Geribithe E~M Rewewo Nestes o

Chl = Vedwr Anolysrs
+Mo tdleas + mportont eguaors/dervatons copred. here M low delecl : see ook for depth

VCC/*DF IM"‘T&% ‘ V('CT‘ (3) fod v-(-\ + V& ¥ DO"&‘, -P) 6 = SCC\-\OJ" -ng}mnb
V- (A+B) = (0-A)+ (V- B) b = Constant

V¥ (Pf"”‘BQ = (Ux #)+ (Vgg) R, B = vedor Lonctvons

v(kf) = kVE
V-(kp) = k(V-A)
Ix(kp) = W(VxR)

V(#) = Hug) + o(v8)

T(A-RY = Ax(VxB)s Bx(VxA)+ (A-VIB+ (B-VIA
V- (ER)Y = £(N-m) + A- (V)

O (AxR) = B-(vxp) -~ A-(VxB)

Tr(PR) = £ (IxAY - Ax(VH)

I (Axp) = (WA - (R-V)B * A(v-B8)~ B(TA)

Ve(vxp) = O
Yx V% = O
Ty @xn)= V(vV-pA)- VA

Fodaventel Theorems | Gradherds =2 |- (QT) -dL = T0-Te)
C

Duegerces > § (7- MV = § A-da
Vv S

Corte = S (@xR)-dz = b Aedl



Cht (cond)
Dirac - Detia fncron’ v-—‘i)ﬁqﬁ&?(ﬁ) oo V- (55)- s

V(%)= o= V() HTe(®)

CWQ- Elechostdizs
.= .4
Covlombs Low . F = 'q"n‘ﬂgb h\‘f‘:l(r. r‘a. (ST units )
- - J QL
F-‘: &E ’7 E(T’) = (.m"&> '1 U\l)

1l we alw He o contmoovs c}\m‘»)e Aisteloohon,

~ £ 7 A

E = Lurgoj ﬂr—{ ~
W (1) & vie= £ (s1)
LS Derrved Hom applieatron of Aivergence “theorem

% Eosrest wewy o caleolate E, symmetny P“'“‘"‘*"‘s (etermmad by geomehy )
@ SP\MLVM\ %mme)"\s &S Guavssn s phere ( A= 4rr L)

® C/g\mo\hu‘ 5@""“”3 &> (poxral cblﬂrdef (Prgg'ﬂ'p,_)
® Plane sg)w\d\\s &> Guwssmn pillbox (Afm: an)

Corl of & ¥ Smmple. applreaton oF Stokes theorem lends 1o
VxE:=o (H‘pp\ms only t> sl G\‘On'éc, Mstribotons )

Gowss' Lows' SE-dé =

Electe Rtertwl | #Since e curl o E guals O we can vse- VX VA =0 (ond/for)
Hhe pmpeﬁras & e megcals (vre Fondamental Theorem of graclents)

1o defhe = as Yhe WU{'\’Q scedar—fonetrm
= -VV=E
¥ Thre allows vs do refemolate cor prevevs @ ns !
—NVE B (ST) (Mok T & Psond en)
*To caleolade V fom o chage distribston

VO e A ee VO g S

— PL



9\  (cont.)

@
%Oor\dat\A Conditions ! C\wses crecke. discontmoites W/ia E -Pol). To Qoag\%% Here dmoontmuiirey
@Per\ﬁ Guoss Lags = E - B = —~—- (5_L) *Wimembcc, beth
E Ca\cl V 40
®QPPL3 Shokes T =5 E“' = Et_ b O o> racw
¥ Combmed Mo one Stadewert! E - E, = £ 0

* Electme poentml V 1 contmoovs acgoss boordastes ( viee Stokes thn )
— . b R
Work + Ereryy. In qenesl ;W = j&F'oLL, thorelire & 13 @y 1o sce. ot

W= Q(Vib)-V())

*l:xjreno\mfs s 1o o chame Artriboton, 1o cssemble Hhe dmstribofon chage by charge!

