rest frame:
1
- AR = q (
) ===

— In the lab frame 7y’ transforms to 1§ as 7o) = 7"17*'61! and 79, = 79, but in the lab frame the
charge moves with a constant velocity v, so the position of the charge 7 (t) = 7o + vt

¢ Potential of the charge as a function of the current position of the charge:
()
vq B
\/!T‘_L = Tql (t)|2 + ’Yz|7‘|| - T'q"(t)|2

where, g1 =701 and rg = g + vt

- A% =

o Potential of the charge as a function of its ‘retarded’ position:

()
q ﬁ B qua

—

R(1-f-A) ~cR(1-f-7)

- |A* F’ret) =

where, R = 7 — 7 (tret) and 7o =

j=v] =y}

— In covariant form: | A%(z) = qu®
' ZBug

where, 27 = 2f — 2P ,(z) and u® = u®(tret(7))
4m

o From Maxwell’s Equation: DA% = —J¢
¢

— To solve this equation we need a Green’s function such that
0.G(z,z") = 6*(z — z')

— There are two sets of boundary conditions of interest and two Green’s functions D" (z, z')
and D°%(z,z")

5 (20— 2 _ 7~ 7))

4|7 — 7|

- DTEt(:L‘,;CI) —

15
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Electo steties
% A smnple form of the e oy ! )
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Medn (cont.)
* Pt the intersecton ob twe wae, we nowfnd
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Electrodynamics Qualifier Examination

January 9, 2008

General Instructions: In all cases, be sure to state your system of units.
Show all your work, write only on one side of the designated paper, and if
you get stuck on one part, assume a result and proceed onward. The points
given for each part of each problem are indicated. Each problem carries equal
weight.



1. This problem refers to macroscopic electrodynamics in a general medium.
No specific relation is assumed between the flelds E and D, nor between
B and H.

a) 1 pt. Write the microscopic Maxwell equations containing as source the
total charge density p and the total current density j.

b) 1 pt. Show that the Maxwell equations of part (a) imply the conserva-
tion of the total charge Q).

c) 3 pt. Separate p into its two parts, the free charge density py and the
(bound) polarization charge density p,, and rewrite the Maxwell
equation containing p to obtain the macroscopic form containing
the displacement field D and py.

d) 3 pt. Separate j into its parts, the free current density J, the polar-
ization current density J,, and the magnetization current density
J.., and rewrite the Maxwell equation containing j to obtain the
form containing the magnetic field intensity H, the displacement
field D, and the free current density J;.

e) 2 pt. Show that the free charge Qy is conserved through the continuity
equation containing ps and J, and then show that therefore the
polarization charge (), is conserved.



2. Consider an infinite slab of thickness d, carrying uniform charge density
p, centered on the origin and extending in the z-y plane. Assume both
the electric permittivity £ and the magnetic permeability u have their
vacuum values.

a) 2 pt.

Find the electric field vector, E, and magnetic flux density (mag-
netic induction), B, everywhere. Do not just write the answer
down, but in all cases clearly articulate your arguments and solu-
tion to receive credit.

For parts (b)-(e) consider an observer moving at velocity v = voX.
Do not assume that vy < c.

. What is the current density, J’, in the observer’s frame of refer-

ence? [Hint: How does the charge density transform?]

. Find the electric field vector, E/, and magnetic flux density, B’,

everywhere in the observer’s frame of reference. Do this by solving
Ampére’s and Gauss’ law in the observer’s frame.

. Alternatively, obtain the same result by performing a Lorentz

transformation on the fields found in part (a).

. Show explicitly that E- B and E? — B* have the same value in

both the rest frame of the slab and the observer’s frame. Why is
that? Is it possible to find a frame where E = 0 and B # 07
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3. Suppose there is a distribution of free charges (density ps) with current
density J;, in a medium with arbitrary B(H) and D(E), that is, there
are two types of clectric field, D, E, and two types of magnetic field,
B, H.

a) 2 pt. Use the Lorentz force law to show that the rate at which the fields
E and B do work on the charges in a volume V is given by

%:/dng‘Jf
a )y

b) 5 pt. Use the result of part (a) and the macroscopic Maxwell equations
to show Poynting’s theorem,

%+/d3az“r+7{ da-S =0,
dt v ov

where OV is the surface enclosing the volume V, and S is the
Poynting vector. Identify Y, which in the absence of a medium is
the rate of change of the electromagnetic energy density, du/0t.

¢) 3 pt. For a linear medium, with constant permittivity € and constant
permeability p, state the relation between D and E and between
B and H, and show for such a medium the rate of change of
electromagnetic energy density is given by
ou 1

T =— =—-(E-D+B'H
at’ U 2( + )7

in either SI or Heaviside-Lorentz units.



4. Consider a monochromatic plane electromagnetic wave of frequency
w propagating in vacuum in the z direction and polarized in the z
direction, which impinges upon a perfect conductor at z = 0, as shown
in the figure. The incident electric field is

Figure 1:

E[(Z, t) = )A(onei(kz_w’:),

]

va

/B NN\ VU NN

<

1]

Plane wave normally incident on a perfectly conducting plane at

. Use Maxwell’s equations to determine the relation between k and

Ww.

. Use Maxwell’s equations to determine the incident magnetic field,

B[(Z, t).

. What are the forms of the reflected wave Eg(z,t), Br(z,t)?
. Apply the appropriate boundary conditions at the interface be-

tween the vacuum and the conductor to determine the reflected
amplitudes Egr and Bgg in terms of Fo;.

. What is the phase of the incident and reflected electric fields? Are

they in phase or out of phase at z = 07

. What is the force exerted on the conducting surface by the reflec-

tion of the plane wave? Answer this question by computing the
momentum transferred from the field to the conductor.

. Answer the same question by computing the discontinuity of the

normal-normal component of the stress tensor across the interface,

AT,,.
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5. Consider a metallic conducting circular ring of inner and outer radii
r — e and r, respectively. Let the ring have thickness perpendicular
to the radius h. Assume h,e < 7. Let p be the resistivity and u be
the mass density of the material from which the ring is made. The
ring rotates (on frictionless bearings) with angular frequency w about
an axis along a diameter of the ring and thus has mechanical energy
K(w) = 31w?, where [ = L(p2mrhe)r? is the moment of inertia of the
ring. (Note that p2nrhe is the mass of the ring.) There is a uniform
magnetic field B perpendicular to the axis of rotation. See Figure.

B

DX

Figure 2: Top (left) and side (right) views of a conducting annulus, rotating
with frequency w about a diameter, with a magnetic field perpendicular to
that axis of rotation.

a) 1 pt.
b) 3 pt.

c) 2 pt.

d) 2 pt.

e) 2 pt.

Find the emf induced in the ring as a function of w.

Find the average power dissipated by resistive heating in the ring
as a function of w, p, and B, and the relevant dimensional variables
assuming that w is constant.

If there is no external driving force keeping the ring rotating, the
ring slows down due to this dissipation. Find the differential equa-
tion for dw(t)/dt using K (w) and the result of part (b). [The result
of part (b) is correct if dw/w < 1.]

Solve this equation for w as a function of time ¢ in terms of the
relevant variables such as u, p, B, etc. Let wg be the angular
frequency at time ¢ = 0.

If the annular ring were replaced by a solid disk of the same mate-
rial with the same outer radius r and thickness h, would the disk
take a longer time, a shorter time, or the same time as the annular
ring to reach w(t) = we/10? You must support your answer with
a physical argument to earn credit for this part.



6. This problem gives a covariant form of Maxwell’s equations appropriate
for describing both classical and quantum radiation.

a) 2 pt.

b) 2 pt.

f) 2 pt.

Write down Maxwell’s equations in vacuum (that is, no dielectric
or magnetic media are present, only free charges and currents) in
covariant form in terms of the field-strength tensor F*” and the
electric four-current density j7#. State your units, and the metric
you are using. What is the relation between F** and the electric
and magnetic field E and B, and between the current j# and the
electric charge density p and the electric current density j.

Show that one set of Maxwell’s equations is satisfied if F* is
derivable from a four-vector potential,

P = grAY — " AV,

What is the relation between A# and the ordinary scalar and vec-
tor potentials ¢ and A7

. Suppose A* is given in the Lorenz gauge, where

9, AF = 0.

What is the equation relating A* to the current density j#7

. Show that the equation for A# derived in part (c) implies the

conservation of electric charge.

. Now consider the Coulomb gauge condition given by V - A = 0.

Show that this leads to

4qr
C

VIAY = JO (V2® = —4np),

in Gaussian units.

What is the corresponding equation satisfied by the vector poten-
tial A in the Coulomb gauge?



Electrodynamics Qualifier Examination

August 21, 2008

General Instructions: In all cases, be sure to state your system of
units. Show all your work, write only on one side of the designated paper,
and if you get stuck on one part, assume a result and proceed onward. The
points given for each part of each problem are indicated. Each problem
carries equal weight.



1. In relativistic notation, the field strength tensor F'#¥ is given by F'* =
O*AY — 8 A* in terms of the 4-vector potential A* = (¢, A). Maxwell’s

equations become

B,F™ = kJ¥,  J* = (cp, ),

and k is a constant depending on the system of units adopted.

a) 1 pt.
b) 2pts.

d) 2pts.

e) 2pts.

f) 2pts.

Write Maxwell’s equations in terms of A*.

Show that the field strength tensor is invariant under a gauge

transformation,
AP — AP = AP 4 OGP,

where ) is any function of space and time.

. How does the form of Maxwell’s equations found in part a) change

if we exploit the gauge freedom to impose the Lorenz condition
0, A" =07

Show that further gauge transformations are possible provided X’

satisfies
O\ = 8“6‘@’ = (.

In empty space, J* = 0, impose the further condition A =0
and rewrite the Lorenz gauge condition to obtain the radiation or
Coulomb gauge condition. Is this gauge condition Lorentz invari-
ant?

Show that the plane-wave function
A(x) = ac™* e (p),

where p# = (w/c, k) is the propagation or wave vector, z# =
(ct,x), z-p = z,p", a is a constant, and €* is the polarization
4-vector, satisfies the Lorenz gauge condition provided e satisfies
a particular condition. What is this condition? If this condition is
satisfied, show that the empty-space Maxwell equation is satisfied
provided there is a constraint on p? = p#p,. What does this
constraint imply about the rest mass of the photon?



2. Consider a monochromatic plane electromagnetic wave of frequency w
propagating in a non-magnetic dielectric (with index of refraction n,),

traveling in the z direction and polarized in the z direction, which
impinges normally upon a second non-magnetic semi-infinite dielectric
material (with index of refraction ns), where the boundary between the
two media occurs at z = 0, as shown in Fig. 1. The incident electric
field is

E](Z, t) = iE()[ei(kz—wt)'

There are no free charges or currents in either medium.

15! LNy

z:'()':

Figure 1: Plane wave normally incident on a surface separating two dielectric
materials at z = 0. The medium in the the region z < 0 has index of
refraction n; while the material in the region z > 0 has index of refraction

ny.

e) 2pts.

. Use Maxwell’s equations to determine the relation between k£ and

w in each region.

. Use Maxwell’s equations to determine the incident magnetic field,

B;(z,t), using the result of part b).

. What are the forms of the reflected wave Er(z,t), Bg(z,t) (2 < 0),

and of the transmitted wave Er(z,t), Br(z,t) (2 > 0)?

. Apply the appropriate boundary conditions at the interface be-

tween the two media to obtain the equations determining the re-
flected amplitudes Egr and Bogr and the transmitted amplitude
Eor and Byr in terms of Ey;.

Solve these equations for the reflection and transmission coeffi-
cients, r = Fyr/For, t = Eor/For in terms of the indices of re-
fraction of the two media.



f) 2pts. Show that the averaged energy flux in a plane wave of amplitude
Ey moving in a medium with index of refraction n is given by

(Gaussian units)
¢
S = —n|Ep|?%.
87rn] o

Show that the relative reflected and transmitted energy fluxes are

_ﬁ_(m—nz)2 T—&~' 4ning
oS5 m+ny) Sy (m+na)?

R

g) 1 pt. Show that R+ T = 1. Why is this as expected?



3. A relativistic particle of rest mass m and charge e is moving in a uniform
(constant and static) magnetic fleld B. The equations of motion for

the particle momentum p and its energy E are (Gaussian units)

dp e dF
EZ_EVXB’ %-——O

a) 1 pt. Why is the particle energy conserved?

b) 1 pt. Express p in terms of m and the particle velocity v, and E in
terms of m and v.

c) 3pts. Show that these equations of motion can be written as

dv y
— =W XV,

dt

and express w in terms of e, F, and B. This says that the velocity
vector precesses with angular velocity w.

d) 3pts. Now suppose the motion is confined to the plane perpendicular
to B, that is, B L v. Then show that the particle moves with
angular speed w in a circle of radius R. Give an equation for R in
terms of v, F, e, and B.

e) 2pts. Now give an equation relating the magnitude of the particle mo-
mentum p to the radius R found in part d). Thus show that a
measurement of the radius of the orbit determines the particle mo-
mentum. If the velocity of the particle is independently known,
we can then determine the mass m of the particle, according to
the relation given in part b).



Figure 2:

Hollow cylinder (radius a and length [) containing uniform gas

flowing along the axis, the z direction, with velocity v. Protons are injected
into the cylinder with velocity V parallel to the axis. As a result of magnetic
forces, they are brought to a focus at a point on the z axis a distance p far
from the cylinder, p > [.

4. Consider a hollow cylinder of radius a and length ! filled with a com-
pletely ionized gas of uniform charge density p which is moving parallel
to the axis of the cylinder with velocity v.

a) 3pts.

b) 3pts.

c) 2pts.

d) 2pts.

Find the magnetic field (magnitude and direction) at a distance r
from the axis of the cylinder, for r < a; assume that we are well
inside the cylinder and that [ > r so that we can neglect edge
effects. Assume that the gas is nonmagnetic.

Suppose a beam of nonrelativistic protons of mass m and velocity
V' are sent into this cylinder with their initial velocities parallel
to the z axis. Neglect electrostatic, edge effects, and collisions
between protons and the gas. Show that while in the gas-filled
cylinder, the protons experience a force pushing them toward the
axis of the cylinder. Calculate the radial velocity V. acquired by
the protons when they exit the cylinder. Assume that the distance
moved toward the axis while in the cylinder is negligible.

After the protons leave the cylinder, they continue to move toward
the z axis with constant radial velocity V,.. Calculate the time T
required for the protons to reach the axis.

As a result, the protons will travel through the cylinder and be
focused at a point p on the z axis beyond the cylinder where p > [.
Find p and show that it is independent of the initial distance of
the protons from the axis when they enter the cylinder.



5. Consider an infinitely long, solid, nonmagnetic conducting rod of ra-
dius @ centered on the z axis. An infinitely long, hollow, conducting

cylinder with inner radius b > a and outer radius d is coaxial with
the rod. Let r be the radial distance perpendicular to the axis of the
rod and the cylinder. The region between the conducting rod and the
conducting cylinder (that is, a < r < b) is filled with a nonconducting,
linear, isotropic magnetic material with a constant relative permeabil-
ity K = p/uo, where u is the permeability of the material, and pq is
the permeability of free space (up = 1 in Gaussian units).

The rod carries a current I in the +2z direction while the concentric
cylinder carries a current [ in the —z direction. We assume that the
current density j is uniform and of the same magnitude in both the rod

and the cylinder,
I I

TR T w( @ -0
a) 3 pts. Calculate the magnetic field H(r) for the four regions

Lr<a Ila<r<b ILb<r<d IVid<r

b) 3 pts. Calculate the magnetic flux (per unit length in the z direction)
crossing a half-plane extending from the axis of the coaxial system
and extending to infinity, that is, the surface defined by =z > 0,
y =0, —00 < z < c0. Use this result to find the self-inductance
L per unit length of the coaxial conductor.

c) 2 pts. Compute the magnetic energy U per unit length along the z axis
stored in the region filled with the linear magnetic material, that
is for region 11, a < r < b.

d) 2 pts. Using the result from part c), show that the contribution to L
coming from the region a < r < b, Ly, is consistent with the
contribution from the same region that you calculated in part b)
above. That is, compute %LHI 2 and compare with the result of
part c).
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Figure 3: Geometry of point charge placed between grounded, parallel, con-
ducting plates. The plates extend infinitely in the z and y directions.

6. Consider a point charge g placed between two parallel conducting plates,
as shown in Fig. 3. The electrostatic potential ¢ vanishes at the two
plates, located on the planes z = 0 and z = a.

a) 2pts.

b) 3pts.

c) 2pts.

d) 3pts.

Because the physics has translational symmetry in the z-y plane,
show that the potential at a point r between the plates due to a
point charge at v’ can be written in the form (Gaussian units)

A1) o e )
¢(r) =47Tq/(@$2—>6““ Jg(z, 2 kL),

with r; = (z,y), ¥, = (¢/,y'), where the function g satisfies

62 2 / !
<—£2— +kl> 9(z, 25k ) =0(z— 7).
What are the boundary conditions on g(z,2;k;) at z = 0 and
z=a?

Solve this differential equation explicitly in closed form by solving
it in two regions, I: 0 < z < 2’ and II: 2/ < z < a, and match-
ing the solutions appropriately to reproduce the d-function in the
differential equation.

What is the relationship between the electric field at the surface
of a conductor and the surface charge density on the surface?

Determine the normal component of the electric field just to the
right of the plate at z = 0 (that is, at z = 0 +¢) and just to the
left of the plate at z = a (that is, at z = a—e¢). By integrating this

8



field over the surfaces, and using the result of part ¢), determine
the total charge on each of the conducting surfaces. Is the sum of

the charges on the two plates as expected?



E&M

January 2009

1 Capacitors

Consider a spherical capacitor which has the space between its plates filled with
a dielectric of permittivity e. The inner sphere has radius r; and the outer
sphere has radius r,. The total free charge on the capacitor is Q.

a) Find the electric displacement ]3, and the electric field E at a radius 7 inside
the dielectric. (2.5-points)

b) Find the electric energy density u. inside the dielectric. (2.5-points)
c¢) Find the total energy U, of the capacitor. (2.5-points)

d) Find the capacitance C, of the capacitor. (2.5-points)



2 Rods

In this problem you will determine the magnetic field produced by three different
infinitely long, cylindrical conducting rods. The figures on the next page are
useful for vizualizing the differences in the rods.

a) State whether you are using MKS or cgs units (0-points).

b) Rod 1: Consider an infinitely long, solid, cylindrical conducting rod (known
as Rod 1) with radius 2a that is concentric with the z-axis and carries
a uniform current density +Jo in the +z direction (Fig. 1). Let r =
(x? +1%)'/? be the perpendicular distance to the z-axis and ¢ be the angle
r makes with the positive z-axis. (See Fig. 1.) Find the magnitude and
direction of the magnetic field B, produced by Rod 1 for all r. Give
the direction in Cartesian coordinates using the unit vectors: i, j and k.
(3-points)

c) Rod 2: Consider a second, infinitely long, solid, cylindrical conducting rod
(i.e. Rod 2) that is parallel to the z-axis and has radius a. The axis of
Rod 2 is centered at (z,y) = (+a,0). Rod 2 carries a uniform current
density —Jy in the —z direction. Let p be the radial distance from the
axis of the Rod 2 and let ¢ be the angle that p makes with the positive
z-axis. (See Fig. 2.) Find the magnitude and direction of the magnetic
field By produced by Rod 2 for all values of p and ¢. Give the direction
in Cartesian coordinates using the unit vectors: i, j and k. (1-points)

d) Rod 3: Consider an infinitely long, cylindrical conducting rod (i.e. Rod
3) with radius 2a that is concentric with the z-axis and carries a uniform
current density Jo in the +z direction. However in this conductor, an
(infinitely long) hole of radius a is drilled parallel to the z-axis at the
position (z,4) = (+a,0). (See Fig 3). Find the magnitude and direction
of the magnetic field B; produced by Rod 3 on the z-axis (at y = 0) for
all values of z > 0. Give the direction in the Cartesian cordinates using
the unit vectors: 1, j and k. (6-points)



3 Cubical Box

A cubical box (sides of length a) consists of five metal plates, which are welded
together and grounded. The top is made of a separate sheet of metal, insulated
from the others, and held at constant potential V. In this problem you will
find the potential inside the box.

a) Assume that Laplace's Equation is separable and, beginning with Laplace’s
Equation, write three ordinary, second-order, differential equations, one
each for z, y, and z. How are these equations linked? (2-points)

b) Write the appropriate forms of the solutions to the three differential equa-
tions of part (a). (2-points)

c) Apply the boundary conditions to determine all constants for the solutions
of part (b). {(4-points)

d) From your results in part (c), construct the general solution for the potential
V(z,y, z) inside the box. (2-points)



4 Conducting Sphere

In this problem you are to prove that a perfectly conducting sphere acquires
a magnetic dipole moment when placed in a uniform magnetic field Bo. Let
the sphere have radius a. By perfectly conducting, we mean that there is no
magnetic field in the interior of the sphere. As a result of the induced dipole
moment, the magnetic field B exterior to the sphere is no longer Bo. Determine
the dipole moment as follows.

a) What are the boundary conditions on 1 - B and f x B at the surface of
the sphere, where h is the outward unit normal to the spherical s surface?
These boundary conditions involve the surface current density K, which
will be determined below. (1-point)

b) Assume that the induced magnetic field is a pure magnetic dipole field, that
is, in a spherical cordinate system with origin at the center of the sphere,

L L il T — i

B =B+ = , r > a.

T

Use the boundary condition on f - B at r = a4 to determine /i in terms of
a and By. (3-points)

c) Use the boundzuy condition on ¥ x B at 7 = a4 to determine the surface
current density K in terms of ¥ and Bo. (3-points)

d) Compute the magnetic dipole moment from the surface current according

to
:»—]{derK

where the integral extends over the surface of the sphere, and show that
fi coincides with the result found in part b. (3-points)



5 Stress Tensor

Consider a stationary solid sphere of radius ¢ and uniform surface charge density
o. Assume a coordinate system for which the sphere is centered at the origin.

a) Specify the system of units you will be using. (0-points)
b) Determine the electromagnetic field everywhere on the x-y plane (2-points)
c) Write down the Maxwell Stress Tensor everywhere. (4-points)

d) Use the Maxwell Stress Tensor to determine the net force that the southern
hemisphere (z < 0) exerts on the northern hemisphere (z > 0). (4-points)



6 Electromagnetic Waves

A monochromatic, plane polarized, plane electromagnetic wave traveling in the
z-direction in the lab frame (in a vacuum, ¢ = g = 1) can be written in the
following 3+1 dimensional form:

E — Eoi exp7.(.lcz—~wt)7
]_3' - B()j expz(kz-—wt)’

a) Combine this E and B into a single electromagnetic field tensor FP and
use Maxwell’s equations in the 4-dimensional form

8aFﬂ7 -+ (9[3177& -+ (r)WFa[g =0

daFf =T 19 = 0
C

to find all constraints on the 4 constants Fg, By, k, and w (i.e., the above
wave won’t satisfy Maxwell’s equations for arbitrary values of all four of
these parameters). (2-points)

b) What are the values of the invariants F“ﬂFag and €aﬁ’76Fal{ij75 for this
wave? (2-points)

¢) Use a Lorentz boost to find F” of in g frame moving in the +z direction with
a speed v. Don’t forget to express your answer in terms of the moving
coordinates t' and 2%, (2-points)

d) How has the frequency and the wavelength of this wave changed in the
moving frame? (2-points)

e) How has E and B changed in direction and/or magnitude? (2-points)



E&M

Fall 2009

1 Magnetic Materials

Assume the field inside a large piece of magnetic material is By so that

a) Consider a small spherical cavity that is hollowed out of the material. Find

the field B at the center of the cavity, in terms BO and M. Also find H
at the center of the cavity in terms of Hy and M. (3 Points)

b) Do the same calculations for a long needle-shaped cavity running parallel
to M. (3 Points)

c) Do the same calculations for a thin wafer-shaped cavity perpendicular to
M. (4 Points)

Hint: Assume the cavities are small enough so that M Bo and I-IO are
essentially constant. The field of a magnetized sphere is B = ;/«boM and the
field inside a long solenoid is ugK where K is the surface current density.