W= 0 (we Geld Yo Lok aﬁams’r) (ST onik)
\A).L = Hﬂ”éo {1_ ( r\?..) MC)"‘&‘ (‘CJ-' - \\"[—Pj‘
3 - "méo 4 ( —11

Ly W= L,,réb écji ,--J-
\\n
\0-

(,
‘BTVCO %
C#) e 3

|\ W= E éeff\’(‘r’ﬁ) & \\;0* 7:)\/0\\/7
* Irdvdoe!  charges

sContinvors  Aisiebotm
% A $oo sobsttotmasto oor conmoms olairbotron yrels anotter form of the eguahon

W= 1% fpvay
£ 1@.E)v

1

= %[~§ E-(ov)dV + &vé‘-dﬁ’]

- 2l ferdy r fyE-da]

~ %S E*AV  {when m*tﬂm'}\eal over all Space)



Cn X (cont)

Condoctors, %P8 qurk defmitrons !
D Insoloter ~ A materm! where Eechons coe %hﬂb bound to an oo
ex. 5\&% / robber

B Condoddor = moterszl where. dlechons ase. losely boundd o trclvdoa
aromy and are “free!' b move. oevnd

ex. Metals
(Pecbed- condoctors have ontimte) free Chorpe; bo-dp notexst )

% From dhe aloove. defmion, Loe_ con mbec a fes properties o conduetory

(D Tnsde a conductor, E=0. 7 a eondoctor 5 placedd M an external
E Qrc\c\, e mierra) Feld Wil become - Z +o sa%rs%ha‘ommlc.

@ Trsdde a andudor; =0, T Bllws Tom Gaoss’ Las based on
praperty (O

® Qmﬁ nek- chare en a eonduchorresides en T sorduce.
@ Codochor are goipstentrls

® Ernl bt sorfece, jost ovteele. o condoctor, This prevents ﬂowmj Chorgye.

*Craryes poced reoe o, conduetor Wil solt I ap aHectne fece. blo e ho,
s the cl\arsa. ?o\aﬁ%e,s the coMduvetor

¥ a‘an:ses placed w/m e Oavﬂb A e concloator will polasize Conduetae such
Yot ~qen. chome residdes on couity sorfce, white. +y chome exishs on
conductor sorfece. Nete! E wm thecwrly will not-be 0.

# A oo impot‘\‘w\'\' czuavdﬂres we-con derve B o condugkor !
£ =6E.,

‘ ('CD"C&P&F ontare, )
= TLO_<E;+ E‘L)

D == % I—E.ll (Cled\'DS’ZC"‘L P“&SSU% O W



Ch & (C_Dl\-\,3

Condvctors . *# 14 (e place too condoctors near @ach olher, we. amn dfne capacitance. C as

Ce W

o C’M"Qe’ vp 4 Ca.Pacﬂr)r\/ the wor‘kdone, i

W = %’ C vt / V= final Po-\-w&\ 2 copacitsr

Ch 3~ Potentrls

Le Ploce's E‘L“: % Often, 501\!&\3 Oor £ and Vv acwm\mshwg\\owms ore. Tmpossible.
= A c-r .
E = HTFEOS \r-‘-\\‘/P(P )’
A /_E(,r*’) |
V= i | o by
Ths, we ceast the problem atoring to ~ V'V = F Lok has
Wown solotons when ‘Ooor\dav\ﬁ conditrors are. specitrec

+* The SMQ\¢5+ {orm & thrs ?mblem 0Oeeos shen P=0, o0\ 75 knoron as

Lo Place’s eguation. From examinmey =D 4o 3-D solotrons i Cartesinn space,
a fow Mwportent pomts!

O The soluhon N on Querage oPthe vale P ‘H«eﬁmc)wf\ in e loe
regmn s:.urrovmlmj the pomt

® Maxma. + mmima most cecor o en\pomb fo safeshy @

¥Since o specifrecd set o bandany conditons, 13 neadeel o solve e problem,
we have o fo Unigueness criferes

D Te solotron o LaPlacel Eqn M ome volome V13 ung vely letenmmal
F(: Vi SPQU'PM/\ on Mbounc\ﬂ\ﬁ 60{‘@:{6 S

@ i o volome U svureonded by condvelors, wco.dnmmﬂ c. specitreel d’wsg

sty p, the elecime freld En oniguely determmed. - the ok
d\awde, on e conduder 1 gien.