2 Space-charge-limited Thermionic Planar Diode

Consider a planar diode with a grounded, hot metallic cathode at z = 0 and
a metallic anode plate at 2 = H, which is held at an electrical potential of
V, relative to ground. [Cathode and anode plates are infinite in the y and z
directions.] The cathode is very hot and emits copious electrons such that the
diode is "space charge limited”, that is: the electric field at the cathode is
zero. The current density J is constant and in the -x direction. [Ignore any
transient effects.]

In this problem let : V (z) be the electric potential, £(x) be the electric field,
s(x) be the velocity of an electron, p(z) be the charge density, and m and -e be
the mass and charge of an electron respectively.

a) State whether you are using MKS or cgs units. (1 Point)
b) Find p(z) as a function of V(z) and any other relevant variables. (2 Points)
¢) Use Poisson’s equation to find the differential equation for V(z). (2 Points)
d) State the boundary conditions for F(z) at z = 0 and V(z), at z = 0 and
z = H. (2 Points)
Work e) or f) on a separate sheet of paper and submit only the
one you wish to be graded.
e) Solve for V(x) in terms of V,, and H using results of ¢) and d). ( (3 Points
for part e or f)
Hint: multiply both sides of your differential equation by dV(z)/dx and
recall that: (dV/dz)(d*V/dz?) = +d(dV/dz)?/dx
If you have trouble using the above hint to complete part e),

then try f).

f) Assume V(z) is of the form: Az™ + Bz + C and solve for V(z) in terms
of V,, and H using parts ¢) and d) above. Find the current density J in
terms of V, and H. (3 Points for part ¢ or f)



3 Wire

An infinitely-long, thin wire (radius b) is coated with a dielectric (relative di-
electric constant k = ¢/¢p with radius @ > b). The metal wire has charge per

unit length A

a) Find the electric displacement D everywhere. (2 points)
b) Find the electric field E everywhere. (2 points)
¢) Find the polarization P everywhere. (3 points)

d) Find all the bound charge everywhere. (3 points)



4 Electromagnetic Waves

Consider a plane electromagnetic wave with propagation vector k and angular
frequency w. Construct the four-vector k# = (w/c, k). Use the metric gu, =
diag(-1,1,1,1)

a)Verify that k,k* = 0. (2 points)

b) In terms of the position four-vector z# = (ct, ), show that the plane wave

propagation factor is
pthuat . ik F-wt)

(2 points)

¢) Now use Lorentz transformations to show that radiation of frequency w
propagating at an angle 6 with respect to the z-axis, will, to an observer
moving with relative velocity v = ¢ along the z axis, have the frequency

W = -——1———w(1 — Bcosh).

V1~ (2

(2 points)

d) Further show that the moving observer sees the radiation propagating at an
angle & with repect to the z-axis, where

cos @ = —————————COSH -5
1 — fcosf’

which is aberration. (2 points)

e) Find ¢ explicitly if |8} << 1. (2 points)



5 Thin Infinite Sheet

a) Compute the 4-current J*(z”) and the E&M fields for a stationary, thin,
and infinite sheet of charge located at z = 0 in the lab. Assume the surface
charge density is a constant og. (4 points)

b) Now assume you move with speed v < c in the z-direction relative to the
Jab. What is the 4-current J'*(z?) and E&M field in your frame? (6
points)



Figure 1: Stack of Disks for Stress Tensor Problem. Problem 6

6 Stress Tensor

Consider a long cylinder of radius a and length L made up of a stack of in-
finitesimally thin discs (See Figure). Assume the disks alternate between disks
with charge density p and angular velocity wZ and disks with charge density —p
and angular velocity —wz.

a) Specify the system of units you will be using. (1 points)

b) write down an expression fo the charge and current density in any small
volume (of dimension larger than the infinitesimal thickness of the disks).
(1 points)

b) Find the electromagnetic field everywhere. (2 points)
¢) Find the Maxwell Stress Tensor everywhere. (2 points)

d) Use your answer to part ¢ to find the force of the top half of the cylinder
on the bottom half. (2 points)

e) Is the force attractive or repulsive? (2 points)

6



E & M Qualifier

January 14, 2010

To insure that the your work is graded correctly you MUST:

Wy

. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,
8

. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. Consider a thin nonconducting disk of radius R centered on the origin
of a coordinate system, lying in the z-y plane, and carrying a surface
charge density given by

yR

0= 0.
g 1'2 +y2
(a) {6 pts} Determine the electric field at a location 7= zk.
(b) {3 pts} Give an approximation to your answer to part (a) that is
valid for the z >> R.

(¢) {1 pts} Find the force on a charge ¢ located at a position 7= k.
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2. Consider a linear, homogeneous, isotropic, and non-dissipative dielec-
tric (i.e., a dielectric where D = ¢E and ¢ is a constant) in the shape

of a sphere of radius R with a point charge @ embedded at-its-center.
(a) {2 pts} Find the electric displacement vector D, the electric field
E, and the polarization density P inside the dielectric.

(b) {2 pts} Find the bound charge volume density pp inside the di-
electric.

(¢) {1 pts} Find the total bound charge @p on the r = R boundary
of the dielectric.

(d) {2 pts} Find the net charge (free plus bound) at the center of the
dielectric.

(e) {1 pts} Find the electric displacement vector D, the electric field
E, and the polarization density P, outside the dielectric sphere.

(f) {2 pts} Are D and E continuous at 7 = R? If not explain why.

(If you use Gaussian units you can put ¢ = 1.)
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3. A thin grounded hollow conducting sphere of radius ‘b’ is centered at
the origin. A point charge ¢ is located on the z-axis at z = a < b
INSIDE the sphere.

(a)

{5 pts} Write the total potential for this system as a sum,
O = q).sphcre + q)qa

where @, is the potential due to the point charge and Psppere (in
spherical polar coordinates) is the appropriate linear combination
of Legendre polynomials Py(cos(f)). Evaluate the coefficients of
the Py(cos(f)) in the Psppere expansion. Recall that the Legendre
polynomials are independent orthogonal functions satisfying

1
2
/_1 Pg(lﬁ)Pgl(l) dr = 2£+ 1 (SM/

and

=00 r ¢
L3 9 pyeosty))

o
lr—1| =
where 7 is the angle between the two directions r and r'.

{5 pts} Show that your expression for ®ypere 15 equivalent to the
potential of a point charge. Where is the point charge located and
what is it’s charge?



Fixed
contact,

ring. N\

Rotating
copper-—i-f-
disk

- contact
ring

4. The Homopolar Generator consists of a flat copper disk of radius b and
thickness t, mounted on an axle of radius @, which mechanically rotates
the disk with angular speed w in the presence of an orthogonal mag-
netic induction B. A stationary contact ring with inner radius b and
negligible resistance surrounds the rotating disk making good electri-
cal and frictionless contact with it. As shown in the figure, the closed
electrical circuit consists of the disk and a load resistor R connected
by wires between the axle and the stationary contact ring. (Assume
the load resistor R is much greater than the resistance of the disk, the
contact ring, and the wires.) A constant magnetic induction B per-
pendicular to the disk (parallel to the rotation axis) exists between the
radii @ and b and is zero elsewhere in the circuit.

(a) {4 pts} Find the current I that flows in the circuit as a function
of B,a,b,w, and R.

(b) {2 pts}What is the magnitude of the current density J(r) in the
rotating disc.

(c) {2 pts} What torque would you have to apply to the rotating
wheel to keep w from slowing down.

(d) {2 pts} If o is the conductivity of copper and ¢ is the thickness of
the disk, find the clectrical resistance Ry of the disk between the

radii @ and b. Recall that the resistance of a small length Af of
conducting material with cross sectional area A is AR = AL/(cA).



8

Reflected wave

Incident wave
et sniibintd

€1

Transmitted wave
R

€2

5. A plane-polarized harmonic (e=**) plane electromagnetic wave travel-
ing to the right in a homogeneous dielectric medium described by an
dielectric constant e;, strikes a second homogeneous dielectric material
described by dielectric constant ez > €; (see the figure). Assume that
both materials have the same magnetic permeability po and that the
incidence angle is 0° (1.e., the wave is traveling perpendicular to the
junction). Assume the incoming wave is polarized in the & direction
and that its electric field amplitude is Ej, i.e., assume the incoming
electric field is the real part of

(a)

E = E, 6'i(1~cz—wt) 2.

{3 pts} Give the magnetic induction B associated with the above
incoming wave. Make sure your wave satisfies Maxwell’s equa-
tions, e.g., give k as a function of w, the direction of B, and the
amplitude of B as a function of L.

{1 pts} Give similar expressions for the E and B components
of the reflected and transmitted waves. Use Ej and FEj for the
respective amplitudes of reflected and transmitted waves.

{2 pts} In general, what conditions must be satisfied at the junc-
tion between two materials by the electromagnetic fields E, B, D,
and H, if Maxwell’s equations are to be satisfied?

{2 pts}Apply these junction conditions to the combined incom-
ing, reflected, and transmitted wave to compute Ej and Ej as
functions of Fy and the two dielectric constants €; and €.

{2 pts} Evaluate the time averages of the Poynting vectors of the
incident, reflected, and transmitted waves. Recall that

S=ExH, (SI)

1
= Z;E x H. (Gaussian)

The sum of the magnitudes of the reflected and transmitted time
averaged Poynting vectors should equal the magnitude of the in-
cident wave’s time averaged Poynting vector.
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6. Maxwell’s equations in 4 dimensions

(a)-{2 pts} Write the Maxwell equations in the absence of polarizable

(b)
(©)

materials using 4-vector notation, making use of the field strength
tensor F,,.

{4 pts} Show that the equations of part (a) reduce to the usual
form of Maxwell’s equations in 3-vector notation.

{2 pts} The Lagrangian density of the EM field is given by

1
S I
ﬁ 4/1'() 22 (S )
or .
L o7 Yaussi
L 167rF F. (Gaussian)

Recall that all repeated Greek indices are summed over 4-
dimensions (1 time and 3 space). Show that the Lagrangian
density is invariant under a gauge transformation A, = A;A =
A, + O,a(z), where o is an arbitrary function of spacetime z =
(ct,T).

{2 pts} If we add an interaction term £ — £+ AL where

AL = jrA,, (ST)

or
1
AL = —C-j“‘Au, (Gaussian)

to the Lagrangian— where j* is some spatially bounded and con-
served 4-current density— how does the action I = [ Ld*r change
under a gauge transformation and do the resulting equations of
motion change?
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5. start each problem by stating your units e.g., SI or Gaussian,
6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

o

staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).
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1. A very long conducting wire of radius a, carrying free positive charge
per unit length ), is surrounded by a dielectric coating of outside radius
b and relative dielectric constant & = €/¢g.

(a) {2 pts} Find the displacement vector D everywhere.

(b) {2 pts} Find the electric field E everywhere,

(c) {2 pts} Find the polarization density P everywhere.

(d) {2 pts} Find the bound volume charge density p, and the bound
surface charge density o, everywhere.

(e) {2 pts} Show that the total charge densities, bound and free,
produce the same E found in (a).
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2. (a)

{2 pts} In a homogeneous, linear and isotropic conducting ma-
terial whose electromagnetic properties (at low frequencies) are

(b)

(d)

described by constant values-of the permittivity, pearmeability;
and conductivity respectively e, pu, and o, show that Maxwell’s
equations require that the electric field satisfy

0*E OE
VZE — hgmy ~ Ol = 0, (SI)
2 4 E
VIR — %‘;%2}5‘ — _____ZZM ___8& = 0. (Gaussian)

{2 pts} Given a plane polarized plane wave of angular frequency
w whose electric field is of the form

E(27 t) = Real {’l‘Eoei(k:z-—wt)} ,

evaluate k? as a function of €, i, o, and w.
{2 pts} Find the real and imaginary parts of k assuming o >> we.

{2 pts} Using your results from (c) find the skin depth ¢ of the
conductor. The skin depth is defined by the depth at which the
wave’s amplitude decreases by e, i.e.,

E(z+68)] 1

|E(z,t)] e

{2 pts} Using Maxwell’s equations, find the magnetic field H(z, ¢)
associated with E(z,t) given in (b) and discuss their phase differ-
ence when o >> we.
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3. A point electric dipole with dipole moment p = pOI% is located at the
center of a hollow, grounded, conducting sphere.

Z

\o

(a) {2 pts} What are the boundary conditions satisfied by the electric
field and electric potential in this problem?

(b) {5 pts} Compute the electrostatic potential inside the sphere.

(c) {3 pts} Compute the charge density o on the inside surface on the
grounded sphere.
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4. (25 points) A 50 MeV electron (myc? = 50 MeV, mc®> = 0.5 MeV)
moving along the z-axis is decelerated and brought to a stop after

traveling—10—cm-in—a-uniform-electric-field-F—= Egk.(Recall vy =
1/4/1- %)

(a) {3 pts} Compute y(t) assuming the electron starts its deceleration
at t=0.

(b) {3 pts} How long does it take the electron to stop?

(c) {3 pts} Compute the total energy radiated by the electron during
the 10 cm stopping process. '

(d) {1 pts} What fraction of the electrons initial energy was lost to
radiation?

Hint: The general Larmor formula for power radiated by an ac-
celerating point charge is

2

- -,

PO = 2L P8 ~ (B B (s1)
20 siBe (7 e :
P(t) = 357 [(B)" = (B x B)]. (Gaussian)

It might be useful to use (vﬁ) = 38,

le = 4.8 x 107 %tatcoul = 1.6 x 10™**coul,
leV 1.6 x 107 2ergs = 1.6 x 107].
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5. A plane-polarized electromagnetic wave traveling in vacuum is observed
in the lab frame as

E = Real{EoieW-wt)},

B= Real{Bo j gilthz—wt) } ,

where k& = w/c and

BO = EQ/C, (S[)
By = E. (Gaussian)

A relativistic particle moving in the z-direction (v = vol%, where v >>
1) encounters this wave. For this problem you are to find the form of
the wave in the rest frame of the particle at the instant the wave is
first encountered (before the particle’s velocity is changed because of
an interaction with the wave).

(a)

\.}x;\;%\)i} (}m ot

{2 pts} Start by combining E and B into a single 4-tensor F’ B ().
This includes writing (kz — wt) = +k,z*). The sign &+ depends
on your choice of Lorentz metrics (—1,+, +, +) or (1,—1, -1, —1).
State which you are using.

{2 pts} Give the Lorentz transformation L% that transforms the
lab frame into the particle’s rest frame 2'“ = L% 2B,

{2 pts} Apply your Lorentz transformation to F °f(z) to find
Fref (z'), the electromagnetic 4-tensor in the particles rest frame.
{2 pts} From your results in (c) give the 3-dimensional propaga-
tion direction of the wave in the particle’s frame and the E'(z')
and B'(z') fields.

{2 pts} Compare the amplitudes and frequency of the wave as seen
by the particle in its rest frame with those seen by a lab observer?
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6. A circular current loop of radius b lies in the x-y plane and is centered
on the origin. If the current varies harmonically with time as I(t) =
Iy cos(wt), use the following to carry out steps (a) through (e):

Y = b{sin6(cos @1+ sin¢'j) + cos 'k}
= b(cos¢'i +sing’j),
r-r = brcosy

= br{cosfcost +sinfsind cos(¢p — ¢)}
= brsinfcos(p — ¢').

In the above r’ is a point on the current loop with spherical-polar
coordinates ' = b, ' = /2, 0 < ¢ < 27, and v is the angle between
r and r'.

(a)
(b)
(c)

{2 pts} Compute the time dependent magnetic dipole moment
m(t) of the current loop. Recall that meayssien = Mgr/c.

{2 pts} Give an integral expression for the retarded vector poten-
tial A(t,r).

{2 pts} Approximate the integral found in (b) for A assuming
b << randb << c/w. If you have made no mistakes your answer
should agree with the potential for a point magnetic dipole, i.e.,
with:

A = HRVX'{EH_“_—J_/Q , S7
4 r
A = Vx{-—m—(t—gr—/c)—}. Gaussian

{2 pts} From your results for (c) or from the point magnetic dipole
result, compute the radiation (far field) part of E by assuming
b<<clw<<r.

{2 pts} Using only the radiation part, 1.e., the part o< 1/r, of E
and B, and the Poynting vector, compute the time averaged elec-
tromagnetic energy flux radiated away by the dipole as a function
of the spherical polar coordinates (7,6, ¢). Recall that

B - LixE (ST)
c
B = 7xE, (Gausstan)

for radiation coming from a source at the origin.
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E & M Qualifier

January 13, 2011

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

8. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).



1. A parallel plate capacitor has the region between its plates filled with

a dielectric slab of dielectric constant K = ¢/¢p and mass m. The
plate dimensions are: width w, length ¢, and plate separation d. The
capacitor plates are connected to a battery of constant voltage V (A¢ =
V in the figure). Neglect the fringe field and friction, and assume the
slab is constrained to move in the plane parallel to the capacitor plates.

(a) {2 pts} Compute the capacitance C' = ¢q/V of this capacitor as a
function of z.

(b) {2 pts} If the slab is withdrawn half way (to z = £/2) and held
in place, what is the magnitude and direction of the force on the
slab caused by the electric field?

(c) {2 pts} At z = £/2 the slab is released and given a velocity vy to
the right. Find the current supplied by the battery at the instant
it is released.

(d) {2 pts} At z = £/2 the slab is again released but with zero velocity.
Describe the motion of the slab (in words). What is the maximum
velocity achieved by the slab?

(e) {2 pts} Sketch the displacement of the slab versus time.



2. This problem investigates the shifting frequency of electromagnetic ra-

diation that is reflected off a moving target. Incident and reflected
frequencies and angles are not the same if the target is moving.

Assume that in the lab frame of reference, the target is a flat mirror
traveling upward in the positive x-direction parallel to the mirror’s
normal with velocity v = ScX (see the figure). Also assume the wave is
a linearly polarized plane wave traveling in vacuum towards the moving
mirror at angle ; (relative to the mirror’s normal). If the polarization
is in the 2 direction, the incident electric field is given by

_ 5 Sukrr—wrt
E[~—E0Z€(I I),

with o
k; = —ci(—— cosf; X +siné; §).

(a) {2 pts} Write the Lorentz boost A as a function of 8 and v =
\/1 — 32 that transforms the Lab coordinates r and ct to coordi-
nates r’ and ct’ co-moving with the mirror. Also give the inverse
A1 of the Lorentz boost A that transforms the moving coordi-
nates r’ and ct’ into Lab coordinates r and ct.

(b) {3 pts} By rewriting the above wave’s phase in both reference
frames, i.e.,
ky-r—wit =k ' —wit
as a function of the co-moving mirror coordinates r’ and ct’ (i.e.,

use A1) find k} and wj as observed in the co-moving frame. These
will be functions of 3,7, and 6; as well as wy.

(c) {2 pts} By writing the incident wave vector just obtained in the
moving frame in the form
</d/
K, = -C—f(— cos 0 % +sin 0, 9),
determine the incident angle 8} as seen by observers moving with
the mirror (e.g., give cos 6} as a function of §;,w; and the Lorentz
parameters /3, 7).



(d) {3 pts} If, as seen by observers moving with the mirror, the re-
flected wave has the same frequency as the incident wave wp = w}

and a reflection angle that-is the same as the incidence angle
L. 9/ M
=01 1e,

P
=

cos 07 X -+ sin 67 §),

what is the frequency wg of the reflected light as measured in the
laboratory frame? Hint: again use

kp r—wpt =Ky 1 —wht,

and the Lorentz boosts A.
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3. Consider a square with sides of length s and charges -g at the corners
as shown:

(a)

{2 pts} What is the potential at the center of the square if the
potential is zero at co?

{2 pts} How much work does it take to bring in another charge -¢
from oo to the center of the square?

{3 pts} How much work does it take to assemble the original
configuration of 4 negative charges (no charge at center)?

{3 pts} Now suppose that instead of the 4 charges being located
at the corners of a square, a net charge of —4q is distributed
uniformly on the surface of a sphere of radius s. How much work
does it take to bring in another charge g from oo to the center of
the sphere?
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4. Consider an isolated spherical surface of radius R centered on the origin,
that is kept at a known potential V(6), i.e.,

B(r = R,0) = V(9)

where (7,0, ¢) are the usual spherical polar coordinates, i.e., 6 is mea-
sured with respect to a z-axis passing through the center of the sphere
and ¢ is the azimuthal angle about the z-axis measured from the z axis.

(a) {2 pts} Write down expressions for the general solution to V2®(r, §) =
0 for the electrostatic potential as a linear combination of Legen-
dre polynomials in the respective regions 0 < r < R and r > R.
Assume that the potential vanishes at r — oo and has azimuthal
symmetry i.e., no dependence on the angle ¢. Do not include
terms that must vanish. Do not attempt to evaluate the constants
that appear in the linear combination but do give the correct r
dependence of each term.

(b) {2 pts} What boundary conditions must your two expressions sat-
isfy at the junction r = R to have a unique solution to Maxwell’s
equations?

(c) {2 pts} If the particular surface potential imposed is
O(r = R,0) = Vycost
where V} is a constant, what is the explicit form of your potential

for both regions r < R and r > R?

(d) {2 pts} Determine the resulting electric field on both sides of the
r=R surface.

(e) {2 pts} What is the surface charge density o(¢) on the spherical
shell at r=-R.



Wave —>

crystal

Wave travels into page.

5. A plane polarized monochromatic light wave traveling in the +z direc-
tion enters a large flat slab of transparent crystal of thickness d, located
between z = 0 and z = d. This crystal has the property that the index
of refraction depends on the direction of polarization as follows: Plane
waves traveling in the z direction but polarized in the direction

&, = cos PpX -+ sin Poy,

travel with speed v, = ¢/n, < ¢ but those polarized in the orthogonal
direction

&5 = —sin ¢oX + cos ¢y,
travel with the faster speed vy = ¢/ny < ¢ where n, = ny + dn.