¥ Pods con be Dond M Grifdths 3.1.5 ad 3.1.6



©
9 3 (eont)D

Medel OLIMseb'. The method. &Mogea ™o *'?—Ck'\t@c/“‘b solve. Potsson 5 Egn svch thet

the sped?mol bovr\dw\j cenditrons ane created by a_w\—o‘?—‘hmad' clwraes
ex. Yot chame ahove gmonded conduetor

#We wank-to lnaws He potenten] o & pomt chorge 9 o Andance. A cbove
o gwor\c).eA conAodms pone. We mogh meet The Q’l\owins L conditions
@ \! =0 ot 220

B V20 as t=0; Pgxtrgtez?
¥Snee. e areonb inkorested MV abeve. the plane, we- can simphy odd ¢

C\'\m‘ﬁe —4 ot 224 Yo elre conddon 0. Coditon @
avhomad ally a/v@mwl by ratore b V G pont chames

R A I S
> V00 = it Gy G
#We can alsp detormme mdoeed surface charge dersiy accordimg

N
v
c 92 2=0
- —d
M (tryzad )
#We determme. the Total hdoced ckarbe; on the sorfce b:)f

Q= Joda

e

- 3 an (,f' dt)llz rdr&‘?

-
* Oher @;os\h"ncs wecan celevlate mc\oole'
. . 4% .,
- Tore . F: om p

- Work W = q‘—ﬁ'; iq-fr '/Lag’edwl\mh’é, ab 240, £=0)
*+Nore examples Bond T GretPths 3.
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On D (eont))
Seqorzion. P\orzbley” *Geal 13 4 Hom o pashl drfeentn egotn o o series o-orlinany difkerind
equattons o\ﬁpadﬂg on One \nreble each

% Oenewd examples I Coctesmn Coomimates ore. Boond 1 Grifhths 331 ot
o 6axe<u\ Soluton con e fond tn  Jacksen notes

ex. Spherzal Coordinades

#ote’ i, dervation assomes azimothal symmeny. See. Jackson notes
B soloton Wt assomphron ( really Legendire poljrorls
become spherteal harmenizs )

¥ LaPlaces agn fn spw\ covrdinedes 5.

2
“‘L 6r( %&) r’-sme?é 3“‘%6\) \'15 B 29t T O

D with camothal s\t)mmem, o redees Yo

ar(‘l ac) " smé 96 (smé 2% > 0
~ Rssomm o solton oF the form V(r,ér): R(P) 6(6) ond
o\wcrlm& b\-ﬁ V, we see .

| 2 ! .é?l
RﬁlF( 0\‘“ Esmb A6 5"9&9> O

- 05"5 e separaton constant  L(L+))

L7 Ld‘(rzég“): A (4+1)

ﬂ E(smé é>:—/€uﬂ)

We get He olotrong !
2 (F) A’\" + B 4,1-’
6)(0)= Py (con®) whre b= ——LZ [AY) (x* |>

Tkus ove overll soloton )

V(r6)-: Z' (A, et r*”' ) P, (t0s0)




C/\r\ ) (Cowh)ﬁ
Sepomon o‘\-\faﬂnb\&s’.

ex. Soherdzal Coordmedes (cont.)

+ote! Boondeny conditions wil determme valey o £, Ao, Be
Foorrec's ek Csee belas) 13 vsefoltp help cledemme coefficents

i)
Ly S_[‘ PL(X) l-)tv (X)dx = j‘o pL(casé) \7‘, (COBQ) smddo

.
o

O Xy
17,71 v

Mol pole, Cx nsron.  #Ths 3 an exponsron wn%uu% (’\0\3\ appmxrmaﬂt ?o*ev\h'a\s e gven
C\'\Arlae, cm%umiwna
*"Remembor the. Po{wkm \ R a Llharﬂe, cor\%urahvn B3 given loJ‘
\/((‘) = LmEDS 2@2 d\/'

le-el
~osiay the Law of Cogmes, we see:

\P~r‘1 = r" + r'z~ QW'COS(A)

e (5) - Zl(%)wso«); o 15 Ongle by
i
STlwe ; € :(%)<c% - Acos X)

=7+ o0 pont- o ewhaton s o fom He. chame distefootron,

€ 441, Hhs Vst the bmemml expanton !
S

- — - L/ 1 3 2§
Il "~ T Y‘(‘ €75 ¢€ ',‘;63*,_,>

"

3]

FL (BN -esr 3 (BN Bt
=l B war (PR

1 °° rl Y\
r r\ wbd‘»
n=0

D V(E) = e | S gt s Bl asepleOlis ]

1)



73 (cont))

Molhpole Exparson, The importont terms (+ Yheic pames) T the above expansion Ose.
= O — Monopole derm - Nomaly dennant ab lare. ©
N=\ - dtpole derm * Dot & Qu = O
n= 3 =~ quadmple term
n= 4 - Od'opr)lc term