Assume the wave, just after entering the crystal (i.e., for very small
z << A < d), is polarized in the y direction and hence has the form

E(z = 0,t) = Eg§e ™"

(a) {4 pts} Prove that in general the initial plane wave becomes ellip-
tically polarized when it reaches z = d by deriving the following

expression
E(z = d,t) = [E, & + B, §] e/,
where
= W [ng+ng
k=—| ———
()
and
E, = iFEqsin 2¢g sin d,
E, = Ey(cos 0 ~ i cos 2¢g sin ),
with p
d = —dn.
2c &

Hint: Write the wave at z=0 as a combination of slow and fast
plane polarized parts using § = sin ¢o&; + cos ¢oéy.

7



(b) {3 pts} For what values of ¢ and 8y will the wave emerge from the
crystal as a circularly polarized wave? (E,/FE, = *i).

(c) {3 pts} For what minimum crystal thicknesses d = dpn will the
wave emerge as a plane polarized wave (F,/E, = real) and what
will its polarization direction be?
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6. A permanent magnet in the shape of a solid sphere of radius a is ori-
ented on the z-axis as shown in the figure. The magnetization of the
magnet is given by M = My3. [Recall that V x H = 0 implies the ex-
istance of a magnetic scalar potential ®,,(r, 8) related to the magnetic
field by H = —V®,,(r,0).]

(a) {4 pts} Compute the scalar magnetic potential ®,(r,0) at all
points r < a and 7 > a.

(b) {3 pts} Compute the magnetic Field H = —V®,,(r, 0) at all points
r<aandr>a.

(c) {3 pts} Compute the magnetic induction B, where

B/uy = H+M, (S1)
B = H+47M, (Gaussian)

at all points r < ¢ and 7 > a.

Hints: The magnetic potential is axial symmetric about the z-axis and
satisfies the Laplace equation at all points except r = a. Legendre
polynomials are useful.



E & M Qualifier

August 18, 2011

To insure that the your work is graded correctly you MUST:

[y

use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,
6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

1%

staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).



part (a) parts (b) and (c)

1. (a) {3 pts} Give the potential for a static point electric dipole, with
dipole moment p, located at the origin and pointing in an arbi-
trary direction (see Figure).

(b) {3 pts} If the dipole moment points in the z-direction (p = p2)
and is surrounded by a thin grounded conducting sphere of radius
b (see Figure), what is the electrostatic potential inside the sphere?

(c) {4 pts}Compute the static electric charge density that exists on
the inner surface of the thin conducting sphere?
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(a) {3 pts} Use Maxwell’s equations to derive the continuity equation
(in differential form) relating charge p and current density J.

(b) {2 pts} Use the divergence theorem and the results of part (a) to
derive the conservation of charge, @@ = 0, for a bounded charge
distribution.

(¢) {2 pts} Show that the continuity equation can be written in 4-
vector form using the 4-current J*. Define all symbols you use.

(d) {3 pts} Use Maxwell’s equations to derive Poynting’s theorem, the
equation analogous to the continuity of charge equation relating
the Poynting vector S and the energy density u in the E and
B fields, that represents conservation of electromagnetic energy.
Assume the electric and magnetic fields are in vacuum, i.e., no
charges, currents, or polarizable materials are present.
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Z axis

electron in fixed orbit

a
V= Wy

1 uniform B

3. An electron is constrained to revolve (without friction) in a circular
orbit, of radius a and does so with an initial angular velocity wy (assume
woa << ¢).

(a) {3 pts} What is the magnetic dipole moment due to the electron’s
motion?

(b) {5 pts}
A uniform magnetic field B, parallel to the angular momentum of
the electron is slowly turned on. Derive an expression for dw(B),
the change in angular speed of the electron as a function of the
magnetic induction B (Hint: Use Faraday’s Law of induction and
Newtonian mechanics).

(¢) {2 pts} Does éw increase or decrease the magnetic dipole moment?



"

Loop plane
%

60°

4. In vacuum, a plane electromagnetic wave of angular frequency w =
ck = 2mwc/X travels parallel to the z-axis. The wave has an electric

field given by . ‘
E :j Eoez(kz—wt),

A small N-loop (i.e., an N-turn circular coil) of diameter d very much
smaller than the wavelength A (d << \) acting as an antenna is located
with its center at the origin. It is oriented so that a diameter of the coil
lies along the z-axis and the plane of the coil makes an angle § = 60°
with the y-axis.

(a) {3 pts} Use Maxwell's equations to obtain the B field associated
with the above wave?

(b) {3 pts} Compute the Magnetic flux through the N turn coil as a
function of time.

(c) {4 pts} What is the peak EMF induced in the antenna?



5. A charged particle with charge ¢ and mass m starts from rest on the in-
ner plate (radius a) of a cylindrical capacitor and is accelerated towards
the outer plate (radius-b). - Orient the coordinates so that g starts at
(z,y) = (a,0) and is accelerated along the +x direction until it reaches

(z,y) = (b, 0).

(a)

(b)

{2 pts} If the charge/length on the capacitor Ay is constant find
the electric field causing the acceleration by using Gauss’s law.
Assume the capacitor is very long compared to the radii a and b
and assume the electric field can is cylindrically symmetric.

{4 pts} Write down the 4-D [or (3+1) D] special relativistic version
of Newton’s equations for the motion of a point charge experienc-
ing the Lorentz force (the force due to an arbitrary external E and
B field).
dr

. dm~yc? dp

% =7 and 7 =7
Be sure to define p* and p as well as the Lorentz force terms that
appear on the right hand sides of the above equations.

{4 pts} Apply your answer to part (b) to the field you found in part
(a) and integrate your dynamical equations to obtain the particle’s
energy when it reaches the outer plate. You can easily compute
y(x) from Newton’s equations even though the acceleration is not
constant.

You are not asked to compute z(t) or z(7) nor how long it took
to reach z = b. '

y




6. A uniform static electric field E = Egk exists between two large thin
conducting metal plates. The positive plate is at z = 0 and the negative

plate is-at z = a.~You can-assume the plates-are-infinitely large-in-the
2~y directions.

(a) {1 pts} Use Maxwell’s equations to relate the value of Ep to the
surface charge density £ o on the plates.

(b) {4 pts} Lorentz transform F*# to obtain the E and B fields seen
by an observer moving between the plates with velocity ¢/217

(c) {2 pts} What are the 4-current densities J7 of the plates in the
rest frame and in a frame moving with the observer?

(d) {3 pts} Show that Maxwell’s inhomogeneous equations are satis-
fied by your fields and charge-currents in the moving frame. (Hint:
Using E and B rather than F*# is probably easier.)

E=Eok

+0o —0
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E & M Qualifier

January 11, 2012

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

8. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).



1. Dielectric Sphere
A dielectric sphere of radius R is polarized so that P = (K/r)f where f

is the unit radial vector. Assume the sphere is in an empty vacuum and
that the sphere’s dielectric material is linear and isotropic, calculate

(a) (3 pts) the volume and the surface densities of bound charge,
(b) (2 pts) the volume density of free charge,
)
)

the electric field inside the sphere,

(c
(d

2 pts
3 pts

~— e s N

(
(
(
( the electric field outside the sphere.

Your answers should be given in terms of K, x g, €0, €, and/or €,. Recall
that for linear isotropic materials:

In SI units,
D=cE= EoE +P

P = ¢oxpE

€
&=—=1+xg
€0

In Gaussian units,
D =¢E=E+47P

P:XEE
c=14+4dnyp =€,
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2. Gauge Transformation

(a) (2 pts)

Define the vector potential A and the scalar potential ® using
Maxwell’s equations. (i.e. give their relationships to the E and B

fields.)
(b) (3 pts) Show that when A and ® undergo the gauge transforma-
tions,
A=A + VA, (SI) and (Gaussian)
oA
R S
¥—2- 2, (S1)
. 10A
=0~ ~ (Gaussian)

where A is an arbitrary scalar, B and E are unaffected.

(c) Two gauges used in solid-state physics for static, uniform magnetic
fields B (i.e., constant in direction, magnitude, and time) are the
Landau gauge and the circular gauge. Examples for B = ByZ of
each gauge respectively are:

A = (A, Ay, A) = (0, By, 0)

and :
AI = (Afm Alya Alz) = (—Boy/2> BOx/27 O)a
with
d =0,
for both gauges.
i. (2 pts) Show that A and A’ with ® = &' = 0 describe the
same E and B fields.

ii. (3 pts) Find the scalar function A that produces the gauge
transformation from A to A’ in part (c).
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3. Poynting Vector

A straight metal wire of conductivity o and cross-sectional area A =
ma? carries a uniform, steady current /.

(a) (2 pts) Calculate E at the surface of the wire.

(b) (2 pts) Calculate B at the surface of the wire.

(c) (1 pts) Calculate the direction and magnitude of the Poynting
vector at the surface of the wire.

(d) (3 pts) Integrate the normal component of the Poynting vector
over the surface of the wire for a segment of length L.

(e) (2 pts) compare your result for (d) with the Joule heat produced
in this segment.

The Poynting vector is

S=ExH, (ST)

S = {;E x H. (Gaussian)
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4. Half Submerged Conducting Sphere

An originally uncharged thin spherical conducting shell of radius a is
brought to a potential ®y. The shell floats half submerged in a dielectric
liquid of dielectric constant k& = €, = ¢/¢q.

Determine the following:
(2 pts) The electric potential ® everywhere outside the shell,
(2 pts) The electric field E everywhere outside the shell,
(2 pts)
(4 pts)

4 pts) The net electrostatic force F' acting on the shell.

(a
(b
(c
(d

The free surface charge density ¢ on the shell,

)
)
)
)
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5. Capacitor Plates

Consider a very large parallel plate capacitor with the positive plate at

z = d/2, the negative plate at z = —d/2 and no dielectric material in
between. If the respective surface charge densities are o compute the
force/area on the positive plate in the following two ways:

(a) (4 pts) Calculate it directly from o and the electric field E. Give
a logical explanation of why your answer is correct.

(b) (6 pts) Calculate it using the Maxwell stress tensor
I, - 1 ... =
T = ¢ {ElE-? ~ S09E - E} , (S1)

” 1 I
T = yi [E’EJ - 5(5“E : E] . (Gaussian)



6. E&M Waves

A monochromatic, plane polarized, plane electromagnetic wave travel-

ing in the z-direction in the lab (in a vacuum) can be written in the
following 341 dimensional form:

E = FE, % ei(kz~wt),
B = B, y 6i(/cz—wt).

(a) (3 pts) Combine this E and B into a single electromagnetic field
tensor F*P and use Maxell’s equations in the 4-dimensional form

GOFM -+ 8ﬂF'ya -+ a,yFaﬁ = (),
OuF*? =0

to find all constraints on the 4 constants Fq, By, k, and w (i.e., the
above wave won’t satisfy Maxwell’s equations for arbitrary values
of all four of these parameters). Depending on your choice of con-
ventions: z® = (20, z!, 2%, %) with 2° = ¢t or 2* = (2, 2%, 2, 2*)
with z* = ct and ' = 2,22 =y, 2° = 2.

(b) (1 pts) What are the values of the invariants F*# F,5 and €*# Fog Fy5
for this wave?

(c) (3 pts) Use a Lorentz boost to find [’ *f in a frame moving in the

+2z direction with a speed v. Don’t forget to express your answer
in terms of the moving coordinates ¢t and z', ¢/, 2.

(d) (2 pts) What is the frequency and the wavelength of this wave in
the moving frame?

(e) (1 pts) How have the electric and magnetic fields changed in di-
rection and/or magnitude?
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E & M Qualifier

August 16, 2012

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. number every page starting with 1 for each problem,

6. put the total # of pages vou use for that problem on every page,

Use only the reference material supplied (Schaum’s Guides).



B flux here

1. A long wire of radius Ryire carries a current [ and is surrounded by a
long hollow iron cylinder. The inner radius of the cylinder is R; and
the outer radius is Ry (Ruyie < Bi < R,, see the figure, assume the
current flows out of the page).

(a) (2 pts) Compute the flux of B through a rectangular section of
the iron cylinder L meters long and R, — R; wide.

(b) (3 pts) Find the bound surface current densities flowing along the
inner and outer iron surfaces, respectively K? and K?, and find
the direction of these currents relative to the current in the wire.

(¢) (2 pts) Find the bound volume current density J b ingide the iron.

(d) (3 pts) Find B at distances r > Ry from the wire. Would this
value of B be affected if the iron cylinder were removed?

Recall that the magnetization M is related to the magnetic field strength
H and the susceptibility x,, by

M = )u?z]H in SI units
= an H in Gaussian units
B = jo(H+M)=p(l+ ,(;i])H in SI units
= (H+47M) = (1 +4nx5)H in Gaussian units

For all substances 47x% = x2!. For iron x,, is in the range 10 to 1000.



2. (a) (3 pts) From Maxwell’s Equations, derive the wave equation for E
with no sources (p = 0,.J = 0) in a homogeneous, isotropic, linear

medium of permittivity e and-permeability -

(b) (1 pts) Show that if E = E(t, z) ¥, the wave equation reduces to

O*F O*FE

- U5,
dzzz It
o°E epno‘E o . .
- = S in Gaussian units
ox? o Ot

in SI units

(¢) (4 pts) By introducing the change of variables

£ = t+ ez in SI units
§ = o+ Jepz, in Gaussian units
n o= t—Jeuz, in ST units
n = ct— \Jeuz, in Gaussian units

show that the wave equation assumes a form that is easily inte-
grated.
(d) (2 pts) Integrate the ecquation to obtain

E(z,1) = Ey(€) + Ex(n),

where E; and E» are arbitrary functions.
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3. Two charges ¢ are on opposite sides of a dielectric sphere (¢ = con-
stant) as shown in the figure. The three objects are on a common axis,

the-sphere is of radius a-and the two charges are a distance-b > g from

the sphere’s center.

(2)

(d)

(2 pts) Give the form of potential ®(r, ) inside the sphere (r < a)
as a series of Legendre polynomials, P(cos ), with coefficients Ap.
Give the correct r dependence of each term and do not include ¢
values that vanish from symmetry.

(2 pts) Give the form of the potential ®(r, @) outside the sphere
(r > a) as the sum of two terms; one a series of Legendre polyno-
mials with coefficients By caused by the polarization charges on
the dielectric, and the other term caused by the two point charges.
In the series part keep only non-vanishing ¢ values and give the.
correct 7 dependence of each term.

(3 pts) In the outside region where r > a, expand the part of the
part of the potential caused by the point charges as a single series
in P,. Give two explicit forms of this series, one good for a <7 < b
and one good for 7 > b.

(3 pts) You do not have to evaluate the constants A, and By but
write down the two sets of equations from which you can determine
them (the boundary matching conditions).

q




4. The reflection of a circularly polarized plane wave at a metallic bound-

ary.

o}

(2)

(b)
(c)

(f)

(2 pts) Give expressions for the E and B fields of a monochromatic,
right circularly polarized plane wave traveling in vacuum. Use
rectangular Cartesian coordinates, assume the angular frequency
is w, assume the polarization plane is the z—y plane, and assume
the propagation direction is in the positive z direction.

(1 pt) Explain in words what is meant by a monochromatic right
circularly polarized wave.

(2 pts) Rewrite yowr E and B fields of part (a) assuming the
propagation direction is 30° above the z direction as shown in the
figure. You can use unit vectors e and k in your expressions but be
sure to define what they are in terms of the coordinate directions
x,y, and 2.

(2 pts) If the wave of part (c) strikes a flat perfectly conducting
surface at z = 0 it will be reflected. What boundary conditions
are satisfied by the combined E and B fields of the incoming and
reflected waves at the z = 0 junction?

(2 pts) Give expressions for the reflected E and B fields. Make
sure they satisfy vour junction conditions of part (d).

(1 pt) Ts the reflected wave right or left, circularly polarized?

X




5. An infinitely long, uniformly charged wire of radius a and total charge
per unit length A, is at rest on the z-axis of the lab frame.

(a) (2 pts) Compute the electric field E(x, y,z) interior and exterior
to the wire in the lab frame by solving Gauss’s law in that frame.

(b) Complete the next 4 steps to compute B (2/,¢/, 2) and B' (2, 1/, Z')
in a frame moving in the positive z-direction with speed v.

i.

ii.

iil.

iv.

(2 pts) Give the Lorentz boost 2’ = Lia* (x' = Lx) from the
Lab to the moving frame (take z° = ct, 2! = z,2% = y,2% =
z).

(2 pts) Construct the electromagnetic field tensor F o8 from
the electric field you found in part (a).

(2 pts) Use your lorentz boost to compute the electromagnetic
field tensor F'# = LﬂL’SF # (F' = LFLT) in the moving
frame.

(2 pts) From your F'*? give the answer to (b).

Hint: Recall that in both SI and Gaussian units Fo¢ = —FH* and
F% — — E' In Gaussian units F'? = —B* [ = - B* and F* = BY,
but in SI units F2 = —¢ B*, % = —¢ B* and F'® = cBY
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6. In the absence of polarizable and/or magnetizable material (i.e., only
free charges and currents present) Maxwell’s equations, in Gaussian

1units and-in-the Lorentz gauge, reduce-to-the-inhomogeneous-wave
equation:

) cp )

14:1: 4’/T J;l: . _ (‘) 9
O U Sl [ where = (W) - V*.

A* J*

A time dependent charge Q(t) = Io t, t > 0 is fixed at the origin

X

Q) =TIyt
I,

y

of a cylindrical polar coordinate system (p, ¢, z) The charge increases
linearly with time because a constant current /o flows in along a thin
wire attached to the charge on its left, see the figure. Assume the wire
carries no current for ¢ < 0, however, at t = 0 a current Iy abruptly
starts flowing in the +z direction and remains constant for ¢ > 0.
Assume the wire remains neutral as the charge at the origin grows.
Find the following quantities at time ¢ for points (p, ¢, z):

(2) (2 pts) The charge density p(t, p, ¢, z),

(b) (2 pts) The current density J(1, p, &, %),

(¢) (2 pts) The retarded scalar potential ®(L, p, ¢, 2),

(d) (4 pts) The retarded vector potential A (L, p, ¢, z).
Hints: Parts (a) and (b) require the use of §(x)-functions and Heaviside
step functions ©(z) = 1,0 respectively for 2 > 0 or < 0. The retarded
Green’s function for the [ operator is:
S(t—t —|r—1'|/c)

47 v — 1| '

G r, v ) =

which gives retarded potentials

(c/)(t — e =1|/e,v"), It = |r—1'|/c, r’))

Y

1

:J

For part (d) you might need the integral

___._.Y"i (VX FE + X).
. VAL T A

d3

(<I)(t, r), A(t, r))m =

/
r.
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1. A rotating thin, non-conducting, sphere of radius R is covered with a
uniform surface charge density ao. If the angular velocity is in the +2
direction and has a constant magnitude wq:

(a) [3 pts] Compute the surface current density K(6,¢) (magnitude
and direction) as a function of R, gy, and wy.

(b) [3 pts| Compute the magnetic dipole moment myg of the rotating
sphere.

(c) [4 pts] The magnetic induction exterior to the sphere turns out to
be a simple magnetic dipole field. Compute B(r, 8, ¢) for r > R
assuming the vector potential is of the form:

mp X by , .

A(r), = Gussian units

G 2 !

| Mo My X T
Alr)g = Ar 72

SI units.



Figure 1: In Gaussian units o — 1 and g — 1

9. Within a transformer, oscillating magnetic fields and their associated

electric fields penetrate into the transformer’s iron core producing “eddy”
currents which heat and frequently destroy the transformer. In this
problem you are to analyze the depths to which these currents pene-
trate and the phase difference between the driving harmonic B field
and the lagging eddy current.
A large slab of permeable (4 >> o) conductor with conductivity o > 0
and with negligible permittivity (¢ = o) is located in the x-y plane at
2 > 0 as shown in the figure. A low frequency wave, w << o/ep, whose
magnetic induction is the real part of

B = Boei(kz—wt)y’
diminishes as z increases because k is complex.

(a) [2 pts] Give Maxwell’s 4 macroscopic equations appropriate for
this material (p = 0,D = ¢E, B = uH, and J = o¢E).

(b) [2 pts] Use Maxwell’s equations to find the complex wave number
k as & function of w, o, i, and .

(c) [3 pts] The depth at which the amplitude reaches e~ times its orig-
inal value is called the skin depth, §. The skin depth diminishes
with the wave’s frequency. For low frequency waves (w << o/eo)
determine 6.

(d) [3 pts] For low frequency waves compute the phase lag of the eddy
current density J relative to the magnetic induction B.



[esT}

3.

(a) [1 pts] Give the 4-current J*(zf) for the static surface charge
density o shown in the figure (a thin uniform and infinite sheet
of charge located at z = 0 in the lab).

(b) (2 pts] Give the electric field I and the magnetic induction B
caused by the static surface charge.

(c) [2 pts] Compute the 4-current J'*(2”) in a frame that moves with
speed v < ¢ in the positive z-direction relative to the lab (v isn’t
necessarily small).

(d) [1 pts] What is the surface charge density o’ in the moving frame?

e) [1 pts] What is the electric field E' in the moving frame?

—~ o~

)
f) [1 pts] What is the surface current density K’ in the moving frame?

(g) [2 pts] What is the magnetic induction B’ in the moving frame?

X

09

=T}
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4. A current balance consists of two very long rigid parallel wires of lengths
L that are connected at each end by springs (see the figure). The spring
constant of both springs is & and the equilibrium distance between the
wires, d(I), depends on the current. Assume d << L.

(a) [2 pts] If a current I flows through the closed circuit of the 2 wires
and 2 springs, find an expression for the magnetic induction By (2)
created by the first wire at the location of the second. What is
the direction of this B1(2) field (give the direction as up, down,
left, right, into, or out of the page)?

(b) [2 pts] Find an expression for the magnetic force F((2) on the
second wire due to the B;(2). What is the direction of this force?

(c) [2 pts] Find an expression for the magnetic force F(1) on the first
wire due to the magnetic induction created by the second. What
is the direction of this force?

(d) [4 pts] Are the springs stretched or compressed from equilibrium?
Using the above results, find an expression for the current as a
function of the amount the springs are stretch/compressed.
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5. In spherical polar coordinates the solution to the Laplace equation
V2d(r, 0, ) = 0, for a spherical region r; < 7 < 7y can be expanded in
terms of spherical harmonics in the following form:

=00 Bl?
2(r,8,9) = (Ae,m i Te;fi’) Y6, 9),
£=20

where Agy,, and By, are constants.

(a) [3 pts] If the potential ®(r,@, ) is given on a sphere r = a but
satisfies the laplace equation everywhere else, what is the form of
the potential inside (0 < r < a) the sphere? Outside (a <7 < 00)
the sphere?

(b) [7 pts] For the particular potential given in the figure, &(r =
a,0,¢) = Vpsinfcos¢, what is the potential inside the sphere?
Outside (a < 7 < 00) the sphere?

Recall that the spherical harmonics are ortho-normal on the sphere and

for{d=1
Y—l — 3 ol —up
(0, 9) = g, sin fe™%,
Y2(0,4) = \/% cos 8,

YiO,¢) = -4 é%; sin fe'.
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6.

A point dipole with dipole moment p = p(sin aX + cos « %) is located
on the z-axis a distance d from a large flat grounded conducting plate
situated in the z=0 plane (see the figure).

(a) [2 pts] The part of the total potential in the region z > 0 caused
by the induced surface charge on the grounded conductor at z =0
is the same as the potential of an image dipole. What is the dipole
moment p; of the image dipole and where is it located?

(b) [3 pts] What is the total electrostatic potential in the region z 2 07

(c) [3 pts] How much work must be done to remove the dipole from
z=d to z = 400
(d) [2 pts] When at z = d what force does the dipole experience?

Hint: The electrostatic potential caused by an ideal point dipole located
at the origin (r = 0) with dipole moment p = p*% + p'§ + p*Z is

Be(r) = — (Giaussian units

Bgi(r) = - ST units
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1. A plane monochromatic electromagnetic wave of wave vector k;, ampli-
tude Ey;, and angular frequency w is incident at the planar interface of
two dielectric, non-magnetic (4 = po in SI units), non-absorbing media

(ie.,

have real indices of refraction n; and n;). The angle of incidence

is equal to 6;. Part of the incident wave is reflected at an angle 6, = 6;
and part of it is transmitted into the second medium at a transmis-
sion angle #;. Assume the clectric fields of the incident, reflected, and
refracted waves lie in the plane of incidence as shown in the figure.
Assume coordinates are chosen so that the dielectric interface is the
z = 0 plane and the polarization is in the z-z plane.

(a)

[2 pts] Use Maxwell’s equations to derive an expression for the
magnetic induction B associated with a plane monochromatic
electromagnetic wave whose electric field is

E =Egexpi(k -r —wt)

traveling in a homogeneous material described by a real index of
refraction n. Give the relationship of |k| to w.

[2 pts] From the above figure give k;, k,, and k; in terms of their
% and 2 components, and evaluate k - r in the z = 0 plane.

[1 pts] From the above figure give Eq;, Eo,, and Eg, in terms of
their % and Z components.

[1 pts] State the 4 boundary conditions satisfied by the fields
E,B,H, and D at the above z = 0 junction.

[1 pts] Use one of these junction conditions to prove Snell’s law,
nesin@; = n;sinf; (only 2 of the 4 are independent).

[3 pts] Use two of the junction conditions to determine the ratio
of the magnitude of the amplitudes of the reflected and trans-
mitted to the incident electric fields, i.c., evaluate |Eq,|/|Eq;| and
|Eo¢|/|Eq;| as shown in the figure.
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2.

R? + (7 — 2)?

VT2

A
[ RV

z=10

=5

(a) [3 pts] A circular loop of radius R, centered on the origin and z = 0
plane, carries a current /. Find the magnetic field B on the axis
of the loop as a function of the distance z from the center of the
loop.

(b) [4 pts] Use the result of part (a) to find B along the axis of a
solenoid of radius R and length L, uniformly wound withn = N/L
turns per unit length.

(c) [3 pts] Assume that instead of a solenoid you had a cylinder of
radius R and length L made out of a piece of uniformly magnetized
iron with magnetization M pointing along the axis of the solenoid.
Use the solution of part (b) to calculate the magnetic field strength
H and the magnetic induction B along the axis of the cylinder,
both inside and outside.

HINTS:
dw W
= -+ constant.

B wP? VR ra
The bound volume and surface current densities associated with a
smooth magnetization density are respectively

Jb|5] =V X M,

and
KbiS.I =M x n,

where n is the outward unit normal at the magnet’s boundary. The
Gaussian expressions for J, and K, contain an additional factor of cin
the numerators.
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3. A small spherical vacuum bubble of radius a exists inside an otherwise
homogeneous dielectric material whose electric polarization properties
are described by a constant permitivity e. Assume the bubble is cen-
tered on the origin and that the electric field far from vacuum bubble
but still in the homogeneous material is of the form E = FyZ. Because
of the axial symmetry the electrostatic potential ®(r, ) for this prob-
lem can be written as a linear combination of constants times Legendre
polynomials.

(a) [2 pts] What are the boundary conditions satisfied by the fields E
and D fields , and the potential @ at the junction r = a?

(b) [2 pts] Give the electrostatic potential inside the bubble as a com-
bination of constants and Legendre polynomials (keep only non-
vanishing ¢ terms).

(c) [2 pts] Give the electrostatic potential outside the bubble as a
combination of constants and Legendre polynomials (keep only
non-vanishing ¢ terms).

(d) [2 pts] Use the boundary conditions at the r = a junction from
part (a) to evaluate the non-vanishing constants in parts (b) and

().

(e) [2 pts] Express the electric field outside the bubble as an electric
dipole field plus the uniform field EyZ and give the value of the
dipole moment.



4.

(a)

[2 pts] Write down any vector potential that produces the uniform
magnetic induction

B:Boz

[4 pts] What is the magnetic induction B and an associated vector
potential A (B = V x A) produced by a very long wire located
on the z-axis and carrying a current Iy in the +z direction?

[4 pts] A small circular loop of wire of radius a, centered at the
origin and lying in the z = 0 plane, carries a current Iy as shown
in the figure. Derive an approximate expression for the vector
potential at large distances (r >> a) from the loop. Recall that

1 1 ! AW
,z-{HL;w(f_)}
v —r/| 7 T T
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5. An infinitely long, uniformly charged wire of radius a and total charge

per

unit length )\, is at rest on the z-axis of the lab frame.

(a)

(b)

(d)

(e)

[2 pts] Compute the electric fleld E(z,y, z) exterior to the wire in
the lab frame by solving Gauss’s law in that frame. What is the
magnetic induction B(z,y, ) in this frame?

[2 pts] If you are moving in the lab’s negative z direction with
speed v how are your spatial and time coordinates related to those
of the lab’s? To answer this question simply give the Lorentz boost
' = L, x* that relates the two sets of coordinates.

[2 pts] In your frame what is the radius a’ of the wire? What is
the charge/length ) of the wire and what is the current I’ in the
wire?

[1 pts] Combine the E and B fields in the lab into a single elec-
tromagnetic field tensor F*# using F# = —F* and F% = —E*,
In Gaussian units F12 = —B* 2 = —B® and F'® = BY, and in
SI units F12 = —¢B?, F®¥ = —cB*and F¥ =cBY, .

[3 pts] What electric field E ‘(2',7/, 2) and what magnetic induc-
tion B ‘(z/,¢/,2') will you measure exterior to the wire in your
frame? To answer this part you can use your answers for part (c)
or you can compute F' = LFLT.

)\/
Il

Y

Lab Moving Frame
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6. This problem requires the use of Maxwell’s stress tensor T, 11\51

(a) [3 pts] Compute Maxwell’s stress tensor T’ "7 on the z = 0 plane for
a system of two equal and opposite point charges (£Q) located
on the z-axis at r = (0,0, +b) as shown in the figure. For this

application
g 1 YY)
N ssian — | T ‘B~ —EB?
e - (&) - 5.
or .
g R 1
T;\;ISI = (60) ‘:EZEJ e TEQ} .

(b) [4 pts] Evaluate the surface integral

//Tj}dm:/ / T da dy,

over the z = 0 plane.
Hint: Use cylindrical polar coordinates to do the integral.

(c) [3 pts] The following surface integral over the boundary of a closed
volume Vj is the total electromagnetic force on the E&M fields and
their sources contained within that volume

Fi= / Ty dA7.
OVs.

Use this fact to explain your answer to part (b).
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1. A point charge @, is embedded at the center of a sphere of linear dielectric material with

electric susceptibility x., and radius R. If the sphere is centered on the origin, calculate the
following:

(a) [2 pts] The magnitude and direction of the electric displacement D inside and outside
the sphere.

(b) [2 pts] The magnitude and direction of the electric field E inside and outside of the
sphere.

(¢) [2 pts] The magnitude and direction of the electric polarization P inside and outside the
sphere.

(d) [2 pts] The bound surface charge density o, on the sphere and the bound volume charge
density pp inside the sphere.

(e) [2 pts] The total bound charge on the sphere’s surface and the total bound charge inside
the sphere.



2. A point electric dipole with dipole moment p = pg Z is located at the center of a thin hollow,
grounded, conducting sphere of radius .

V4

\o

(a) [2 pts] For general boundary conditions like those given in the figure, i.e., sources are
located at the origin and the potential is given at r = R, a solution to the Laplace
equation in spherical-polar coordinates with azimuthal symmetry (V2®(r,0) = 0 with
no ¢ dependence) can be written as a sum of Legendre polynomials

O(r,0) = Z fe(r) Pe(cos ).
¢

Give the r dependence of each function fy(r).

(b) [2 pts] For the explicit boundary conditions shown in the figure what are the limiting
values of the electrostatic potential at » = R and at r ~ 07

(c) [2 pts] What constraints do the boundary conditions in (b) place on the functions fe(r)?
(d) [2 pts] Give the electrostatic potential inside the sphere.

(¢) [2 pts] Compute the charge density o on the inside surface on the grounded sphere.



o)
fl
S8
S

<P
o

4
——

3. A very thin straight wire (on the z-axis) carries a constant current /o from infinity radially
inward to a spherical conducting shell of radius R to which the wire is attached. Assume
the time dependent charge on the surface of the shell is uniformly distributed and can be
approximated by Q(t) = Qo + Ipt. This time dependent charge causes the electric field in the
space outside the sphere to increase and hence the energy density stored in electric field to
increase. Neglect retardation effects when answering the following.

(a) [2 pts] Calculate the electric field E(t,r) as a function of distance for r > R from the
center of the spherical shell due to Q(t).

(b) [2 pts] Calculate the energy U(t) stored in the electric field in the region Ry <7 < Ry
where R < Rj.

(c) [2 pts] Calculate the magnetic field B(r, p) caused by Iy at the surface of a thin cylinder
(p = b < R) that surrounds the wire on the z-axis (z > R) .

(d) [2 pts] Use your E(t,7) and B(r, p) fields to calculate the Poynting vector on the surface
of the cylinder. Assume the cylinder is so small in diameter that the electric field is
approximately tangent to the cylinder’s surface.

(e) [2 pts] Use the Poynting vector to show that the rate energy leaves the part of the wire
between R; < r < Ry equals the rate of change of the energy stored in the electric field
calculated in (b).
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4. X-rays of a fixed angular frequency w which are incident on a metallic surface at an angle ¢
(relative to the normal) that is greater than a critical angle fp(w) are totally reflected.

(a)
(b)

(d)

[2 pts] Assume you know the index of refraction of the metal is n(w) and that it’s value
is less than 1. Use Snell’s law to calculate the critical angle 0y(w).

[3 pts] Assume the electrons in the metal behave as if they are as completely free as elec-
trons in a plasma. As the wave penetrates into the metal each free electron is accelerated
by the x-ray’s time dependent electric field (a wave o Ege ™). Calculate the electron’s
steady state motion as a function of time in response to x-ray’s electric field.

[2 pts] Knowing the steady steady state motion of the electrons from (b) calculate each
electron’s contribution to the polarization density as a function of the electric field.

[3 pts] Assuming the metal contains 7. free electrons per unit volume, you can now
calculate the index of refraction n(w) caused by the free electrons. Assume that p = g
and that only the electrons are contributing to ¢.
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5. Consider a half-wave antenna (length £ = )\/2, see the figure) centered on the origin and

aligned with the z-axis . The antenna is driven by an alternating signal (w/k = vA = c)applied
to its center which produces a current in the antenna given by
I(z,t) = Iycos(kz)sin(wt),|z] < £/2
= 0,z > ¢/2,

(a) [2 pts] Give a 1-dimensional integral expression for the retarded vector potential A(¢,r) =
A*(t,r,0) Z for this antenna using

J(t —|r —1|/c,t! 1
A(t,r) = Ko (L= fr—rl/er )dgr’, B0 4 2 in Gaussian units.
A v — 1| 4r c

(b) [3 pts] Evaluate your integral from (a) assuming [r| 3> £ ,ie., assume

1 1 1 1
r—r|=r—2cos0+0(=), and ——==-+0{=5].
T v —r/| r r2

You only need to keep these terms if you want to find the radiation part of B. The form
of the integral you will need to evaluate is

w/2 9 £h) s
/ cos(z) sin(a + bx) = cos(} )ng<a>.
~m/2 1-—-b

(c) [3 pts] Calculate the radiation part of B using B = V x A = (VA?) x Z and the radiation
part of E using

Erg = (c)Bmd x T, ((,) —5 1 in Gaussian units.

Remember that the radiation parts are those that are oc 1/r for large r > £. Also recall
that V6 o< 1/r and V(1/r) o< 1/7?

(d) [2 pts] Calculate the time average of the Poynting vector (S) as a function of (r,0) for
r > ¢ and plot (sketch) |(S)| as a function of ¢ with r = constant.
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6. A green laser pointer (wavelength = 550 nano-meters) has a power of 50 milliwatts with a 2
millimeter beam diameter. Assume the beam can be represented by a plane electromagnetic
wave with fields

EY = Eysin(kz — wt),
B* = Bgsin(kz — wt),

confined to a cylinder of diameter 2 mm. As with any wave the wave number k is related to
wavelength A by k& = 27/X and w is related to the frequency f by w = 2.

(a) [2 pts] If the beam travels in vacuum use Maxwell’s equations to find the numerical value
of f and to relate By to Ey.

(b) [3 pts] Compute the Poynting vector and the energy density at time t and position r for
the above wave as a function of Fj.

(c) [2 pts] What is the time average of the above two quantities at a position within the
beam?

(d) [3 pts] Use one or both of the above time-averages and the known 50 milliwatt power of
the laser to determine the amplitudes Fy and By.
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1. A large flat thin disk of linear magnetic material of thickness d and
radius R > d which has magnetic permeability u is placed in a uniform
magnetic field H = HyZ as shown in the figure. The bottom of the slab
is in the x-y plane at 2 = 0 and the top is at z = d. Assume the
source of the uniform magnetic field is far away and assume the slab
is infinite (R — o0) in the x-y directions. In addition to possessing a
linear magnetic susceptibility x,, related to the materials permeability,
the slab also possesses a uniform permanent magnetization Mz,
producing a total magnetization density

M = xmH + Myz  where x5 = 4nx&.
Recall that in SI (mks) and Gaussian (cgs) units
B57 = po(HS + M), BY = HY + 47M°.

(a) [1 pts] In this problem you are to write the magnetic field H as
the gradient of a scalar potential :

H = —V(I)j\,].

Explain why you can do this.

(b) [3 pts] What is the form of the Poisson equation satisfied by @
inside and outside the slab, i.e.,

Vi, =7

Solve this equation for the 3 spatial regions separated by z # 0 and
z # d. Observe that there is no x or y dependence in this problem.
Make sure your ®,; far above and below the slab produces the
uniform magnetic field H = HyZ.

(¢) [2 pts] What general boundary conditions are satisfied by H and
B at the two junctions z = 0 and z = d. What conditions are
placed on ®;; and its z-derivative by these junction conditions for
this particular problem?

(d) [2 pts] Use your solutions from (b) and boundary conditions from
(c) to find P, inside and outside the slab.

(e) [2 pts] Calculate H and B inside and outside the slab.
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R<dg! d

2. Consider a tiny sphere of radius R, composed of a linear dielectric
material of susceptibility x. and permittivity ¢ which is a distance d
from a thin but very long (R << d << {) wire possessing a uniform
line charge per unit length A. Recall that

D=¢E where &=e"T/eg=1+x"=1+4nxs

P =y.E where Xfl = 47rxf
D% = (E% + P*7), D = EY 4 4nP¢

The electrostatic potential for a point dipole at the origin is

5T _ 1 p-r
drey 137

c _bP'r
iiJ =5

b

(a) [2 pts] Calculate the magnitude of the electric field Ey;re at the
center of the sphere caused by the charge on the wire.

(b) [2 pts] As an approximation, assume the dielectric sphere is cen-
tered at the origin in a uniform electric field of the form Ere X.
The polarization charge induced on the sphere’s surface produces
an electric dipole field Eg;0 outside the sphere and makes a uni-
form contribution to the net uniform field Ey X that exists inside
the sphere. Give an expression for the electric dipole field Egpore
as a function of the sphere’s uniform polarization density P if the
dipole is oriented in the % direction, i.c., if p = pok = 4/3 TR3P.

(c) [3 pts] What boundary conditions must E and D satisty at the
sphere’s surface? Use these boundary conditions to calculate the
net electric dipole moment poX of the sphere?

(d) [3 pts] Compute the force exerted on the sphere by the wire by
computing the force on a point dipole in the non-uniform electric
field caused by the wire. Is the sphere attracted or repelled by th
charged wire? :



3. Consider two concentric conducting spherical shells of radii ¢ and b
with b > a. The space between the two shells is a filled with Ohmic
material of constant conductivity o, permittivity €;, and permuability
to. The system is charged such that at time ¢ = 0 the inner conductor
has charge +Qg and the outer conductor has charge —Qg. At times
t > 0 the charge will flow from the inner shell to the outer shell.

(a) [2 pts] Use Gauss’s law to relate the electric field E(t,r) between
the plates to the charge Q(t) on the inner plate.

(b) [4 pts] Use the conservation of charge and
J(t,r) = c E(t,r),

to find Q(¢).

(c) [2 pts] Use Faraday’s law and your electric field to show that
B(t,r) = 0.
(d) [2 pts] Confirm that Ampere’s law is satisfied.
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4. A uniform sheet of current in the (z,y) plane at z = 0 suddenly turns
on at t = 0 and has a surface current density

>

\
)

K(t,r) = 0, t <0,
K(t,r) = K% >0,
(1)

where K, has units of current/length. The corresponding volume cur-
rent density is
J(t,r) =K(t,r)d(2).

The retarded vector potential in SI units and in the Lorentz gauge for
an arbitrary current source can found by integrating

A(t,r) = (Hﬂ) / J(t —|r—x'|/c, 1) B

dr v —r/|

In Gaussian units the factor po/4w is replaced by 1/c.

(a) [4 pts] In cylindrical polar coordinates evaluate 2 of the 3 integrals
in the above expression for A(t,r), i.e., integrate over 2’ and ¢
leaving A(t,r) as an integral over the single coordinate p'.

(b) [3 pts] Evaluate the o/ integral giving A(f,r) as a function of ¢
and z only.

(c) [3 pts] Compute the magnetic induction from your vector poten-
tial.



Reflected wave

Incident

Transmitted wave

wave z

€1

€2

5. A linearly-polarized harmonic (e™**) plane electromagnetic wave trav-

eling

to the right in a homogeneous dielectric medium described by

a real dielectric constant e;, strikes a second homogeneous dielectric
material described by another real dielectric constant e; > ¢€; (see the
figure). Assume that both materials have no magnetic susceptibility,
xm = 0, and that the incidence angle is 0° (1.e., the wave is traveling
perpendicular to the junction). Assume the incoming wave is polarized
in the Z direction and that its electric field amplitude is Ep, i.e., assume
the incoming electric field is the real part of

(a)

(b)

E = Eye't=vt g,

[2 pts] Give the direction of the magnetic induction B associated
with the above incoming wave and give its amplitude By as a
function of Ey. Also give k as a function of w.

[2 pts] Give similar expressions for E and B of the reflected and
transmitted waves. Use Ej and Ej for the respective electric field
amplitudes of the reflected and transmitted waves.

[3 pts] Apply the boundary conditions at the junction/interface
between the dielectrics to the incoming, reflected, and transmit-
ted wave to compute Ej and Ej as functions of Ey and the two
dielectric constants ¢; and es.

[3 pts] Evaluate the reflection and transmission coefficients, R and
T, for above waves. Recall that R and T are computed from ratios
of time averaged Poynting vectors which are defined by

S=ExH, (ST)

S=—E xH. (Gaussian)

c
4
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6. In the lab you measure a uniform electric field and a uniform magnetic

induction
E = Ey(cos45° % + sin45° §),

B = B, %,

where By = Ep in Gaussian units or By = Eqy/c in SI units. The goal
of this problem is to compute the E' and B’ fields an observer sees if
moving relative to the lab with a velocity v = vy Z.

(a) [2 pts] Combine E and B into a single 4x4 anti-symmetric electro-
magnetic field tensor FoP,

(b) [2 pts] Give the 4x4 Lorentz boost L§ that transforms the lab co-
ordinates (ct, z,y, 2) into the moving frame’s coordinates (ct', #', ¥/, 2')
ie, z/® = L3zf where 2 = (ct,z,y,z). In matrix notation
' = Lz.

(¢) [3 pts] Find E’ and B’ by by boosting the F tensor, i.e., compute
F'ef — L2 7 which in matrix notation is F' = LFL'

(d) [3 pts] For what value of vy will E and B’ be parallel?
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2. use only the reference material supplied (Schaum’s Guides),

@

write only on one side of the page,

-

start each problem by stating your units e.g., SI or Gaussian,
5. put your alias (NOT YOUR REAL NAME) on every page,

6. when you complete a problem put 3 numbers on every page used for
that problem as follows:
(a) the first number is the problem number,

(b) the second number is the page number for that problem (start
each problem with page number 1),

(c) the third number is the total number of pages you used to answer
that problem,

7. DO NOT staple your exam when done.



1. (a) [2 pts] Write down all four of Maxwell’s equations in differential
form for the four fields E, H, D, and B. Which two are homoge-
neous equations and which two are non-homogeneous equations?
Which one is called Faraday’s law of induction, which one is called
Ampere’s law, and which one is equivalent to Gauss’s law?

(b) [1 pts] Maxwell’s equations simplify for fields defined in static,
nonconducting, homogeneous, isotropic, and linear materials. Elim-
inate H and D from two of the four equations and simplify these
two equations by assuming B = pH, and D = ¢E, where the per-
mittivity € and permeability p are both real positive constants.
(Do not assume the free charge density or the free current density
vanishes.)

(¢) [2 pts] Using your Maxwell equations from part (a) explain exactly
why E and B can be replaced by potentials ¢ and A. What
freedom (non-uniqueness) exists in ¢ and A for a given pair of
fields E and B?

(d) [2 pts] Replace E and B by ¢ and A in your four Maxwell equa-
tions of part (b) and explain how it is possible to solve them for
¢ and A if these quantities are not unique?

(¢) [3 pts]Given charge and current densities p(r, t) and J(r, t) bounded
in space (i.e., contained entirely in » < R) and static before some
early time t = o, simplify your Maxwell equations from part (d)
by using the Coulomb (V - A = 0) gauge constraint. Give the
retarded solution for ¢ and A to your Maxwell equations as 3-d
spatial integrals.



2. Consider a capacitor composed of two thin concentric spherical metal
shells, the inner one with radius a and the outer one with radius b. The
region between the spherical metal shells is filled with a linear dielectric
with permittivity ¢ = k&/r?. A charge +@) exists on the inner metallic
shell and —@Q on the outer metallic shell.

(a) [2 pts] Find the electric displacement D everywhere in space.

(b) [3 pts] Find the capacitance of the configuration.

(¢) [5 pts] Calculate the bound charge densities within the dielectric
and on its surfaces, and verify that the total net bound charge is
Z€ero.



3. In this problem you will construct the 4-dimensional (4-d) electro-
magnetic stress-energy-momentum tensor from the 4-d electromagnetic
field tensor F*¥ in Gaussian units. Recall that F* is antisymmetric

(F#V o _FVN) and-is-constructed-from components.of the electric and

Aok

magnetic induction fields E and B by choosing
FO?', — "Ei, Fij —_ -‘GijkBk.