Vi = J,\'r;, ]hj r cos o p() AV

N o3y

doot RoT' = rleosat

1o1a
= iy wf ) AV

Ly = eipe)dv’ (e B = g1f))

sy L Bef

LA =

Eleatre. Drpolet  Vjy (r6) = ﬁi
peod®
Ura et
E=-9V Nete : Tos assomes spharmal coomdnales
. o dapole. orrenteton
= Q%rs (2conbF + sm&&) alony + - axis

ChH- E lectry Frelds tn Mate—
Polarizetmn | #Two lare lsses o matermls | Condoctors and. Tesoledors (or Oelectizs)
¥ Neuvtrd edoms PM man ecdemal E-Sed will have locatmns shifhed bl’) QtH,Sod\ Hhat

5o
Where o B e clomre Palarr%a\ofh%\»)
Ly & molecoles, ‘-\5’ = oy B+ o, [_:”
¥ Whilenevtm) are only PolarreeA b3 e external Q»«M, polar molecvles expemence ¢ Yorgue as well

’\) = K E (a\wo‘r cener) . N ';(9—‘»( B (Fx F) elge.
and ™ an Oneven feld o ‘Coru'; as well

F=6(VE



On Y (cont.)
’\-%\o\ri?:a*mv\', +We defime :\?1 He po\aﬁ zaton os the o):pole monert per oni¥ volome.

¥ To examine. what hagpens To o ?o\avrqu redered, e anstder the ?th-eM'm\ oA o sgle

clipole- sodn ot
1 Poleee)
V(#)= ame EPSSE
L (') s (oo g
) q“""x = PSR o
D)
I R e
premembermg ' (1) = e

= L—H;’—T; S ®- (v'[\#r‘l‘]) dv'

* n\\-eﬁm{-mﬁ b\:) paﬁs we. £
l P | |
= """'[Sv’. ([‘—%r—" AV~ S‘\:‘:‘:l (V'B)A\[]

LS

gwhgh ofler uhliting the W Jheorem beames
R O S Y B A P
T ung, & \P-r'l.da Ure, Sﬁ“—r‘) (V°B)AV

#Th leads +o oor defmitrons o} sorfece and. volome boonak charges

G-b =P n o =-V. P
* Thes m\];h&s Hhat the Poﬁrﬂ—ra\ ot o polarized object 1 Yo come as Hut die
o Heve boord charmes. The, allows us 4o vse abr prevous coleolatron metheds
For . hosreal Teferpeton oF boond. chage ! Rood e ™ the. collechon o
Charges dve Yo loney Strings & inducal dipoles W/in a moderal.

Electm Drsplacement « WD the cdded boodl chame present T Arelectnes, we mast sleghtly madrfy oo egations
bebore colcol eting e Pelds
P= Phee * Ponond
Eo(V-E)= 7
= Tp -V-B



Ch Y (cont))
Electre DRSPMLM: ¥We rewrfte e aoove egoaton as!

VelaE+2R)= Y
-]3 = eogr _§ (E(cdntbsylw+ in SI)

* This resolis m oor new forms B Gaess! Laww®
V-D=p, $D-d2 = Q..
# Note, Despite. smilraritres to provmos dervatons of E, the daes not gy

0> we previevsly osedd VxE=0 4 denve the formola Bor 5, bo!
VD #0.

¥ Oor hew boor\datn condvtions  become

R 1 -1 v
DI - D =0 e
Dy -0y = PP | El-E =0

Linear Drelectrrs’ x Lingr Ardeches where the Yelahonship betwaon The polan’%a%n and e elecnz
Creld ™ o Yo Qrm
P Yo E
whoe: Ye B He eledne sosceptbiliy ond E o the dobt Feld, ohe both
1o an external freld and the polaraton o He matomal,
¥ Thwss , In Inear made.

-

D= ¢ E+ P
-
s Gaés* Go'XcE

= & (11%) E
=eE

Where € 13 e pemﬂ—wi{ﬁ ot the materrl. We also define The relatve

Pemﬁ\\)ﬂ\s o dlelectne constentas !

&

S e = & (1t%)



Ch Y (cont)

Linear Drelectne !