Here we use the Einstein convention of summing over repeated indices,
where Greek letters run from 0 to 3, while Latin letters run from 1 to
3. The symbol €% is the totally anti-symmetric 3-dimensional Levi-
Civita symbol and satisfies €!** = +1. The time coordinate is given by
2 = ct, where c is the speed of light and the 4-d metric used to raise
and lower Greek indices is g* = g, = diag(1, -1, -1, —1).

(a) [3 pts] Define the 4-current J* and show that in a region contain-
ing no polarizable materials (¢ = p = 1) Maxwell equations are
written in 4-d form as

4
o, F"" = %J’L, OnFuw 4 0uFn + 0,Fy, = 0.

(b) [1 pts] From Maxwells equations prove that charge is conserved,
i.e., show that
9, J* = 0.

(c) [3 pts] The 4-d stress-energy-momentum tensor is a traceless sym-
metric second-rank tensor, quadratic in the field strengths defined
by

TH = L pmpy - Ly pesp
" in » T per| -
Show that the 4 parts of T can be identified with the electro-
magnetic energy density u by 7% = u, the momentum density g
and the Poynting vector S by T% = T = ¢g* = S%/c, and the
3-d Maxwell stress tensor Ty by T%9 = —T%. Be sure to give u,
g =S/c%, and ﬁjM as functions of E and B.

(d) [3 pts] Use Maxwell’s equations to compute 9,7*". Show that
8, T* =0 in a region where J* = 0 and that this one 4-d vector
equation is equivalent to the local conservation of electromagnetic
energy and momentum in 3-d, i.e., that

ou

——at+V-S—O,
and

og tB
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4. A solution of dextrose, which is optically active, is characterized by a
polarization vector P = 4V x E where + is a real constant that de-
pends on the concentration of dextrose. The solution is non-conducting
(Jgree =-0)-and non-magnetic (M-=-0).- Consider a plane electromag-
netic wave of angular frequency w propagating along the +z-axis in
such a solution.

(a)

[5 pts] Using Maxwell’s equations show that left and right cir-
cularly polarized waves travel at 2 distinct speeds (v4) in this
medium. Calculate the indices of refraction ny = (cky)/w = c/vs
as a function of w and ~y for left and right circularly polarized
waves. Recall that left (+) and right (—) circularly polarized
waves are of the form

E = Ey (% +iy)e®

[5 pts] Suppose linearly polarized light is incident on the dextrose
solution. After traveling a distance L through the solution, the
light is still linearly polarized but its direction of polarization ro-
tated by an angle A¢. Calculate A¢ in terms of L, v, and w.

Hint: Write ks = k + Ak where

by + k_ ky — ki

d Ak =
an 5

k=

Also recall that the amplitude of a wave linearly polarized at an
angle ¢ relative to the x-direction can be written as a combination
of circularly polarized amplitudes as

st = (52 (52)




X
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Vo sin @ sin ¢
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5. Assume that in spherical polar coordinates (r,6, ¢), the potential on
the surface of a sphere of radius a, centered on the origin, is known to

be V (6, ¢).

(a)

[2 pts] If the space inside the sphere is empty give an expression
for the potential ®(r, 6, $) everywhere inside as an expansion in
spherical harmonics with arbitrary constants. If you knew the
potential V (8, ¢) on the surface how would you evaluate the con-
stants in your expansion?

[2 pts] If the space outside the sphere is empty give an expression
for the potential ®(r, 6, ¢) everywhere outside as an expansion in
spherical harmonics with arbitrary constants. If you knew the
potential V' (8, ¢) on the surface how would you evaluate the con-
stants in your expansion?

[6 pts] If V' (0, ¢) = Vj sin fsin ¢ give exact expressions for &(r, 6, ®)
inside and outside the sphere.

The spherical harmonics are ortho-normal on the sphere and for

{=1
. 3 . —ip
Yl <9,¢) = '8—,”' S 9@ y
0 3
Y)(0,¢) = \/ZTFCOS@,

YHO,¢0) = —\/%sinf)ew,
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6. In this problem you are to describe properties of waves penetrating into
conductors. If the conductor is static, homogeneous, isotropic, linear,
and ohmic, you can replace D, H, and J in Maxwell’s equations using

D=c¢E, B=uH, J=0E,

where ¢, i, and o are real positive constants. For simplicity you can
also assume the wave is a harmonic plane wave propagating in the z-
direction, e.g., its electric field and magnetic induction are of the form

B = Eoei(szwt)fc)
B= Boei(k,z—th)y.

(a) [4 pts] Use Maxwell’s equations to relate k to w. Explain what
the imaginary part of k = kge + iky.,, does to the amplitude of the
wave.

(b) [3 pts] Use Maxwell’s equations to relate By to Ey. Explain what
the phase of k = |k|e*® does to the phase of B as compared to the
phase of E.

(¢) [3 pts] If the conductor is a “good” conductor, ie., if for low
frequencies, € < o/w, what does k simplify to, what is the atten-
uation distance (skin depth) of the wave, and what is the phase
delay of the magnetic induction B relative to the electric field E?



E & M Qualifier

August 20, 2015

To insure that the your work is graded correctly you MUST:

—

. use only the blank answer paper provided,

2. use only the reference material supplied (Schaum’s Guides),

3. write only on one side of the page,

4. start each problem by stating your units e.g., SI or Gaussian,
5. put your alias (NOT YOUR REAL NAME) on every page,

6. when you complete a problem put 3 numbers on every page used for
that problem as follows:
(a) the first number is the problem number,

(b) the second number is the page number for that problem (start
each problem with page number 1),

(¢) the third number is the total number of pages you used to answer
that problem,

7. DO NOT staple your exam when done.



1.

(a) [4 pts] Use é-functions to give volume charge densities py for each
of the following:

i. Give ps(p, ¢, z) in cylindrical-polar coordinates for a cylindri-

cal shell of charge of a radius p = b, centered on the z-axis,
which has a surface charge density o/(¢, 2).

. Give pr(p, ¢, 2) in cylindrical-polar coordinates for a line of
charge located at p = b, ¢ =  which has a charge/length =
)\f(z)

iii. Give ps(r,0, ¢) in spherical-polar coordinates for a spherical
shell of charge of radius r = a, centered on the origin, which
has a surface density o/(6, ¢).

(b) [2 pts] Use Gauss’s law to compute the electric field caused by the
cylindrically symmetric charge density

Ao 2 /32
_ —p*/b
pf(p) - 7Tb28 P '

(c) [2 pts] What charge density produces an electrostatic potential
(I)(Z) =S ‘/Oe_zz/az'
(d) [2 pts] What charge density produces an electrostatic potential

®(z) = —Ey |2|.
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2. The magnetic field of a plane wave in vacuum is

B = Bysin(kz — wt) ¥,

where ¥ is a unit vector pointing in the positive y-direction.

(a)
(b)
()
(d)

[1 pts] Give the wavelength X of this wave as a function of k,w
and/or ¢ (the speed of light).

[2 pts] Write an expression for the wave part of the electric fleld
E associated with the above magnetic field.

[1 pts] What is the direction and magnitude of the Poynting vector
S associated with this wave?

[1 pts] Assume this plane wave is totally reflected by a thin con-
ducting sheet lying in the y-z plane at x=0. What is the resulting
time averaged radiation pressure on the sheet? Recall that the
momentum density g and the Poynting vector of the incoming
and reflected waves are related by g = S/c?

[2 pts] The component of an electric field parallel to the surface
of an ideal conductor must be zero on the surface. Using this
fact, find expressions for the reflected electric and magnetic fields.
Recall that the electric and magnetic fields vanish within an ideal
conductor.

[3 pts] An oscillating surface current K flows in the thin conduct-
ing sheet as a result of this reflection. Along which axis does K
point and what is its amplitude? Hint: To find K use an Ampe-
rian loop with one side just inside the conducting sheet and one
side just outside the sheet.
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(a) |5 pis] A eirewlar loop of wire of radius & earrios o current £ as
showr in the frst figure. Find the magnitude and direction of the
magnetic induetion B(x) on the axis of the loop a8 a funetion of

Z.

(b |5 pral Use the result of part (o) wo find Bz} along the axiz of
sodenedd of rading 1 and lenpth L owoud with o tarns per andt
lengths (total twrns N = ox L)

Himt:

il B x ¢ comstant
| Wi oPR @t + COnSLALL.
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4. (a)

(b)

[3 pts] What is the Dirichlet Green’s function G®(r,r’) for the
Laplace operator for the 3-dimensional volume interior to a sphere
of radius r = a?

{ Hint: The Dirichlet Green’s function vanishes on r = a and the
method of images gives the Green’s function as the sum of poten-
tials of two point charges, a positive unit charge located inside the
sphere and a larger negative point charge located outside. }

[2 pts] If a grounded conducting sphere of radius r = a contains
a positive charge ¢ at z = a/2 and a negative charge —q at z =
—a/2, what will the electrostatic potential be inside the sphere?
[5 pts] If a conducting sphere of radius r = a, centered at the
origin, is cut in two halves along the z = 0 plane and the top
half (z > 0) is held at potential V; and the bottom half (2 < 0)
is grounded, what is the potential on the +z-axis, inside the
sphere r < a .
{ Hint: Use spherical polar coordinates and recall that the Dirich-
let Green’s function can be used to calculate the electrostatic po-
tential via:
D /

() = —— [ p()GP(r, )i — — / ow) 20T 4y

av

- drey Jy 4 on'

In this case 25 = & and da’ = a®sin ¢'d¢'d¢’ -}



5. A very-very long {sc-length) wire of radius o s contered along the 2
axts, The wire, at ress 1o the lab, s uneharped and earries gndform
current I in the % dirpetion.

(a) |2 pts] Compute the magnetie indurtion B as a funetion of (2, )

for-adl /7% L y* > o (outside the wire)

{by [2 ps] Give the electro-magnotie field tensor Feflr o) in the lab
o frame for 2T 4 pf = afoutside the wire),

{e) |3 pesf :
An observor is moving with constant veloeity v = v in the lab's
4 direetion. Compute Fef{r, o), outside the wire in the
frame of the moving observer, Assame the moving Trane coor
dinates are simply & boost of the lab coordinate in the = diree
tion. Don't forget to write your answer as functions of the moving
frame's coordinates,

() [3 pos]
Cive the electrie and magnetie fields B and BY, outside the wire
in the moving frame.




6. In the absence of polarizable and/or magnetizable material (i.e., only
free charges and currents present) Maxwell’s equations, in the Lorenz
gauge, reduce to the inhomogeneous wave equation:

d cp )

A* | _Amw | J? (0 9
O w ==Y where []= (?:—87) - V-

A? J?

A time dependent charge Q(t) = Iy t, t > 0 is fixed at the origin

Iy

of a cylindrical polar coordinate system (p, ¢, z) The charge increases
linearly with time because a constant current Iy flows in along a thin
wire attached to the charge on its left, see the figure. Assume the wire
carries no current for ¢t < 0, however, at t = 0 a current I abruptly
starts flowing in the +z direction and remains constant for t > 0.
Assume the wire remains neutral except for the charge that grows at
the origin. Find the following quantities at time ¢ for points (p, ¢, 2):

(a) [4 pts] The retarded scalar potential ®(t,p, ¢, z), for all ¢ and at
all points in space.

(b) [6 pts] The retarded vector potential A(t,p, ¢,z) for all t at all
points z > 0.

Recall that the retarded solution to OF(¢,r) = S(¢,r) is
1 [Stemtlar)s,

T in r— 1|

F(t,r)

You might need the indefinite integral

dX
/\/——E_z_—__—“=ln(vX2+a2+X).
a



E & M Qualifier

January 14, 2016

To insure that the your work is graded correctly you MUST:

[y

use only the reference material supplied (Schaum’s Guides),
use only the blank answer paper provided,

write only on one side of the page,

. put your alias (NOT YOUR REAL NAME) on every page,

start each problem by stating your units e.g., SI or Gaussian,

S

when you complete a problem put 3 numbers on every page used for
that problem as follows:
(a) the first number is the problem number,

(b) the second number is the page number for that problem (start
each problem with page number 1),

(c) the third number is the total number of pages you used to answer
that problem,

(d) try to answer every problem, but if you don’t please include a
single numbered page stating that you have skipped that problem.

7. DO NOT staple your exam when done. Paper clips will be provided.



1. Consider a Lorentz frame K containing no polarizable materials in
which there is a magnetic induction B = B*X + BY§ + B*Z but no
electric field.

(a) [1 pt] For the above magnetic induction, write down the 4-dimensional
electromagnetic field tensor F*# in frame K as a matrix.

(b) [1 pt] Write down a homogeneous Lorentz boost A% in the y-
direction from frame K to another frame K’ which is moving with
velocity v = vy ¥ as seen by observers that are at rest in frame K.

(c) [2 pt] Apply the boost A% to Fob8 to find F'*8, the field strength
tensor as seen in the moving frame K’ .

(d) [2 pt] What are the electric field components E'*, E", and E" and
the magnetic induction components B, B, and B’ in frame K'?

(e) [4 pt] Consider explicitly a B field in the K frame caused by an
uncharged infinitely long and thin wire centered on the y-axis
(z,z) = (0,0) which carries a current I in the +y direction. As-
sume that no polarizable materials are present, i.e., assume ¢, = 1
and iy = 1. What are B'(z',y/,2') and E'(2',y/,2’) in the K’
frame, written as functions of the K'-coordinates? Where does E/
point?
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2. Consider a very Tong hollow eylinder made of iron thit s placed with is

axis perpendicular to a uniform external magnetie induction By = By®.
Assmne tho inner radiug of the hollow evlinder i o ad the cuber radius
is b, Also assume the permenability g oof the fron is a constant. The goal
of this problem s to ealeubate the magnetie induetion B inside the

()

{b)

hollow-region (< p=-

[3 pif Starting with Maxwell's equations for statie B and H ficlds
and assuming that there is no free carrent density, Jp = 0, prove
vhiet the feld H ean be writton as the nogative gradiont of o mag-
netie sealar potential $y that satisfics the Poisson equation with
all appropriate soures term. For this partieular problem the Pols
son equation reduces to the Laplaee pouation exeept at the evlin-
der’s boundaries.

[3 pt] Derdve the appropriate boundary conditions to be satisfied
lw the sealar potential By and the megnetie field H at p = o and
o h

H pt] Solve for the H field in the intevior region o < a. iI’im*

sobve the Laplace equation for <y in the three regions il “ ¥

o< r < b oand b < r < oo, and appropriately match t}um,
solutions at the evlinder’s boundaries.  Show that Tor large g,
{1, when g — oo) the fron provides complite shiclding from the
magnetic fiold, be, H = 0 for p < @

Hint:

V‘qﬂ?u

1 4’? ( ﬁ“}ﬂw‘) | @y ﬁﬂ‘iﬁ'&i_
.‘3' l?P'




4. A very Jong stradghy condnctor has o oelreular eross seetbon of radiug
B and parries a eurrent §. Inside the condustor, there is a oylindriesl
hole of rading e whose axis is parallel to the axis of the conductor amd
p distance b from 16 (o 4+ b < R). The goal of this problem st show
that the magnetie induetion Bir, v} inside the hole is uniform and 1o
palonlate its walue. Assume the wire of radius B is centered on the

axis,

fn, b (2,0 = (0,00 and the eylindrieal hole of radins o s contered

ab (o, d = (b, 00, Assume the eurrens s uniformly digtrtbuted tn the
comducting material.

()

(b

[3 ubsd

Ienoring the hole, use Amperds Law to find the magnetic indue-
tiom, Bg{z, ), inside a homogeneous eylindrieal wire of radins R
that carrics o uniform ourrent density Jy = Ty/mR® I the b
direction.

[4 pts] Ignoring the eurrent in the wire of rading B assume an
Imaginary wire of radius o loeated at (2, ¥} = (5, 0) carries a eur-
rent density J, = 1 /ae® in the -2 direetion. Use Amperes Law
to find the magnetic induction, By(x, ¥}, inside the imaginary win
of radius o cansed by W1y,

113 pts

By adjusting the two eurrent densities to have the same magni-
tucde, mmd superimposing the two magnetic indoetions, find the
rosulbant Ble, v) fleld instde the hole n the originel conduetor
that carries n current [ deseribed at the beginning of this prob-
lean,



4. Consider a large fat interfare at 2 = O botwesn a diclestric and froe

apace. The region where 2 < 0 38 Blled with a uniform linear dielee
trie material with a relative permittivity ¢, {equivalently a dieloctrie
constant ¢,). 1f the culy froe charge prosont §s a point charge ¢ > 0
sitnated & distance d from she origin at rg = {0,0,d), where d > 0,
atswer the following 5 questions.
To angwer thom von should look st the electrie field as o sam of twe
fields, & conlomb part B, caused by the point change g and a second
part By enused by the bound surface charge m{z, u) loested on the
z = 0 intorface,

(a)

{uf)

[2 pts] Write two sspressions for the 2 component of the toal
eloctrie feld E* = EF + B one just sbove the dicleetrie’s surface
and ona just below the dicleetrie’s surface, The EF part is direetly
relatod to o, by Ganss’s law,

) |3 pts] Use the vwo eloetrie fields from part (4] aud the eontinuity

of the normal part of the displacement veetor €57 to solve for

oz, u) a5 a funetion of the known eoulembs feld E5(x, v, 0).

|4 prs] Calenlase the eleetrie field st she position of the erbpargzee
g caused by the bonnd surface charge oy You simply have to
intearrate o superposition of conlomb flelds. From symmetry she
resulvant field points in the 22 direction,

[2 pts] Show that this resultant bound charge field at (0, 0.4} can
e intorproted as the feld of o single fmage charge ¢ loeated at
point rp = {0, 0, —d). What is the value of g7

n
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5. In this question a monochromatic linearly polarized plane wave is scat-
tered by a free electron. If the initial speed of the particle is non-
relativistic (i.e., 8 < 1) and the frequency of the plane wave satisfies
hv < mec?, then the electron is accelerated by the plane wave’s elec-
tric field in accord with Newton’s 2"¢ law, but its speed remains non-
relativistic. Due to its acceleration, the electron emits radiation in all
directions thus scattering the original plane wave. See the figure.

(a)

(b)

[2 pts] Assume the plane wave travels in the z-direction and is
polarized in the x-direction as shown in the figure. Compute the
acceleration, B(t) = V(t)/c, of the electron caused by the plane
wave’s electric field.

[3 pts] Compute the electric field E, the magnetic induction B, and
the Poynting vector S of the radiated wave. { Hint: In Gaussian
units Eg = ¢[f x (& x B)]/(cR)|rety Be = & x E, and Sg =
(¢/47)E x H. In SI units Eg; = (1/47¢o)Eg, Bsr = (1/¢)Bg, and
SSI =FE x H. }

[3 pts] Use your results to compute the differential scattering cross
section

do(9,¢) <S-dA>
dQ | <S> |60
In the above <> stands for a time average and | < Sg > | is the
magnitude of the time averaged Poynting vector of the incoming
plane wave. The detector area element dA subtends a solid angle
6Q) at the radiating electron and is typically of the form

dA = R*§Q .

[2 pts] Integrate your differential cross section over all (9, ¢) di-
rections to obtain the total Thompson cross section or.



(a) [2 pts] In a homogeneous, linear and isotropic conducting ma-
terial whose electromagnetic properties (at low frequencies) are
described by constant (and real) values of the permittivity, per-
meability,-and-conductivity-respectively-¢, u,-and-o,-show.-that
Maxwell’s equations require that the electric field satisfy the tele-
graph equation

O’E OE
V'E = ey ~ kg =0 (8D
2
V’E ~ OB dmon 0B 0. (Gaussian)

2t & ot
(b) [3 pts] Given a linearly polarized plane wave of angular frequency
w whose electric field is of the form

E(z,t) = Real { Ey ei(kz"‘”t)} X,

evaluate k? as a function of ¢, u, o, and w.
(c) [2 pts] Find the real and imaginary parts of k assuming o >> we.

(d) [3 pts] Using your results from (c) find the skin depth ¢ of the
conductor. The skin depth is defined by the depth at which the
wave’s amplitude decreases by e}, i.e.,

E(z+6,0) 1

|E(z,t)] e



E & M Qualifier 1

January 11, 2017

To insure that the your work is graded correctly you MUST:

. use only the blank answer paper provided,

. use only the reference material supplied (Schaum’s Guides),

. write only on one side of the page,

. start each problem by stating your units e.g., SI or Gaussian,

. put your alias (NOT YOUR REAL NAME) on every page,

. when you complete a problem put 3 numbers on every page used for that problem as
follows:
(a) the first number is the problem number,

(b) the second number is the page number for that problem (start each problem with
page number 1),

(c) the third number is the total number of pages you used to answer that problem,

. DO NOT staple your exam when done.



Problem 1: Electrostatics

Consider a capacitor composed of two concentric spherical metal shells, the inner one with
radius a and the outer one with radius b. The region between the spherical metal shells is
filled with a linear dielectric with permittivity € = T% Place charge +@Q on the inner metallic
shell and —(Q) on the outer metallic shell.

1. Find the electric displacement D everywhere in space. [3 points]
2. Find the capacitance of the configuration. [3 points|

3. Calculate the bound charge densities in the linear dielectric and verify that the total
net bound charge is zero. [4 points]
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Problem 2: Magnetostatics

Consider a sphere of radius R composed of magnetic material with a magnetization given
by M = M,z.

1. Starting with the Maxwell equations for a static magnetic field H and a static magnetic
induction B, prove that the magnetic field H can be written in terms of a scalar
magnetic potential. From this derive the Poisson equation that solves the potential.
In addition, derive expressions for the magnetic volume charge density and the bound
current density from the Maxwell equations. [2 points]

2. Derive the boundary conditions on H and B. Be sure to clearly define the effective
surface magnetic charge density and the surface magnetic current density. [2 points]

3. Derive the fields inside and outside the sphere. You can assume that B and M are
parallel. [6 points]
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Problem 3: Maxwell equations 4

Consider a medium with nonzero scalar conductivity o (Jy = ok is the current density),
permeability p, permittivity €, and with no free charge (p; = 0).

1. Write down the set of four differential Maxwell’s equations appropriate for this medium.
[2points]

2. Derive the wave equation for E in this medium. Highlight the additional term arising
from the non-zero Jy. [3 points]

3. Consider a monochromatic wave moving in the +z direction with £, given by
Ey = A ei(km*wt)

Show that this wave has an amplitude A which decreases exponentially. Find the
attenuation length Az, the distance after which the amplitude has decayed by a factor
of 1/e from its initial value, as a function of 0. Show that your solution correctly
predicts Az = 0 if o0 = 0. [5 points]
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Problem 4: EM radiation 5

A particle of mass m and charge ¢ is attached to a spring with force constant k, which is
hanging from the ceiling. The particle’s equilibrium position is a distance h above the floor.
Suppose the particle is pulled down a distance d below its equilibrium position and released
at time ¢t = 0. Useful information: When the wavelength is much greater than the spatial
amplitude, the electric field from an oscillating dipole is

2 .

toPow® [ sinf

E=—-——- cos{wt — |wr 1

P (222 cosfut = /) )

1. Calculate the intensity of the radiation hitting the floor, as a function of the distance
R from the point directly below the point particle. Assume d € A <« h and neglect
radiative damping of the oscillator. [3 points]

2. At what R is the radiation most intense? [2 points]

3. Assume the floor is of infinite extent. Calculate the average energy per unit time
striking the entire floor. How does this compare to the total power radiated by the
oscillating charge? [3 points]

4. Because energy is lost in the form of radiation, the amplitude of the oscillation will
gradually decrease. At what time 7 has the oscillator’s energy been reduced to 1/e of
its initial value? Assume the fraction of the total energy lost in one cycle is very small.
[2 points]



Problem 5: Special relativity

Consider two frames K and K" with a unilorm relative velocity. Observers at rest in K’
are moving along the positive z axis of K with a velocity v. 8 = v/c, v = (1 — %)7'/2, and
¢ is the speed of light.