¥We can now deve o relatronship behoeen fee and bovnd chore

’Pb—- -V-P
= -V (& € D)
-~ = e
|+ %e s
whih allows Os 4o Qnrmo late. our \aou'\olwb condrtrans in terms 3 G!&C}Waes
C—/| E,J_ “éLE—,:L: 0_‘\&
Vo= VL

*Othee Lormolns e cun re-evabate Molude.!
~Worl, ¥ chamye cupreitor
W=2CVZ > (0= =yt
— Guenesd Work
éo S\»L ;N .
W= Z3EQV > L=35[D-£ oy
Pook AWz | (ap )V av’

= (- ad)vav’
= ] 9. (BBW)AV' + | AD- VE AV’
= O+ fap-e
W=1foEav
~ Foze |
¥ See Grtbths Y44 Be Bl demmton

Fer 7’\/2—4&" (%DM o\U)z“Faly de@)



Cw §- H\ag\’ne*t)ﬁ'\d\r/s

Lacerte Fore Law! +Tn e pessnce o owgpere feds only, F = ¢(¥x B, ond explana why
Corent carmy wies attect/repel ench other wohen therr™ corrents
are parmlll /onti-parlel. Te Rl lus 18 F= (E79x5)

% Lorerte Bee. louo plains the cbdohvn moton (r?*c,lwad partles NG

megnedre feld. Moo fy velecity pamliel fo fldh = vnafechal. Solingy
B e cgoatrons o Moton i Nestons 2% Lo will yield 2= o for

Yhe Cﬁdo‘rrm\ Qeio@nc%
* Solumﬁ Be e amount o Lok done. by a maﬁpehf,.prclé v AlWwag = Fm\\ YA
= Q(vxB) - vdt
- O

e define. the coment 1 a wire as Hhe Chame per unft tme passing o

Sped@rw\ pornt. We defre A as T = AT whee A inﬂrﬂL
Ae“g"ﬁ ond F 13 the Lhowo Veloeity. Thr allows vs 1 defire F %I&S'

=GB
=[(g%) 2
= @ xR
= T(AExR) (smee I, old are oclel
£0e debwe e sortuce (K) aud volowe (F) coments a5’

‘\210—'\7 ?j:»pv

¥To %‘\13% corceneton oﬁaﬂe/ we. heed Yhe cwfmmﬁ) <queadon



Ch'S (cond)

Bt - Saaet Lo "’S‘}@% stete corrents (e é%; =0) defmes mo%n&*osiu‘rms
¥The Ruot-Sawert defives the Mcgv\&w@alcl dve to a Ime. corrent
R - Ao :‘ix (P‘F') ] ST
B(X‘B - Lm’S ”—M\(‘-r‘\?’ o\l ( 7

~ Ao vl frelds dve to speerfre geometrres .

) Simrf)h-}- wire. Segment - -é = "-q%: (smé,;smé‘) (sI)

G

fﬁe"\ N

DN N

N N

P
2 (s 2‘2.>3/’~ (S.L)

(Derspron. ble rahmﬂa Lock tainy op; Gravssra onfs )

-@: HcI;ES Fxl{r-e) 0\‘“

@ Coment leop, embuted on oxis - @ =

-1 e
Y | dd x(r-r') L\
¢« ] le-e' 1P ‘.y

"e\)ah)&lh!\ﬁ the cmss pwclw\' (in cylindireal Qbor\ﬁ,‘\‘&)

dfx(e-2)=]9% ¢ 2
o JdL O
RO 2z

={2dd, 0, Rd>

twever, ble v o by symmetny poc freled worll pomt-in 2 &

Amecton, we onby comsreler 2 ~componeut
_ HT Rdd
- C —0O (sz?})a/z_
. 4L gwe
T amR™>

O [pue 3h

~Tn more. dmensons, the Bor—Gwart- Laws becomes

2 Mo [ Kxlre) ) B /sy, e [ Tnleer
R - ’[{#f \r»:l; da'  or B(—,e - ,ﬂj I‘x(r’t;)awr
-




&

CWE (cond )
‘DNerﬁer\w »Corl of B! * Lcoking - a oy St wore+ s Mogetre. Feld revenls o non- e oot

Lb §BAI - /aoIe"b

But wecan dlss deve Tene Voo, Lone = S:j"dz

AN A R T Y|

*The. abone boxed eguation 13 hnown as Ampere’s Laws (fomal dervatron
in Sec. §3.&> and. works ™ ¢ smiler mamer o Gaoss' Law
electw stedirs

&X. Frad & Jong, Stramht wire

é)BoLZ = Ay Ienc,
&B‘ AZ = BldL (‘egeipotentnl "omond. Aopenal loop m cyfndneal)
= R-dls

Ly R AW = A Ten

Ao
3 G los apeted)

+Note! Only M qnec\’ptt/ e)eomdﬁ& I3 Am?em’:, Lows osehsl, fndwlmj !
O Tnfae St lines (e $.7)
@ Lidwie planes (ex. S39)
B Tnbinite sdenods (ex. $4)
@) Tocorls (ex. S.16)

# Sine. Yhe dniagnce. oF B=0, oo mgnetoskhes eguatons ane!
V-8 =0 OxB=43



&'\ S—(Conl)ﬁ
Meapete eckor Rl

terdee|
Fomilor o electnstudes + veckor dertes cllow 6Sem rmoletron. o
clechostaties, we con aGlso desve. a po*ewhn\ Semolatren o

Mgt\étvsh\m obhus V' R=0+H ()bpntﬁﬁ\ ferms o Ras!
B- VA
~ Plosgne the. cbove. o Amperes Lo oyfves’
6)( @ = \'7 X (6 x B:)
= V(V-A)- VA
= Mo )
~ From this, we reqoite V-A=0, wheh 3 Q\wwﬂs possible
~Thiz then allows vsto detemine R e Porsson's en (9% = s )
whizh has the binown solohon’
R\ Ao, 'S'LF') i
H(PS - oyr m AV
~While potos usehl as v, B con still be et vse tan Bt~ Spct

%See ex. S\ wpd S 12 L A@mmﬁﬁ%mb@e@rﬁzﬁemims
Boundon\s Conditrons ! * We sHll wst wma&mr

condrtrons when ﬁolvmb nmﬁmibbfz«ﬁc&
poblems, Fomw V-B=0 o Wo\h@aaw/ﬂevmﬂ, we_cletemine

B = B

p A

STMﬂers fo OxB= 4, I cod Stokes Thm, we see
%‘: - B, = 4 e
Sos- e elecwstutes, oo polental b contmeons

A=A bevrdary )

mopﬁ'\)dt EXPO“\‘J\DY\: e om Ggatn sd*w\ atwmxnvm}t petentrl viz wwlﬁpolc’, EXpansivn b@ :
\

_ L2 e
T (¢ e Qoreos) ~ ré{)('&> P,\ (cost?\)




ChS (cont)

Muttipele Expansmn‘, ~Therehore, ovr gyoehon fr B bewmes’
. %I | ddL

- ur \e-r'|

AL (R
B Hﬂ'i' e § (r")" P losa)dL’
4T

t
- oqr E; MW + ”\E:I—Qgr'éo.sokau’q» '\’:3’&[‘91 (?i(osgk “-%,)CU ,*"'

where. %gllm«‘r\s ferms e nemed.

'\(—: - Monopsle , J(:;._ - AtPc)lc/ JF} *zwa\m‘w\e,

¥Here, 3-13 Mportantto note the monopole tem always &. Thos, we aare.
most oot the d@\e/*l'em.-

w AT
Ab\f\): e \&F‘COSO\OLQ‘

- AT

are § (R ) o
3 Vsiny &G'F')M': - f‘\xf@h'

Mo =5 n

e MXC W= D] (magehe dple wovert)

Ch G- Magnehre Frelds . MaHer

W\%thhvn ! #Gmilur o polarizahon  Mognetizaden acors when o modemal T Placed tn an extemal
3 - Dreld. These bt mtermls ove culegorrzed. es!

O Racusmanpels - Mogpetizaton paallel fo B

@ 'me‘%ne*s - Mnd‘rwhon ofposﬁe,b B
@Fﬁﬂmaaneh - marr\Jmm Mﬂ@t\’;\'ﬁ:aimdﬁ-er femoual 'QW\ —B)-Q,&u
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Physics 221 A
Fall 2017
Appendix A
Gaussian, SI and Other Systems of Units
in Electromagnetic Theory

1. Introduction

Most students are taught SI units in their undergraduate courses in electromagnetism, but in
this course we will use Gaussian units or other systems of units derived from them (atomic units,
natural units, etc). This Appendix is intended to help you become familiar with Gaussian units,
assuming you have a background in SI units. We will also mention briefly other systems of units,
which you may encounter in other courses. We will make only limited use of SI units in this course,
mainly for expressing the answers to homework problems.