1. Let z” be the four-dimensional space-time vector in the K frame with the components:
20 = ct, o' = z, 2% = y, and 2® = 2z, and 2’* be the corresponding vector in the K’
frame with the Lorentz transformation of z’* = A*z”, where Einstein’s summation
rule is implied. What are the components of A#? [2 points]

2. An object is moving with a three-dimensional velocity @ in K, and the velocity is
measured to be u’ in K’. What are the components of the object’s four-velocity in K’
in terms of u,, u, and u,? [4 points]

3. Let 0 be the angle between @ and z in K, and ¢’ be the angle between v’ and 2’ in K.

Show that —
u' sin
tanf = ———. 2
an v(u' cos 0 + v) 2)
[2 point]

4. A source is emitting isotropically in its rest-frame and moves with an ultra-relativistic
velocity in K with v > 1. Show that in K half of the radiation power is concentrated
in a cone with a half open angle of 1/v. [2 points]
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Problem 6: Relativistic electrodynamics -

The Lagrangian for the EM field generated {rom a 4-current j, is given (in SI units) by
L= L F™F, A" 3
- ——Z;L_(; 7 /1,.7 ( )

with F,, = 8,4, — 0,A,, F* = 1em P Fy, Ay = (d/c, —A) and j, = (cp,—J) and where
02 = 1/60/,L0.

1. Show that £ is invariant under a gauge transformation A, — A, +9,A(t, Z). (2 points]

2. Derive the covariant form of Maxwell’s equations from the Euler-Lagrange equations
using L£(A,,d,A,) . [4 points]

3. Show that these reduce to the usual form of Maxwell’s equations in 3-vector notation.
[4 points]
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To insure that the your work is graded correctly you MUST:

. use only the blank answer paper provided,

. use only the reference material supplied (Schaum’s Guides),

. write only on one side of the page,

. start each problem by stating your units e.g., SI or Gaussian,

. put your alias (NOT YOUR REAL NAME) on every page,

. when you complete a problem put 3 numbers on every page used for that problem as
follows:
(a) the first number is the problem number,

(b) the second number is the page number for that problem (start each problem with
page number 1),

(c) the third number is the total number of pages you used to answer that problem,

. DO NOT staple your exam when done.



Problem 1: Electrostatics

A non-conducting solid sphere of radius R carries a charge density p(r) = kr (where k is a
constant).

(a) Find the electric field at a distance r such that r > R [1 point]
(b) Find the electric field at a distance r such that r < R [1 point]

(c) State the boundary conditions on the electric field components on the surface of the
sphere, and show that your answers to parts a) and b) are consistent with them.
HINT: The surface charge density of the sphere is zero in this case. [1 point]

(d) Calculate the electric potential for all r using lim, o V(r) = 0 [2 points]
(e) Find the work required to assemble this charge [2 points]

(f) If the non-conducting solid sphere was replaced by a conducting solid sphere with the
same total charge, how does that change your answer to parts a, b, and ¢?
Explicitly show that the new field satisfies the new boundary conditions across the
surface of the sphere. [3 point]
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Problem 2: Magnetostatics

Consider a circular loop of radius R which carries a steady current I.
(a) Calculate the magnetic field a distance z above the center of the loop. [3 points]

(b) Now consider a configuration composed of two circular loops a distance d apart and
with currents flowing in opposite directions, as shown in the figure. This configuration
is know as anti-Helmholtz coils. Calculate the magnetic field along the z-axis as a
function of z. [2 points]

(c) For what value of z will the the magnetic field due to the anti-Helmholtz coils be equal
to zero? Give a physical explanation for your result. [2 points]

(d) Calculate the magnetic dipole moment of the configuration. [3 points]
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Problem 3: Waves 4

An-electromagnetic-wave with-an-angular-frequency-of w-passes-from-medium-1; through
a slab of medium 2 (with thickness d), and into medium 3. All three media are linear and
homogeneous, and have a permeability of p,. The index of refraction is ny, ny, and ns for
medium 1, 2, and 3, respectively.

(a)

(b)

In medium 1, there is an incident plane wave (electric field of amplitude E;) and a
reflected plane wave (electric field of amplitude Er). In medium 3, there is a trans-
mitted plane wave (electric field of amplitude Er). In medium 2, there is a plane wave
going toward medium 3 (electric field of amplitude E,) and a plane wave going toward
medium 1 (electric field of amplitude E;). Write down expressions that describe the
electric and magnetic fields in medium 1, medium 2, and medium 3. [4 points]

Apply the boundary conditions for the electric and magnetic fields at the interface
between medium 1 and medium 2. Express E; in terms of F,, Ej, nq, and ny. [1.5
points]

Apply the boundary conditions for the electric and magnetic fields at the interface
between medium 2 and medium 3. Express F, in terms of Er, no, n3 and d. Also
express F; in terms of Ep, ny, ng and d. [1.5 points]

Combine your answers for part b and ¢ to get an expression for Ep/E; in terms of ny,
ng, ng, and d. What percentage of the incident wave is transmitted into medium 37
Express your answer in terms of nq, ng, ng and d. [1 points]

Suppose medium 1 is water (ny = 4/3), medium 2 is glass (ns = 3/2), and medium 3 is
air (ng = 1). Will the thickness of the glass make much difference in how well you (in
medium 3) can see the fish (in medium 1)?7 How would your answer change if instead
you were in the water and the fish was in the air? [2 points]



Problem 4: ED in media 5

In this problem we consider the propagation of an electromagnetic wave through an
optically active media; a media that causes the direction of polarization to rotate about the
direction of propagation. Such a media can be describe using the susceptibility tensor

X1 dxiz O
X=1-txiz2 xu O
0 0 xs33

Furthermore, recall that the polarization of the media and the electric field are related by
P = ¢yxF in SI units. You can assume a non-magnetic linear dielectric material with no
free charges or currents.

(a) Starting from the Maxwell equations, the expressions given in the statement of the
problem, and assuming a transverse electromagnetic wave propagating in the z direc-
tion, derive the magnitude of the wave vector k for the two possible polarizations in
terms of the components of . [4 points]

(b) Prove that the allowed wave modes correspond to circularly polarized waves. [2 points]

(¢) Under the assumption that x12 < xi1, derive an expression for the amount that the
polarization rotates over a distance £. The approximation v/1 — € &~ 1 + ¢/2 might be
useful. [4 points]



Problem 5: Radiation 6

Two oscillating dipole moments cil arrd J; are oriented parallel to each other in the
direction of the y-axis and are separated by a distance L. They oscillate in phase at the
same frequency w. For an observer at a distance r with » > L located at an angle 8 with
respect to the y-axis in the plane of the two dipoles.

(a) Show that [9 points]

dP  w*sinf?

2 2
d_Q = W(dl + 2d1d2 cos o + d2)a (1)

where

_ wlsinf
- c
and where P is the time-averaged power. The units are Gaussian.

) (2)

(b) Show that when L < A, the radiation can be approximated as from a single oscillating
dipole of amplitude d; + ds. [1 point]



Problem 6: Relativity 7

(a) Write down both the homogeneous and inhomogeneous Maxwell’s equations in mani-
festly Lorentz covariant form using the 2nd rank field strength tensor F,, and its dual
F,= %GWMF P7. (State which system of units you are using) [2 points]

(b) Write down the components (in matrix form) of F,,. [2 points]

(c) Lorentz transformations on a four-vector are given by z,, = Ajx,. Write down the
form of Af for a boost to velocity £, = v,/c along the z-direction. [2 points]

(d) Using A%, calculate the Lorentz transformation relations for £ and B for a boost along
the z-direction. [2 points]

(e) Depict the lines of electric field £ from a point charge a) at rest and b) moving with
some large velocity f,. [2 points]
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Problyem 1: 'ElectrostatiCS .

A wire of radius R, is insulated with a dielectric of outer radius Ry that is itself enelosed
in a ffrounded Conduc'ting sheath. Let the charge per unit length on the wire be )\

: \/ Fmd an expression for the electric ﬁeld E, on thc wue at a radius p h"om the center
'ﬂ of the wire. [3 points] :

V{ Find the voltage, V, between the i 1nne1 and outer conductors 2 pomts]

. Calculate the foree per unit volume on. the msulatmg materlal in the coaxial cable. [3
points]

4 Estimate the size of the force for Ry = 1 mm, Ry = 5 mm, ¢ =25, and V = 25, 000

volts. Is this force larger than the force of gravity if the dlelectrlc has the same dens1ty, ,

-~ as water (10° Azlogmms/meter )? [2 points]

' [Hmt T he force per unit volume on a dlelectnc is given by (( — (O)VF calso, ¢ =
B85 x 10-12C2/(Nr?) | | |
g L,\( = b\'lvh;*" %3 : L\ % v/

o L e
v@l = <h’l Do '“%\2"3” \,\ 9?>

¢ |
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Problem 2: Magnetostatics

An infinitely long circular cylinder of radius R (with its axis along the z-dir ection) carrics |
a magnetization M = k:32</), where k: isa cons’rant s 1s the dls’rance from ’rhe axis, and (/5 18
the azimuthal umt vector.

1. Find the bound currend densities (KfJ and Jb) [2 points]
' 2. Ver 1iy ,thdt the total bound cunent m_the cylinder is zero. 2 points]
3. Find the magnetic field B, due to M, ’iﬁside' and outside the (’:ylin’dye'rf. [3 points]

4. Verify the boundary conditions for B at the i,riteriface (s=R). [3 poinfs} ’
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~—  _Problem 3: Waves . .

Consider an electromagnetlc wave propagatmg In a vacuum where there are no charges or
electric currents, Wlth elec’mc field of E(z t) = Egellkz-ot)z

Show that three of Maxwell’s equations can be combined to give V 2F = Mofogp: for a

_ region with no charges or electric curr ents. Show that thr ce of Maxwell’s equations can -
also lead to an analogous equation for the magnetic field B Hint: Start by calculating
V x (V x E). [2 points] . '

\é In the equatlon for E (z t) how are w and k lelated t0 and 607 VV hat is the equation
957 7 for B (z, t) of the electromagnetlc Wave7 Be explicit about how the amplitude, direction
_and phase of B are related to. those of E [3 pomts] '

3 N oW suppose the wave propagates from vacuum into a dlelectuc ma‘cenal w1th permlt—

favity of ¢ = Keg, where k is a positive constant. Assuming a normal anglo of incidence
_ at the vacuum/dielectric interface, calculate the amplitude of the electric field in the
dxelectnc materlal Express your answer in terms of Ey and x. [3 pomts] '

\'/li. Whatfractmn of the 1nc1dent energy is transmlttod across the boundary? [2 points]
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_ Problem 4: Maxwell Eq n in 4- d .

I‘or thls problem, use the following metric: goo = —1, g1 = - o = gg'; =1, and g, = O for
LF£ ] and conslder \/Iaxwell S equatlons in four dlmenslons (4D) - '

OFm

- 'udJ,“ .

.o
, oo -0

(0.5 pt erte down the ﬁeld strength tensor F ne its dual tensor GH, and the 4- vec’(or,
charge current density J* i in vect01 form n terms of E B, p,j, and c.

L / (O 5 pt) ExphCltly derive the equatlon Z aJ“ /0z" = 0 from Maxwell s equatlons in4D.
Wha’r is the physu‘al meaning of this oquahon'f'

3. (1.0 pt) Show that the ﬁeld tensor can be written as F/ = 8/1”/82: - 5’A”/8x,, by
mtlodu(’lng a 4-vector potentlal A k

4. (1.0 pt) Show that with thc introduction of the 4—vcct01 pOt(,lltlcll At thc 4D Mchwell
equatlon 1nvolv1ng GM is automatlcally satisfied.

5. (1.0 pt) Impose the Lorentz gauge on A* and show that, with this gauge, the 4D Maxwell’s
equations reduce to the inhomogeneous 4D wave equation for tlle 4-vector potential. '

76. (1.0 pt) Consider the Minkowski force acting on a charge q, K" = gn I, where 7, is
the proper velocity. Find the p = 1,2,3 components of K* in terms of E,B, qandc.

? 7. (0.5 pt) What is the physical meaning of the Minkowski force expression for p = 1,2,37
Z 8. (1.0 pt) Find the o = 0 component of the Minkoswki force in terms of E and B, ¢ and c.
2 9. (0.5 pt) What is the physical meaning of the Minkowski force expfeSsion for =107

10. (3.0 pt) Consider a particle starting from rest at the origin under the influence of a
constant Minkowski force in the a-direction. Find an implicit relativistic expression for
the particle velocity v. Leave your answer in implicit form (¢ as a function of v).




Problem 5: Radiation =~ °

A current source J| (7, 1) 1s localized within a sphere of radius a near the origin of a co-
ordinate sy%tem and oscillates with harmonic time dependence e ™' Would an oscillating
~ charge density all by itself (J = 0) eontrlbute to the power 1ad1ated into the radiation zone‘7
~ Why or why not? [1 point] 7 ' :

The vector potential (1n SI unlts) is glven by

. ',Jx;,t’ .. |

\// Integx ate out the tnne dependence to find A( 7). [1 point] ,

2.

'7one7 2 pomts]

In the radiation zone, |a, ~—Tl~r-n.g. What is the vector potentlal in the 1ad1at10n

. What app10xnnat10n must be made to gain the electne dlpole contubutlon to A? [2

points]

. The electric dipole moment is given by 5 = | & p(d )d?’:z:’f. What is the vector potential

in the radiation zone in terms of the EDP moment p? [2 points]
(Hint: O(xp;) = oudi + xka Jiand the cquation of continuity for hc\llIlOIll(, time
dependence is given by V - J zwp ) ' '

For a dipole p oriented along the z-axis, What,fangulfayi;f'distribution do you eXpect n-
the power radiated from EDP radiation? (You need not actually do the calculation.)

2 pomfs]




,PrOblem 6: Stre’ss tensor-

The mamfestly covariant form of the electlomagnetlc, field Lagranglan is given bv L =
1 F,,Z,F“” 1J,,A“ n Gaussnm units where F),, — 8,,/1,, 0 A,, '

: ’ OF@ ﬁ - LAY, 8“A”) write down the Euler Lagrange equatlons [1 pomt]

(b) Apply these to derlve the covarlant form of the mhomogeneous Maxwell equations. [1

N\pomt] - 9 ) = o 5y A . | ’
(¢) From the Maxwell equatlons show that the equatxon of contmmty 8 JH = 0is satlsﬁed
2 pomts] ' o o

(d) Llst at least three 1mp0rtant steps in derlvmg the symmetrlzed electr omagnemc btress— ,
_energy tensor @O‘ﬂ - ( ”‘“F AFW + g"‘ﬁfu, F“’) [2 pomts] o o

EXI)I ess ©% in matrix f01m in terms of ’rhc EM energy dcnsn“y ", momon‘rum donsl’ry
- ¢g and the Maxwell stress tensor T;} = (FZF + BzB 1(5”(E2 4 BZ)>. [2 points]

(f) Express the zeroth componen‘c of the conservatlon equatlon 9,0 =0 in terms of
and the Poynting vect01 S = c g What is the 81gn1ﬁcance of thlS equat10n7 12 pomts] ,

L)t»mi,, | / éf%

sz‘& ﬁ Kczi/," %&yﬁg :
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November 14, 2015
PHYS 5583 (E & M II)

Exam 2
Average = 43.3/100

Some useful formulas.
In class we have shown that the power radiated per unit solid angle into
direction fi by an accelerating point particle is

5P cq® [ax [(A—B) x A
80 4ne? (1—a-pB)5 ’

and that it becomes

P ¢ 22 A2
0 47rc(1—ﬁcos€)5{sm @A

+ [(1—Bcosd)? — vy %sin®fcos® ¢ 52

+ 2(8 — cosf)sinfcos qﬁﬂ@ﬂ.n}»

when the particle’s velocity is in the Z direction and its acceleration is in the
z-X plane

B = Bz _
B = Byz+ bk,
i = sinf[cosdX +sing§|+ cosh 2.

We have also shown that when ¢ P/02 is integrated over all directions the
following expressions for the total power radiated result

&P 2¢%
P(t)= -méﬂ = 339 00
_ 2¢° 4 402 2 3\2
= L1848 7],

= 200 161 - 1 x A

1 eV=1.6x10""2 ergs, e=4.8 x 10710 statcoul, 1 erg = 1077 Joules.



1. {20%, Ave=6.9/20}

An electron (Mc?=0.5 MeV) is accelerated from rest (8 = 0) between
the plates of a parallel plate capacitor. Assume it starts at ¢t = 0 at
r = 0 on the grounded plate (® = 0 Volts) located in the z = 0 plane
and travel to the positive plate whose potential is ® = V5 = 5 X 10°
Volts located at the z = d = 10 cm plane. The goal of this problem is
to give two expressions for the power radiated per unit solid angle by
the electron as a function of its spherical polar angle 8, one for when
it leaves z = 0 and the second just as it reaches the positive plate at
z = d. To obtain this result carry out the following steps:

(a) Calculate v, 8, and B of the electron as it moves between the capac-
itor’s plates as a function of z. Hint: The Lorentz force equations
for a charge moving in a uniform electric field Ey = V,/d are

%(mvcz) = mc?y = qF*% = eEycB,

& (myBe) = me(35 + 48) = B,

(b) What are the starting (z = 0) numerical values and the finishing
(2 = d) numerical values for v, 8, and j

(¢) Give an expression for

arP
a7

as a function of § and B, appropriate for this type of acceleration.

(d) Give the power radiated

dP
—(6
ds (6,0),
just after the electron leaves the grounded plate at z = 0 and

sketch its shape as a function of 6.

(e) Give the power radiated

dP

—(0,d

dQ (6,d),
just before the electron reaches the positive plate at z = d and
sketch its shape as a function of §. For this part you will have to
expand 8 =~ 1—v72/2 and cos(f) ~ 1 —6?/2. What is the angular
opening of the radiation cone?



2. {20%, Ave=7.1/20}

A fast moving electron whose total energy is 10 MeV enters a uniform
magnetic induction By = Byk in the lab and moves in a circular orbit
of radius ¢ = 10 cm, orthogonal to the magnetic induction.

(a) What are the electron’s v and 8 values?
(b) What is the value of By?

(¢) Find the time the electron takes to move around a complete circle
as seen by a lab observer.

(d) How much total energy does the electron loose as radiation during
one complete revolution?

(e) What fraction of the electron’s total energy is lost to radiation
during that one revolution?

mec? = 0.5MeV, 1 eV=1.6x10""2 ergs, e=4.8 x 1071 statcoul.



3. {20%, Ave=13.8/20}

The Lienard-Weichert potentials for a point charge ¢ moving on a world
line (¢,14(t)) is

o) = TR T R A
ALY = e R
where
R = r—ry(te) =R,
R = |r—ry(tret)l,
B = rty(tre)/c

The retarded time t,¢(t,r) is a function of the space-time point (¢,r)
at which you are computing ¢(¢,r) and A(¢,r) and is defined by the
constraint equation

|r — rg(tret)|

—

In this problem your task is to compute the coulomb part of the elec-
tric field Eepu(t, 1), i.e., the part of the electric field that falls off as
1/R?. To obtain this goal use the following two results (do not derive
them):

bret =1 —

8t«,~et(t,r) _ 1
ot T (1-h-6)
n
CVtTet(t7r) = - (1 —f- ﬂ)7

and treat 3 as a constant.

(a) Keep 3 constant and evaluate the following (use these but do not

derive them)
VR (- B)cVie

=f —
V(R ’ IB) = 6 - ﬁQ ¢ Vipet.
(b) Next keep B constant and evaluate the following (use these but
do not derive them)

OR . Otret
a‘ - —(n ' IB) c at )
8(R ) /6) _ 2 8tret
T
(c) Use your results from (a) and (b) to evaluate the coulomb part of
_ 10A(t,r)
E(t7 I') - v¢(t> I') E ot .



4. {20%, Ave=7.0/20}

>

E

ze

N
™)
N>

A swiftly moving particle of charge ze and mass m passes a fixed point
charge Ze approximately in a straight line path at impact parameter
b and nearly constant constant speed vy. Show that the total energy
radiated in the encounter is

Foo 122728 1\ 1
- A - — 2 - hoapralty
/_Oo P(t)dt W pr—y (fy + 3> 7

Hint: o ) 5
m
—_ d e
/0 (€2+1)8 ¢ 16

0 52 _l
/0 (€2 +1)3 de = 16
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¢ Treat this antenna as a pobnt sime-dependent elestrie dipole and

compute the dipole’s eurrent density

P

Jie.rh = plridir).

e

{h} Caleulate the veetor potential for this curront density

= TN
Al - jjs ir—r'|fe }
el [ — |

(e Calenlsto only the radistion part of the magnetic inductiog By o
bir,

() Calenlate only the radiation part of the electrie field nsing By -
Beaxr.

{0y Crive the time average radiation pattern £P/88) for whds antenns,
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October 31, 2014
PHYS 5583 (E & M II)

Exam 2

Some useful formulas.
In class we have shown that the power radiated per unit solid angle into
direction fi by an accelerating point particle is

6P cg? |Ax[(A-0)
60 Amc? (1-d-0

x Bl
P

and that it becomes

P ¢ <2942
0 47rc(1—ﬁcos@)5{sm 90

[(1— Bcos 0)* — vy %sin’ 0 cos® ¢ B2

+ 2(8 — cosf)sinfcos ¢B¢B||}a

+

when the particle’s velocity is in the Z direction and its acceleration is in the
7-X plane

A= pz
B = Biz+ Lk,
A = sinflcosdX +singy|+ cosdz.

We have also shown that when 6 P/dS2 is integrated over all directions the
following expressions for the total power radiated result

_ [P

P(t): gﬁéﬂ = —gzga"a(,,
2 * .
= 2T 1BP+6 - 57,
202 .7 . .
= Ly [16r - 18 A1)



1. {20%}
A point charge q¢ moves along the z-axis according to z(t) =
a cos(wot).
(a) Using spherical polar angles, compute the power radiated by the
point particle into the 6, ¢ direction , 6 P/é€2, as a function of time
t.

(b) Compute the total power radiated P(t) by this particle as a func-
tion of time t.