This Appendix is intended to be as practical as possible for the purposes of this course. We
will address the most common problems you will encounter first, and then discuss some general
considerations that lie behind the choices of units. We will concentrate on the problems you will
likely encounter in this course on quantum mechanics, and neglect other issues. For reference you
may also wish to look at Jackson’s discussion of units (an appendix in Classical Electrodynamics).

In this appendix vectors E, B, D and H have their usual meanings, while P and M are the
electric and magnetic dipole moments per unit volume, respectively, and p and m are the electric
and magnetic dipole moments of individual dipoles, respectively. The scalar and vector potentials

are ® and A, respectively.

2. A Comparison of SI and Gaussian Units

The main advantage of SI units is popularity. The entire engineering world runs on volts, ohms,
farads, ete (all ST units), so almost any discussion of electrical equipment or experimental apparatus
will be in terms of SI units. The main advantage of Gaussian units is that they make fundamen-
tal physical issues and theoretical relations involving electromagnetic phenomena more clear. For
example, special relativity and quantum electrodynamics are simpler, more transparent and more
elegant in Gaussian units than in SI units, and generally the various formulas of electromagnetism
are simpler and easier to remember in Gaussian units than in ST units. Gaussian units are really
the simpler system of units, and they would be better for pedagogical purposes were it not for the
fact that students must deal with SI units some day anyway.

ST units have gradually been winning the popularity contest against Gaussian and other systems

of units. Almost all engineers, most chemists and many physicists now use SI units almost exclusively,
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and undergraduate courses in electricity and magnetism are now normally taught in SI units. Book
publishers have contributed to this trend; they want books written in SI units so engineers will buy
them. Nevertheless, it is unlikely that Gaussian units will ever be completely abandoned, because
they are so superior for fundamental physical questions.
We will now list several aspects in which SI and Gaussian (and other systems of units) differ.
A fairly trivial difference is the system of units used for mass, distance and time (leaving aside
charge for the moment). In SI units, the MKS (meter-kilogram-second) system is used, while the

Gaussian units use the cgs (centimeter-gram-second) system. Thus, converting mechanical quantities

(energy, force, etc) from SI to Gaussian units only involves various powers of 10. See Table 1.
MKS unit  cgs unit Conversion
mass kilogram gram 1kg = 10%gm
distance meter centimeter  1m = 10%cm
energy Joule erg 1J = 107erg
force Newton dyne 1IN = 105dyne

Table 1. Converting mass, distance, and mechanical units only involves powers of 10.

Another fairly trivial aspect in which SI and Gaussian units differ is the placement of the 47’s
in the formulas. In any system of units for electromagnetism factors of 47 will appear somewhere;
the usual choices are in Maxwell’s equations, or else in the force laws (Coulomb and Biot-Savart).
The difference is brought about by either absorbing factors of v/47 into the definition of the unit of
charge or splitting them off. Units in which the 47’s have been eliminated from Maxwell’s equations
are called rationalized; SI units are an example of rationalized units, in which the 4n’s appear in
Coulomb’s law and the Biot-Savart law (in the factors 1/4mey and po/4x), but not in Maxwell’s
equations. Gaussian units are not rationalized, so the 4n’s appear in Maxwell’s equations. See
Eqs. (14)-(17).

Another difference between SI and Gaussian units, this one not so trivial, is the definition of
the unit of charge. In Gaussian units, the unit of charge is defined to make Coulomb’s law look
simple, that is, with a force constant equal to 1 (instead of the 1/4mey that appears everywhere in
SI units). This leads to a simple rule for translating formulas of electrostatics (without D) from SI
to Gaussian units: just replace 1/4meg by 1. Thus, there are no €’s in Gaussian units (see Sec. 4).
There are no uo’s either, since these can be expressed in terms of the speed of light by the relation

1
Coto = . (1)

Instead of €o’s and pg’s, one sees only factors of ¢ in Gaussian units. In SI units one could use

Eq. (1) to eliminate one of the three constants g, 1 and ¢, but not in a symmetrical manner, so in
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practice all three constants are retained. The result is that formulas in SI units can be written in a
nonunique manner.

In SI units one sees expressions such as the permittivity, permeability or impedance of “free
space.” These are not fundamental physical properties of free space, but rather artifacts of the SI
system of units, which disappear (along with the eo’s and pg’s) in Gaussian units.