(c) Compute the average power radiated per oscillation into the 8, ¢
direction , i.e., compute

(27 /o)
...._1_/ 5_Pdt_ (1)
(27 /wo) Jo N
Hint:
/27' cos? o we T (4 + A?) @)
o (I+Asina)® 4 (1— A2)7/2°

(d) Compute the average total power radiated per oscillation into the
8, ¢ direction , i.e., compute

1 (27r/wo)
(27 /wp) /0 P(t)dt. (3)
Hint: ) \ “ "
" cos® 7w (4—3
_cosa L o TlEamoA) A
/o (1- A sin? a)’ da 4(1— A)32 (4)



2. {20%}

¥

ze

N>

Ze
(0,0)

A swiftly moving particle of charge ze and mass m passes a fixed point
charge Ze approximately in a straight line path at impact parameter
b and nearly constant constant speed vg. Show that the total energy
radiated in the encounter is

oo 17268 1\ 1
/ P(t)dt:AW=u<72+~>—.

o 4m3cif, 3/ 0

Hint: o ) 5
Yis
/0 GESIAET

o0 52 B T
|, wrm e



3. {20%)

A time dependent electric dipole, located at the origin has 4-current
Jo(tr) = [—ep(t) - V8(x), BOF()],

and a retarded 4-potential (in Gaussian units)

o) = [-v {BLZT9) Blemria)

r cr

(a) Compute the radiation part Beq (ie., the ~ 1/r part) of the
magnetic induction for the above dipole. {Hint: The radiation
part will be the part that depends on second time derivative of
the dipole moment.}

(b) Compute the radiation part (i.e., the ~ 1/r part) of the electric
field by computing E,.q = —1F X Braa.

(c) Use the Poynting vector to compute the time averaged power ra-
diated into a unit solid angle, as a function of the spherical polar
angle 6 for a dipole with

p(t) = polcos(wt)X + sin{wt)y].

(F) - ()

¢
=—ExH
S i x H,

Recall that

where

in Gaussian.



4. {20%}

In this problem you are to derive the coulomb part of the electric
and magnetic fields of a moving particle. The electric field is

q(h ~ B)

Ecou = .
coul R272(1 —fi- ,6)3

Start with the Liénard-Wiechert 4-potrential

qU?

AP =
R-U’

where R is the retarded null vector from the charge at zZ.,(z) to the
field point z?
R? =17 — 2l (z) = 2° — ] (t,ee(x)) = R(1, 1),

ret

and

R-U=RU,=cRy(1-1-p).

To obtain the coulomb part of the fields you treat the retarded U as a
constant, i.e., simply do not differentiate it. For example simply take

_c’g_(_l__ _____1___2<U~c2Ra
dzx \R-U/) R-U “ R.U)’

and compute E* = Fy; from

Fop = 0,Ap — 0gAq .

The magnetic field is obtained from Fj;.



5. {20%)

Two identical charges @ are located on the z-axis at z = +band z = —b.

(a) Compute the electric field E(z,y) on the x-y plane at z = 0.

(b) Compute the Maxwell stress tensor Tﬂ on the x-y plane at z = 0,
recall that for linear and isotropic materials in Gaussian units

1

T3 =7 {D’Eﬂ+BlHJ-§5“(D~E+B~H) :
T

(c) Evaluate the surface integral

) +oo oo )
Fi= / / T4,

over the x-y plane at z = 0.

Hint:
/oo dep _ 1
o (P+123 (207




November 8, 2013
PHYS 5583 (E & M II)

Exam 2

1. {25%}
A stationary point magnetic dipole at r = 0 with a time dependant
dipole-moment m(t¢) has a 4-current

J% = [0, —cm(t) x V&(r)].

and a 4-potential

A = [O,V X (—nﬁ:—f—@)} )

r

(a) Compute the radiation parts of the E and B fields, (i.e., the
parts of the fields oc 1/7.

Hints:
Brad =1 X Erada

1
V xm(t—r/c) = p f x m.
(b) For the particular dipole moment

m(t) = mg][cos(wt)X + sin(wt)¥]
= mgReal [(X +iF)e ],

evaluate the time-average of the radiation part of the Poynting
vector (S = ¢/4nE x H) as a function of spherical polar coordi-
nates (1,6, ¢)?

(c) What is dP/dS}, the power radiated into a unit solid angle, as a
function of (#,#), and what is the total power radiated into all
directions P = [(dP/dS) d2?



2. {25%}

Two plane semi-infinite slabs of the same uniform, isotropic, nonper-
meable (4, = 1), non-conducting, dielectric with index of refraction
n > 1 are parallel and separated by an air gap (n = 1) of width d. As
shown in the figure a plane wave of frequency w is incident normally

(i.e., 2 = 0) on the gap from the left slab.
n>1 _ n>1
n=1
| Ef Ef
B} |EF E/
+Z
z2=0 z=d

(a)

(¢)

Calculate the magnetic field B(¢, z) assuming the electric fields in
the left slab, the center gap, and the right slab, are respectively

E(t, Z) — EO ei(nkz—wt) + Eg ei(—nkz—-wt), 2 <0,
E(t,z) = E(If githz—wt) 4 EOL i —ka—wt) 0<2<d,
E(t, z) = Ejemkvt) z>d,

where w/k =cand Eg-2=0,E)-2=0,E} - 2=0,Ef -2 =
0, and Ej -2 =0.

Match the tangential components of the E and H fields at z =
0 and z = d to obtain 4 equations relating the 5 amplitudes
Eo, B EF, EL, and Ej. Use these 4 equations to solve for Ej
in terms of Eqg.

Using your result from (b) calculate the transmission coefficient
T, the ratio of the power transmitted into the right slab to the
incident power.



3. {25%} A relativistic particle (y > 1) of mass m and charge ze passes a
nuclear target of charge Ze fixed at the origin (r = 0). Because of the
particles high speed it travels approximately on a straight line with
constant velocity:

r(t) = cfot 2+ b %.

>

z€

N>

Ze
(0,0)

(a) Compute the magnitude of the passing particle’s 4-acceleration
(a%a,) as a function of time t caused by the nucleon’s Coulomb

electric field using the particle’s approximate position r(t).

(b) Use the generalized Larmor formula

to calculate the total energy lost by the passing charge ze,
+o00
AW = / P(t) dt.

Hint:

/+°° dx o /+°° dz _ 3T
oo (B2 )2 208 oo (B2 +2) 8D5



o

4. {25%}
A 10 MeV electron (mvyc? = 10 MeV, mc? = 0.5 MeV) is traveling in a
circle perpendicular to a magnetic induction of strength By = 50, 000
gauss. Your goal is to analyze the angular dependence of the instan-
taneous power being radiated by this electron. Assume that at the
instant of interest B= B z and B=|3| %X. In class we derived the follow-
ing expression (using spherical polar coordinates) for the power being
radiated by a charge whose acceleration is orthogonal to its velocity
dP € |82 ) sin® § cos? ¢

dQ ~ 4mwe(1— Beosh)? v2(1 — Becosh)? |

-
<>

(a) Use the Lorentz force in Newton’s 2nd law to find numerical values
for v, B, and |8

(b) In what direction is dP/df) a maximum and what is its maximum
(numerical) value?

(¢) Give an approximate form for dP/df) above, valid for large v and
small 8, i.e., assume

92
f ~ 1-——
c?s 1 5
sinf =~ 8 )
-
~ 11— —
G =

and give dP/dQ as a function of = (fv) and ¢.

e = 1.6 x 10 ¥coulombs = 4.8 x 10" Pstat — coulombs, (also called esu)
lerg = 10" "Joules = 6.24 x 10°MeV
1MeV = 1.60 x 10" Joules = 1.60 x 10 %ergs



April 6, 2012
PHYS 5583 (E & M II)

Exam 2

1. {25%)

The Lienard-Weichert 4-potential for a point charge ¢ moving on a
world line g (t) = (ct, ry(t)) is

A%(z) = L& 1)

uy R’
where

R% =% — af(trer) = R(1, 1),
R= |I‘ B rfl(tret)|v (2)

is the relative-retarded 4-d position vector and

u’ = v(tret)0<1, E(Het))v

is the retarded 4-velocity of the point particle.

The retarded time t,(¢,r) is a function of the space-time point 2z =
(t,r) at which you are computing A%(z) and is defined by the constraint
equation

|I' - rq(tret)l

—

bret =1 —

(a) Draw a space-time diagram showing the observation point z%, the
retarded point z2,, the backward light cone of 2%, the vector R%,
and the retarded velocity vector u®.

(b) From equation (2) it follows that
OR* 5 uO‘Rﬂ

P Y 1

orfF P wR,

Do not derive this result but use it and equation (1) to derive the
coulomb part of the electromagnetic field tensor Fpg. Do not
compute the radiation part.

(¢) From your coulomb Fyz give the electric field E and the magnetic
induction B in as simple 3-d vector forms as you can.



2. {25%)

An electron (mc® = 0.5MeV) is accelerated from rest by a uniform
electric field Ey 2 through a potential of 107 Volts. Assume the electric
field is caused by 2 large parallel conducting plates separated by a
distance D = 0.5 meters (in SI units EoD = 107 Volts). Without
radiation the electron should acquire a kinetic energy T = myc? —
mec? = 10 MeV. The goal of this problem is to find out what percentage
of this 10 MeV is lost to radiation. The power radiated (integrated over
all angles) by an accelerating particle is given by the relativistic Larmor
formula:

P(t) = —=—=a%q, Gaussian units

where the 4-acceleration is defined by

du®

T

aa

il

To find the net energy radiated you can carry out the following steps:

(a) Write down the equations of motion for constant acceleration in
an uniform electric field E = EyZ.

(b) Solve the equations of motion to find a*a, as well as how long it
takes the electron to go the distance D = 0.5 m.

(c) Integrate the Larmor formula to obtain the total energy radiated
away. What percentage of the electron’s kinetic energy was radi-
ated away.

e = 1.6 x 107¥coulombs = 4.8 x 107*%tat — coulombs, (also called esu)
lerg = 107" Joules = 6.24 x 10°MeV
1MeV = 1.60 x 107*Joules = 1.60 x 10 %ergs



3. {25%}

A 10 MeV electron (myc* = 10 MeV, mc® = 0.5 MeV) is traveling in a
circle perpendicular to a magnetic induction of strength By = 50, 000
gauss. Your goal is to analyze the angular dependence of the instan-
taneous power being radiated by this electron. Assume that at the
instant of interest § = 8% and § = |§|%. In class we derived the follow-
ing expression (using spherical polar coordinates) for the power being
radiated by a charge whose acceleration is orthogonal to its velocity

aP _6_2_ ‘/5;|2 B sin? 6 cos? ¢
dQ  4me(l — Bcosh)? v2(1 — Bcosh)? ]|’

(a) Use the Lorentz force in Newton's 2nd law to find numerical values

for ~v, A, and |,§|

(b) In what direction is dP/dS2 a maximum and what is its maximum
(numerical) value?

(c) Give an approximate form for dP/dQ2 above, valid for large v and
small 0, i.e., assume

2
cosf = 1—5)—,
) 2
sinff =~ 0 )

v
~ 1
G —,

and give dP/dS) as a function of z = () and ¢.

(d) For ¢ = 0 plot (approximate sketch only) dP/d(} as a function of
z . For what small values of 6 (numerical) does dP/df) vanish?

(¢) For ¢ = /2 plot (approximate sketch only) dP/dS) as a function
of z. For what small values of  (numerical) has the beam intensity
decreased to 1/2 of its maximum value?

e = 1.6 x 10" ®coulombs = 4.8 x 107'%tat — coulombs, (also called esu)
lerg = 107 Joules = 6.24 x 10°MeV
1MeV = 1.60 x 10™**Joules = 1.60 x 10 %ergs



4. {25%)}

A point electric dipole is fixed in space but has a time dependent dipole
moment p(t). The current density of this dipole is

J(t,r) = p(t)§3(r — ry).

(a) Compute the vector potential A(t,r) for this current density.

(b) From your vector potential A(t,r) compute the radiation part of
the B field (the part that falls off as 1/|r — xg|).

(c) Compute the radiation part of E by assuming

E=BxR
where N R r—m
TR r—1o
(d) If

p(t) = po (fc cos(wt) + ¥ sin(wt)),

compute the time average of the Poynting vector as a function of
spherical polar coordinates centered on the dipole (R, 8, ¢).



1. 33%

April 16, 2010
PHYS 5583 (E & M II)

Exam 2

A time dependent electric dipole, located at the origin has 4-current

Jo(tx) = [~ep(t) - V&), I,

and a retarded 4-potential (in Gaussian units)

(a)

T cr

o) = [-v - {UrA), Bl

Compute the radiation part (i.e., the ~ 1/r part) of the electric
and magnetic fields, E and B for the above dipole. {Hints: The
radiation parts depend on second derivatives of the dipole moment
and you should find that Byeg = 7 X Epqq.}

What type of polarization, plane or circular, will be seen by a
distant observer coming from a dipole with

p(t) = po cos(wt)k?

Use the Poynting vector to compute

()

the time averaged power radiated into a unit solid angle, as a
function of the spherical polar angle ¢ for a dipole with

p(t) = polcos(wt)i + sin(wt)j].



2. 33%

An electron starts from 7= 0 at rest on the negative plate of a capac-
itor and is accelerated 20 cm to the positive plate through a potential
difference of 5x10® Volts (see the figure). The electron then (through a
pin hole in the positive plate) enters a uniform magnetic field EO = Bol;:
which turns the electron in a semi-circle orbit of radius 10 cm.

. 20 cm
r=0 ¢ i
X X A{
J
0 cm
— X X
E ~ .
B=hByk
X X

/

hl

— 5 x 108 volts

(a) Find the (lab) time the electron takes to reach the positive plate
and the (lab) time it takes to move around the 1/2 circle.

(b) How much total energy does the electron loose as radiation during
its linear acceleration in the capacitor and during its 1/2-circle
orbit in the magnetic field? What fraction of the electron’s total
energy is lost to radiation?

()
{Hints: The Larmor formula is
2

2 dp, d 2¢* o 2 5
PO =~ (T} = 3416 - (B x 7]

and the acceleration is caused by the Lorentz force

El?i — gpu/\u/\
dr ¢ ’

mec? = 0.5MeV, 1 eV=1.6x10"12 ergs, e=4.8 x 10710 statcoul. }



3. 33%

In the absence of polarizable and/or magnetizable material (i.e., only
free charges and currents present) Maxwell’s equations, in the Lorentz
gauge, reduce to the inhomogeneous wave equation:

o cp )
O AY = —c‘ Jv y where (0= <55‘t‘> ot V .
A* J?

A time dependent charge Q(t) = Iy ¢, t > 0 is fixed at the origin

of a cylindrical polar coordinate system (p, ¢, z) The charge increases
linearly with time because a constant current I flows in along a thin
wire attached to the charge on its left, see the figure. Assume the wire
carries no current for ¢t < 0, however, at ¢t = 0 a current I, abruptly
starts flowing in the -+z direction and remains constant for ¢ > 0.
Assume the wire remains neutral as the charge at the origin grows.
Find the following quantities at time t for points (p, ¢, z):

(a) The charge density p(¢, p, ¢, 2),
(b) The current density J(¢, p, ¢, 2),
(c) The retarded scalar potential ®(t, p, ¢, 2),
(d) The retarded vector potential A(t, p, ¢, z).

Hints: The retarded Green’s function for the [J operator is:

d(t—t —|r—r'|/c)

Gret(r, {1, ¢) =
(r.51,t) 47 |r — ']

You might need the integral

dX
/\/7—27-72-:1“<VX2””X>-



March 4, 2009
PHYS 5583 (E & M II)

Exam 1

1. (25%)

A nonrelativistic particle of charge ze, mass m, and initial speed vy <<
¢ is incident on a fixed charge Ze at an impact parameter b that is
large enough to ensure that the particles deflection in the course of the
collision is very small. Using the Larmor power formula

2¢% .
P=118)?
SZ1BP,

and Newtons second law, calculate (approximately) the total energy
radiated. Approximate the particles trajectory as a straight line with
constant speed but use Newton’s second law to compute the accelera-
tion that produces the instantaneous radiation.



2. (25%)

A particle of mass m, charge ¢, moves in a plane perpendicular to a
uniform, static, magnetic induction B.

(a) Calculate the total energy radiated per unit time, expressing it in
terms of the above constants and the ratio «y of the particless total

energy to its rest energy.

(b) If at time ¢ = O the particle has a total energy £y = ~Yomnc?, show
that it will have energy E = ymc? < Ey at a time ¢, where

tN3m305 1 1
To¢?B2 \y vy’



3. (50%)

An electron (Mc?=0.5 MeV) is accelerated along the z-axis from rest
at the origin (t = 0 at r = 0) to a total energy of 10 MeV (Mc2 e =
10 MeV) at t = tpee and T = Zpack.

(a)

Derive an expression for dP/dS}, the power radiated per unit solid
angle by the electron in the n direction as a function of 3, 8, and
the spherical polar angle 8.

Hints: P )
—Cz-g—z—zs-nR (1-mn-08),
S=C|Efn
S LICE >xm.
¢c R(1-n-B8)3
If the electron’s acceleration is caused by a constant electric field

E = —10 MeV/cm k it moves with “constant” acceleration in the
z-direction and reaches an energy of 10 MeV at 2zpmo, = 1 cm.
Recall that the Lorentz force equations are

d
d

Solve these equations for B as a function of the electron’s § and
then express dP/df) as a function of 8 and 0.

The TOTAL energy radiated into a unit solid angle dF/df2 is an
integral of dE/dS) over the time up to tyqe (the time it takes the
electron to reach 10 MeV),

dE _ [tme= P
RT—A o (1)

Change the integration variable from t to 3, i.e., use

dE B /'ﬂmaa: Eﬂcﬁ (2)
aa  Jo 4 g’
and obtain a somewhat simpler integral than what would be ob-
tained if equation (1) were used. Find Byqe from Ymaz.

The above 3 integral can be evaluated; however, it is complicated.
Use your results from part (a) to approximate the value of (2) by
assuming 3 is constant (= Bmaz/tmaz). To calculate tpmq, assume
the electron moves lem and reaches an energy of 10 MeV.



(e) From your result in part (d) does the electron radiate away a large
or small fraction of its energy as it accelerates? Recall that the
classical radius of the electron is

62

re = —— ~ 2.82 x 10 %cm.
mc



April 8, 2005
PHYS 5583 (E & M II)

Exam 2

1. (25 points) A relativistic particle of charge ¢ and mass m moves in a
uniform magnetic induction B = Bk
(a) Find a vector potential A for this uniform B.

(b) Write the Lagrangian for this point particle moving in the uniform
B field.

(c) Solve the Lagrangian equations of motion for r(t).

Hint: [ L(r,t,t)dt = [ — (mc® + LA,U%) dr



2. (25 points) A 50 MeV electron (myc? = 50 MeV, mc? = 0.5 MeV)
moving along the z-axis is decelerated and brought to a stop after

A~

traveling 10 cm in a uniform electric field Fok.

) Compute v(¢) assuming the electron starts its deceleration at t=0.
) How long does it take the electron to stop?

(c) Show that (v8) = 38 for arbitrary motion.
)

Compute the total energy radiated by the electron during the 10
cm stopping process. What fraction of the electrons initial energy
was lost to radiation?

Hint:



3. (25 points) An uncharged, hollow, and conducting sphere of radius a
is placed in a uniform electric field E = Egk. Assume the sphere is
centered at the origin and is cut into two halves along the z = 0 plane.

(a) Compute the total electric field just outside the sphere by first
computing the total electrostatic potential (assume ® = 0 on the
conductor).

(b) Integrate Maxwell’s stress tensor over the z > 0 hemispherical
surface to find the force exerted on that half of the sphere.

(c) Are the two halves pressed together by the electrostatic force or
do the hemispheres fly apart?

Recall: ) .
(I i ¥ ini . s m2 2
Ty =1 |E'E'+ B'B — 56 (E® + B



4. (25 points)

(a)

Compute the charge-current 4-vector J*(¢,r) for a point electric
dipole. Assume the dipole moment is p(t) and is located at the
position r,(¢). (Hint: think of the dipole as two very close particles
of opposite charge and add their 4-currents.)

If the dipole’s position is fixed at the origin, ie., r, = 0, and
its dipole moment oscillates p(t) = py cos(wt)k, use the retarded

Green’s function to compute the radiation part of the E and B
fields.

Evaluate the Poynting vector and describe the angular dependence
of the radiation pattern.



December 15, 2015
PHYS 5583 (E & M II)

Final

Work only 4 of the following problems!
All formulas are in Gaussian units. If you convert to SI you
need to recall that p = 47 x 1077 N/A?% and /eofig = 1/c.

1. (25%) An unpolarized plane wave travelling in air (n = 1) is incident
on a flat glass plate (n = 4/3) at incidence angle ¢ = 30°. Assume ji, =
1 for air and glass. The goal of this problem is to analyze the amount
of linear polarization that exists in the reflected wave. You can think
of the unpolarized wave as a superposition of two independent linearly
polarized waves of equal intensities, one polarized perpindicular to the
plane of incidence and one polarized in the plane of incidence. Because
the reflection coefficients for these two polarizations are different the
reflected wave will be partially polarized. To answer this problem carry
out the following steps:

(a) Seperately for the two polarization modes match the tangential
clectric fields E and magnetic fields H at the air-glass interface to
determine the (numerical) amplitudes of the reflected waves Ef
as functions of the amplitudes of the incident waves FEyo.

(b) Calculate the numerical values for the two reflection coefficients
R, and Ry for the two polarization modes by evaluating

_ 1B

R - 1
| Eol?

for each polarization.

(c) Evaluate the degree of linear polarization by evaluating

RL—RHI
Ry+ Ryl



2. (25%) In Gaussian units a wave traveling in a conductor is of the form

E =E, ei(k-r—wt))

B = _c__li (R % EO) ei(km-—wt),
W

where J = ¢E and

w ( ,47r0)
k= —qlth | & +1— .
c w

Recall that for good conductors and frequencies below some maximum
value, ¢ is the real valued static conductivity and €. << drofw. To
answer the following you can assume j, = 1.

()
(b)

(d)

If the skin depth of silver is 8.29 mm at 60 Hz what is the static
conductivity o7

What will the skin depth of silver be at 10° Hz?

To relate the above conductivity o to the physical properties of the
conducting material the Drude model can be used. In this model
a cube of material is thought of as a box of free electrons that
move in response to the transiting plane electromagnetic wave

E = Bk =9,

according to '

mi = —myo & — eFp e** e,
The viscosity parameter o accounts for the energy transfer from
the moving electrons to the lattice of atoms. The resulting dipole
moment density due to the displaced electrons is

2
€ 1
P=N(-¢)t =i N——F7——=E,
mw(Yo — iw)

where N is the density of conducting electrons. Recall that in
Gaussian units D = E + 47P. Use ¢?/m = 2.5 x 10® cm®/s?.

Apply the Drude model to silver to relate N and 7o to the static
conductivity o.
If Silver has an electron density of N = 5.8 x 10%*/cm? estimate

Yo, the frequency above which this model will fail to correctly give
the skin depth for silver.



3. {25%} The ionosphere is a region of the earth’s atmosphere containing

h, Km

800 1

700 +

500 - NIGHT

Fa reglon F2 region
300 o
Pt eaglons
1004 = et Jereg
i e
2 ' "4 T5 ‘s 3
10 10° 10 10 10° necm

a partially ionized plasma. The free electron density N (h) varies with
height h above the earth’s surface and varies significantly between night
and day. The attached figure gives N(h) = n, for night and day. As
shown in the figure the ionosphere is divided into layered regions D, E,
F1, and F2. Because a plasma reflects all radio waves of frequency w <
w, the altitude of each of these regions can be estimated by recording
the round trip travel time for a pulse of radio waves sent straight
up in the air at the appropriate frequencies. You can assume the
jonosphere has an index of refraction given by

wi(h)

w?

n(h,w)=1/1-

¥

where in Gaussian units e?/m = 2.5 x 10® cm?/s* and
2 ] @2
w = 4N (h)—.
2= 4N
(a) Assuming the attached figure is correct select a frequency wg that
could be used to measure the height of the bottom of the E layer
during the day or night. Choose a value of wg that will not be
reflected below the E region but will be reflected from the bottom

of it.
(b) From the figure select two frequency wr(day) and wr (night) that
could be used to measure the respective heights of the central

3



(d)

part of the F2 region during the day and night. For these you
can select (respectively day or night) wp values slightly less than
w,(F2) where w,(F2) is the peak value of w, in the central F2
region.

By taking the approximate height i = hp of the central F2 layer
during the day from the figure, give an integral expression for the
round trip travel time of a pulsed signal that it reflects. Don’t
forget to use the group velocity in your integral (not the phase
velocity) and don’t forget that the index of refraction varies with

h,
¢

W) = rE

dw

Approximate your day-time travel time integral by assuming the
atmosphere everywhere below the F2 layer has a constant electron
density equal to the electron density at one half the height of the
central F2 region, N = N{hp2/2).



4. {25%}

(a)

EOI

When swimming under water much of the air surface above you
looks like a mirror (if the water is clear and calm). The reason
for this is that light traveling under water (y, = 1,n = 1.33), will
be completely reflected if it strikes the air surface at an incidence
angle i > 5. Derive an expression for ip as a function of n and
give its value for water?

A narrow columnated monochromatic beam of light from a laser
hits a flat piece of ordinary glass of thickness D in air at angle 6; as
shown in the figure. Assume that the index of refraction of air is 1
and of the glass is 1.5. Also assume a relative permeability p, = 1
for both the air and glass. Ignore the reflected beam that occurs
when the beam exits the glass on the right of the figure. After the
transmitted beam exits the glass and returns to air show that it
will be traveling parallel to its original direction but dis-
placed a distance ¢ as shown in the figure. At Brewster’s
angle what is the value of §7 Recall that Brewster’s angle ip,
is the angle at which the amplitude of reflected light vanishes if
polarized in the plane of incidence.

5



5. {25%} A plane polarized monochromatic light wave traveling in the

xz X

Wave —

crystal

Wave travels into page.

+2 direction enters a large flat slab of transparent crystal of thickness
d, located between z = 0 and z = d. This crystal has the property
that the index of refraction depends on the direction of polarization as
follows: Plane waves traveling in the z direction but polarized in the
direction
&, = cos goX + sin go¥,

travel with speed v, = ¢/n, < ¢ but those polarized in the orthogonal
direction

&; = — sin ¢oX + cos do¥,
travel with the faster speed vy = ¢/ny < ¢ where n, = ns + An.
Assume the wave, just after entering the crystal (i.e., for very small z,
ie., 2 << A < d), is polarized in the y direction and hence has the
form

E(z ~0,t) = Eg§e ™"

(a) Prove that when the plane wave reaches z = d
E(z =d,t) = [E. %+ E,J] gilkd=—wt)
where E, = iEysin2¢osiné and E, = FEy(cosé — icos2¢q sin d),

with ¢k = w(n, +ny)/2 and § = wd An/(2c).

(b) For what values of § and ¢o will the wave emerge from the crystal
as a circularly polarized wave? (i.e., when will E,/E, = +i).

(¢) For what minimum crystal thicknesses d = dpin will the wave
emerge as a plane polarized wave (i.e., when will By JE, = real)
and what is its polarization direction?



December 15, 2015
PHYS 5583 (E & M II)

‘ Final

Work only 4 of the following problems!

. (25%) An unpolarized plane wave travelling in air (n = 1) is incident
on a flat glass plate (n = 4/3) at incidence angle ¢ = 30°. Assume
. = 1 for air und glass. The goal of this problem is to analyze the
amount of plane polarization that exists in the reflected wave. You can
think of the unpolarized wave as a superposition of two independent
linearly polarized waves of equal intensities, one polarized perpindicular
to the plane of. incidence and one polarized in the plane of incidence.
To answer this problem carry out the following steps:

(1) Seperately for the two polarization modes match the tangential
electric fields E and magnetic fields H at the air-glass interface to
determine the amplitudes of the reflected waves Eg as functions
of the amplitudes of the incident waves Ej.

(b) Calculate the two reflection coefficients Ry and R| for the two
polarization modes by evaluating

for each polarization.

(c) Evaluate the degree of linear polarization by evaluating

Ry + Ryl
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2. (25%) In Gaussian units a wave traveling in a conductor is of the form

E = EO 6i(k'r'—wt))

B = ck (1"( % EO> giller=wt).

w
where J = ¢E and

w ( ,47ra>
k=4l | & +1— |
c w

Recall that for good conductors and frequencies below some maximum
value, ¢, << 4dmo/w.

(a) If the skin depth of silver is 8.29 mm at 60 Hz what is the static
conductivity o?
(b) What will the skin depth of silver be at 10° Hz?

To relate the above conductivity ¢ to the physical properties of the
conducting material the Drude model can be used. In this model
a cube of material is thought of as a box of [ree electrons that
move in response to the transiting plane electromagnetic wave

E= EO % ei(kz—-wt),

according to
: mi = —mryy & — el el k¥t

_ The viscosity parameter v accounts for the energy transfer from
the moving electrons to the lattice of atoms. The resulting dipole
moment density due to the displaced electrons is

e 1
P=N(-e)z =iN————FE,
muw(vyo — w)
where A is the density of conducting electrons. Recall that in
Gaussian units D = E + 47P. To answer the following you can
assume p, = 1 for silver and €?/m = 2.5 x 108 em3/s?.

(¢) Apply the Drude model to silver to relate N and 7o to the static
conductivity o.

(d) If Silver has an electron density of A = 5.8 x 10?2 /cm® estimate
o, the frequency above which this model will fail to correctly give
the skin depth for silver.
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part of the F2 region during the day and night. For these you
can choose a wp such that wp > w,(F2) for heights below the
central F2 region and wp < wy(F2) for heights above the central
F2 region. Here w,(F2) stands for the plasma frequency of the
central part of the F2 region (respectively day or night).

By taking the approximate height h = Ay of the central F2 layer
during the day from the figure, give an integral expression for the
round trip travel time of a pulsed signal that it reflects. Don’t
forget to use the group velocity in your integral (not the phase
velocity) and don’t forget that the index of refraction varies with

h,
¢

vg(h) = ——r.

g( ) n—i—w%ﬁ
Approximate your travel time integral by assuming the atmo-
sphere everywhere below the F2 layer has a constant electron
density equal to the electron density at one half the height of
the central F2 region, N = N(hr2/2).
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5. {25%} A plane polarized monochromatic light wave traveling in the

T z
és
%o
Wave —
d -1 %\\ )
cryétal o

Wave travels into page.

+2z direction enters a large flat slab of transparent crystal of thickness
d, located between z = 0 and z = d. This crystal has the property
that the index of refraction depends on the direction of polarization as
follows: Plane waves traveling in the z direction but polarized in the
direction :

&, = Co8 PoX + sin ¢p¥, ,
travel with speed v, = ¢/n, < ¢ but those polarized in the orthogonal
direction

&p = — gin ¢oX -+ cos ¢,

travel with the faster speed vy = ¢/ny < ¢ where n; = ny + An.

Assume the wave, just after entering the crystal (i.e., for very small
z << A < d), is polarized in the y direction and hence has the form

E(z~0,t) = Ey§e™™".
(a) Prove that when the plane wave reaches z = d
E(z = d,t) = [E, % + E, 9] ¢*d-w0,
where E, = iEysin2¢gsiné and B, = Ep(cosd — ¢ cos 2¢gsin ),

with ¢k = w(n, +ns)/2 and § = wd An/(2¢).

(b) For what values of § and 6y will the wave emerge from the crystal
as a circularly polarized wave? (i.e., when will E,;/E, = 1),

(¢) For what minimum crystal thicknesses d = dmin will the wave
emerge as a plane polarized wave (i.e., when will E,/E, = real)
and what will its polarization direction be?
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December 10, 2014
PHYS 5583 (E & M II)

Final

Work only 4 of the following problems!

1. (25%)

(a) When swimming under water much of the air surface above you
looks like a mirror (if the water is clear and calm). The reason
for this is that light traveling under water (y1, = 1,n = 1.33), will
be completely reflected if it strikes the air surface at an incidence
angle 1 > io. Derive an expression for iy as a function of n and
give its value for water?

(b) Light traveling in air (1 = ¢, = 1) when reflected from a smooth
glass surface (i, = 1,n = 1.5) is completely polarized in a di-
rection perpendicular to the plane of incidence if the incidence
angle is i, Brewster’s angle. Derive an expression for i by com-
puting the angle at which the amplitude of light polarized in the
plane of incidence vanishes. Give its value for glass?



2. (25%) A plane polarized wave traveling in a vacuum (n =1) in the +z
direction of the form

E=E, 6i(kz——wt) %

is incident normally on a flat homogeneous conducting surface that is
located at z = 0. Assume the conductor is described by a conductivity
o with g, ~ 1 and Rele,] ~ 1. Recall that o is defined by J = oE and
that in Gaussian units the wave inside the conductor can be found by
simply defining a complex permittivity ¢, =1+ idno/w.

(a)

(b)

(g)

Calculate the amplitudes of the reflected (E§) and transmitted
(E}) waves as functions of the conductors complex index of refrac-
tion n. (Leave them as functions of n and its complex conjugate
7).

Calculate the time averaged Poynting vectors for the incoming and
reflected waves and use them to evaluate the reflection coeflicient
R as a function of the conductor’s complex index of refraction n.

For a “good conductor”, i.e., when 4rg/w >> 1 simplify R and
give it’s approximate value as as a function of o and w.

At higher frequencies the conductor becomes a “poor conductor”,
i.e., when 470 /w << 1. Simplify R for these higher frequencies
and give it’s approximate value as as a function of ¢ and w.

For an arbitrary conductor show that the transmitted wave's am-
plitude exponentially decays as it penetrates the conductor ac-
cording to
|E(z)] = [E(0)]e ™,

and give § as a function of the conductors complex index of re-
fraction n.

For a “good conductor”, i.e., when dro/w >> 1 simplify ¢ and
give it’s approximate value as as a function of o and w.

At higher frequencies the conductor becomes a “poor conductor”,

i.c., when 4mo/w << 1. Simplify § for these higher frequencies
and give it’s approximate value as a function of ¢ and w.



3. {25%} A plane polarized monochromatic light wave traveling in the

€T Xx

Wave —

CrySﬁal

~“Wave travels Into page.

+2 direction enters a large flat slab of transparent crystal of thickness
d, located between z = 0 and z = d. This crystal has the property
that the index of refraction depends on the direction of polarization as
follows: Plane waves traveling in the z direction but polarized in the
direction

&, = cos oKX + sin oy,
travel with speed v, = ¢/ns < ¢ but those polarized in the orthogonal
direction

éf = —gin (f)o)"( -+ CoS ¢()y,
travel with the faster speed vy = ¢/ns < ¢ where n, = ns + An.
Assume the wave, just after entering the crystal (i.e., for very small
2z << A< d), is polarized in the y direction and hence has the form

E(z ~ 0,t) = Eqge ™"

(a) Prove that when the plane wave reaches z = d
E(z = d,t) = [E & + B, §] eF¢n,
where E, = iEqsin2¢osind and E, = Eg(cosd — 7cos 2¢o sin ),

with ¢k = w(ns +ny)/2 and § = wd An/(2c).

(b) For what values of § and 6 will the wave emerge from the crystal
as a circularly polarized wave? (i.e., when will £,/ F, = +7).

(¢) For what minimum crystal thicknesses d = dyng, will the wave
emerge as a plane polarized wave (i.e., when will E,/E, = real)
and what will its polarization direction be?

3



4. {25%}

Tonosphere
6 | o
h
d d
2 2
Earth

The ionosphere reflects radio waves of frequency w back to earth if the
wave strikes the ionosphere at an incidence angle 6; greater than 6y(w)
(see the figure). Assume that the ionosphere is a very thick flat layer
beginning abruptly at altitude h above the earth.

(a)

(b)

Assume the ionosphere is a plasma whose relative permittivity is
approximated by
2 2
er(w) = —id%::l——/\—i,
w A
and whose relative permeability is y, = 1. Assume the atmosphere
below the ionosphere has an index of refraction n = 1 and use
snell’s law to find 6, as a function of w.

An amateur radio operator finds that when operating at A = 14
meter wavelengths in the early evening she can receive stations
more distant than 1500 km away. However operating at A = 20
meters she can receive stations more distant than 1000 km.
Use the above data and your expression for fy(w) to find both the
height of the ionosphere h and the plasma frequency wp.
The plasma frequency w, from part (b) can be used to estimate
the free electron number density N, in the ionosphere by assuming
the relative permittivity given in (a) is a result of free electrons
being displaced by the wave’s electric field

mi = —eBEge™ ™,
In Caussian units the resulting expression for the plasma fre-

quency is:
2

. e
w]f =47 N,—.
m

If e2/mc® = 2.82 x 107** cm what is the electron density in the
ionosphere?



5. {25%)

(a)

(b)

(d)

Calculate the phase and group velocities of a plane harmonic wave
of frequency w traveling in a homogeneous tenuous plasma. Recall
that for such a plasma . = 1 and €, = 1 — w’/w?. Also recall
that the phase and group velocities are defined by v, = w /k and
vy = dw/dk .

For frequencies way above the plasma frequency, i.e., for w, << w,
simplify your answers for v, and v, and keep only the lowest order
terms in (wp/w).

In the absence of a magnetic field all waves travel at the same
speeds independent of their polarization. However, if & magnetic
field exists in the plasma left and right circularly polarized waves
travel at different speeds. Assume a uniform magnetic induc-
tion B) parallel to the wave’s propagation direction exists in the
plasma. What are the phase and group velocities for left and right
circularly polarized waves? Recall that

2
“p

=1 —>
(A«'((A) :FWB)a

where the upper sign is for Le.p. waves and the lower is for r.c.p.
waves.

For frequencies way above the plasma frequency, 1.e., for w, << w,
and frequencies not too close to wg, simplify your answers for v,
and v, keeping only the lowest order terms in (wp/w) for Le.p. and
r.c.p. waves. Also give differences in v, and v, values for l.c.p.
and r.c.p. waves. Which one is faster?

[}
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December 9, 2013
PHYS 5583 (E & M II)

Final

1. {33%}

-l

E = E(p)e ™32

N>

\__/

VO e~iwt — EoL e—iwt

L)

N

The a-c current flowing in a very long cylindrical conducting wire
of radius pg and conductivity o (shown in the figure) can be writ-
ten as an integral over the wire’s cross section as

Po )
I= / oE(p)e™ ™ 2 pdp.
0

The harmonic electric field inside the wire is of the form

E = E(p)ze ™",
and can be written as a function of Jy(z), the m = 0 Bessel
function as Ik

B(p) = 250

®Jo(kpo)’

where k = (1 +i)/6 and 6! = /2mpow/c is the skin depth for
a good conductor. Because Jo(z) satisfies the m = 0 Bessel’s
equation

xJi(z))
CLTCTRS
the above current can be written as
7 2mopoLi < J(I)(kpo)> it
= — e ",
k Jo(kpo)

Use Maxwell’s equations to compute the Magnetic induction B
at the surface of the wire from E given above. Your answer will
involve a derivative of Jo(z). (Recall V x [f(p)2] = Vf(p) x ).

?




(b) Calculate the time average of the Poynting vector at the surface
of the wire (assume p = 1).

(c) Use the Poynting vector to calculate the average rate energy is
flowing into the wire’s surface per unit length.

(d) Calculate the heat loss (the I?R loss) per unit length in the wire.
HINT: Simply time-average Real(I) * Real(V) for a 1 cm length
of wire to get the heat loss per unit length.

(e) Does the rate energy is lost to heat agree with the energy flow
rate calculated in (¢)? If not, why not?



2. {33%} A plane polarized monochromatic light wave traveling in the

xT Xz

Wave —

crystal

—Wave travels into ’page.'

+27 direction enters a large flat slab of transparent crystal of thickness
d, located between z = 0 and z = d. This crystal has the property
that the index of refraction depends on the direction of polarization as
follows: Plane waves traveling in the z direction but polarized in the
direction
&, = cos ¢oX + sin ¢y,
travel with speed v, = ¢/ns < ¢ but those polarized in the orthogonal
direction
&5 = —sin ¢oX + cos oy,
travel with the faster speed vy = ¢/ny < ¢ where n, = ny + An.

Assume the wave, just after entering the crystal (i.e., for very small
z << X\ < d), is polarized in the y direction and hence has the form

E(z=0,t) = Egye ™"

(a) Prove that in general the initial plane wave becomes elliptically
polarized when it reaches z = d by deriving the following expres-

sion .
E(z = d,t) = [E. % + E, 9] ¢,
where
= W ng+ny
k= —
F(m5),
and
E, = iy sin 2¢g sin 6,
E, = Ey(cos § — 1cos 2¢q sin ),
with d
w
= —An.
2¢ "

Hint: Write the wave at z=0 as a combination of slow and fast
plane polarized parts using § = sin ¢o&; + cos ¢oé;.



(b) For what values of § and 6y will the wave emerge from the crystal
as a circularly polarized wave? (E,/E, = =i).

(c) For what minimum crystal thicknesses d = dnin will the wave
emerge as a plane polarized wave (E,/E, = real) and what will
its polarization direction be?



3. {33%)

Ionosphere

[S1i=W
[S1~9

Earth

The ionosphere reflects radio waves of frequency w back to earth if the
wave strikes the ionosphere at an incidence angle 6; greater than fo(w)
(see the figure). Assume that the ionosphere is a very thick flat layer
beginning abruptly at altitude h above the earth.

(a)

Assume the ionosphere is a plasma whose relative permittivity is
approximated by

w2 22
ET((A)):].—wgzl X—i,
D

and whose relative permeability is 4, = 1. Assume the atmosphere
below the ionosphere has an index of refraction n = 1 and use
snell’s law to find 6y as a function of w.

An amateur radio operator finds that when operating at A = 14
meter wavelengths in the early evening she can receive stations
more distant than 1500 km away. However operating at A = 20
meters she can receive stations more distant than 1000 km.

Use the above data and your expression for 6y(w) to find both the
height of the ionosphere h and the plasma frequency wy.

The plasma frequency w, from part (b) can be used to estimate
the free electron number density NN, in the ionosphere by assuming
the relative permittivity given in (a) is a result of free electrons
being displaced by the wave’s electric field

mi = —eEqe ™"

If e2/mc? = 2.82 x 10713 cm what is the electron density in the
ionosphere?



May 8, 2012
PHYS 5583 (E & M II)

Final

1. {25%)

(a)

(c)
(d)

In a homogeneous, linear and isotropic conducting material whose
electromagnetic properties (at low frequencies) are described by
constant (and real) values of the permittivity, permeability, and
conductivity respectively ¢, u, and o, show that Maxwell’s equa-
tions require that the electric field satisfy the telegraph equation

O0*E OE
V2E — Uy ~ Ohy = 0, (SI)

) cuw’E  AnopdE ,
V°E — 'g—a—ﬂ:‘ — (,‘2 —ét_ = 0. (GCI’U,SSZCI/H)
Given a plane polarized plane wave of angular frequency w whose
electric field is of the form

E(z,t) = Real {)“(Eoei(kz—wt)} 7

evaluate k? as a function of ¢, 4, 0, and w.
Find the real and imaginary parts of k assuming o >> we.

Using your results from (c) find the skin depth & of the conduc-
tor. The skin depth is defined by the depth at which the wave’s
amplitude decreases by e7!, i.e.,

BE(z+4,t)] 1

(0] e



Reflected wave

Transmitted wave

Incident wave . 2

€1 €2

2. {25%} A linearly-polarized harmonic (e~**) plane electromagnetic wave
traveling to the right in a homogeneous dielectric medium described by
a real dielectric constant €;, strikes a second homogeneous dielectric
material described by another real dielectric constant ¢z > €; (see the
figure). Assume that both materials have the same magnetic perme-
ability o and that the incidence angle is 0° (1.e., the wave is traveling
perpendicular to the junction). Assume the incoming wave is polarized
in the # direction and that its electric field amplitude is Ey, i.e., assume
the incoming electric field is the real part of

E = E, ei(k:z—'wt) Z.

(a) Give the magnetic induction B associated with the above incoming
wave, k as a function of w, the direction of B, and the amplitude
of B as a function of Fp.

(b) Give similar expressions for the E and B components of the re-
flected and transmitted waves. Use Ej and [ for the respective
amplitudes of reflected and transmitted waves.

(c) Apply the junction conditions to the incoming, reflected, and
transmitted wave to compute Ej and Ej as functions of Ey and
the two dielectric constants €; and €.

(d) Evaluate the reflection and transmission coeflicients, R and T, for
above waves. Recall that the Poynting vector is defined by

S=ExH, (SI)

S=—E x H. (Gaussian)

¢
4m



3. {25%} A narrow columnated monochromatic beam of light from a laser
hits a flat piece of ordinary glass of thickness D in air at angle 6; as
shown. The incident, reflected, and refracted light beams are linearly
polarized in the incidence plane as shown and have respective ampli-
tudes Ey, Eff, and EY also as shown. Assume that the index of refraction
of air is 1 and of the glass is n. Also assume a relative permeability
i = 1 for both the air and glass. Ignore the reflected beam that occurs
when the beam exits the glass on the right of the figure.

(a) Use the junction conditions on the E, D, B and H and Snell’s law
to derive the Fresnel formulas for Ejj/Ey and L/ E, as a function
of Gi.

(b) Use your results to find the incidence angle 85 (Brewster’s angle)
at which the reflected amplitude Ej vanishes.

(c) After the transmitted beam exits the glass and returns to air it
will be traveling parallel to its original direction but displaced a
distance ¢ as shown in the figure. At Brewster’s angle what will
this displacement be?



4. {25%)

Ionosphere

e,
nole,

Earth

An amateur radio operator finds that when operating at A = 16 meter
wavelengths in the early evening she can receive stations more distant
than 1700 km away. However operating at A = 20 meters she can
receive stations more distant than 1200 km.

Assume, as was done in homework problem # 7.13 that the ionosphere
is responsible for reflecting the radio signals and that it is a very thick
flat layer beginning abruptly at altitude h above the earth. By assum-
ing the ionosphere is a plasma whose relative permittivity is modeled
by

w2 A2
ET((,u):l—W—I;’:1~-)\—1?J

and whose relative permeability u, = 1, problem # 7.13 concluded that
when the incidence angle satisfied

2 2

w A
2 P o_ 1 _
sm0¢21—w2—1 3

the reflection was 100%.

Use the above data and the conclusions of problem # 7.13 to find both
the height of the ionosphere h and the plasma wavelength Ay
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