In Gaussian units the unit of charge (the statcoulomb) is defined as the charge such that two
charges of one statcoulomb each at one centimeter distance will feel an electrostatic force of one
dyne. Thus, in Gaussian units, the electrostatic force constant in Coulomb’s law is 1 (see Eq. (4)),
and it is possible to solve Coulomb’s law for the charge, dimensionally speaking, to express the unit

of charge in terms of other units. This gives
MIA\'Y?
Q = ( T2 ) ) (2)

where M, L, T and @ stand for mass, distance, time and charge, respectively. That is, one stat-

coulomb is the same as one gm!/2em3/2 /sec. Tt is not practical to do this with SI units (since the
force constant is not 1), so the SI unit of charge (the Coulomb) is usually regarded as an independent
unit in the SI system. You may not like the fractional powers that appear in Eq. (2), but you are
always free to treat the statcoulomb as an independent unit also in Gaussian units. Many formu-
las appear with the square of charge, so there are no fractional powers. In any case, dimensional
relations are much simpler in Gaussian units than in SI units.

Another difference between SI and Gaussian units is the fact that the magnetic field B is defined
with an extra factor of ¢ in Gaussian units compared to SI units. This same factor of ¢ percolates
down to all derived magnetic quantities, including A, M, H and m, and it means that all these
quantities have different dimensions in SI units than in Gaussian units, even after the relation (2) is
taken into account. This is the main difference that makes it difficult to remember how to convert
magnetic formulas from SI units to Gaussian units.

It has the benefit, however, that in Gaussian units all the fields E, P, D, B, M and H have
the same dimensions, while in SI units the dimensions are all different. In addition, the scalar and
vector potentials ® and A have the same dimensions in Gaussian units, but not in SI units. The
uniform dimensions for fields in Gaussian units make it easy to remember formulas in that system,
and it makes fundamental physical relations more transparent. For example, dielectrics convert E
into D, and relativity converts E into B, with coeflicients that are dimensionless in Gaussian units.
In ST units, it is necessary to insert factors of g, pg, etc. into the conversion formulas, which makes
them harder to remember.

A final difference between Gaussian and SI units are the different definitions of the fields D and
H (in terms of E and P, and B and M), and likewise different definitions of electric and magnetic
susceptibilities. We will not make much use of D and H in this course (they are important for the

properties of bulk matter), but for reference the differences are described in Sec. 6.
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Other systems of units involve difference choices. For example, the Heaviside-Lorentz system
is similar to the Gaussian system, but it is rationalized. There are no €g’s or pg’s in the Heaviside-
Lorentz system. Heaviside-Lorentz units are favored by field theorists, who prefer not to see factors
of 4w in the field Lagrangian.

There are many other choices. For example, it would be easy to construct a Gaussian system of
units for electromagnetism that uses MKS units for mass, distance and time (and a correspondingly
modified definition of the statcoulomb, so the electrostatic force constant would still be unity). Such
a system would be nonstandard, but it would have all the advantages of the Gaussian cgs system
and none of the disadvantages of the SI system.

Constant Symbol ST Gaussian
Speed of light c 2.998 x 10%m/sec  2.998 x 10'%m/sec
Planck’s constant R 1.055 x 10734 Jsec  1.055 x 10~ erg-sec
Boltzmann constant k 1.381 x 107%J/K  1.381 x 10~ ¥erg/K
Avogadro number Na 6.022 x 1023 6.022 x 10%
Fine structure constant o 1/137.0 1/187.0
Proton charge e 1.602 x 10719C  4.803 x 10~ 9statcoul
Electron mass Me 9,109 x 10~3kg 9.109 x 10~ %gm
Proton mass mp 1.673 x 10~?"kg 1.673 x 10~ %*gm
Neutron mass Moy 1.675 x 10~ %"kg 1.675 x 10~ %4gm
Permittivity of free space €q 8.854 x 10712F /m —
Permeability of free space o 1.257 x 107N /A? e

Table 2. Numerical values of physical constants in SI and Gaussian units, to four significant figures. Source: Phys.
Rev. D 50, 1233(1994).

3. Converting Numerical Values

The values of various fundamental physical constants in the two systems of units are summarized
in Table 2. Naturally if you carry out a calculation consistently in one system of units, the answer
emerges in that system of units. For example, an electric field calculated in Gaussian units comes
out in statvolts/centimeter. Usually calculations in the Gaussian system are easier, because there
are fewer constants (no ep’s or ug’s).

Once a numerical answer is calculated in one system of units, you may need to convert it to
another. Table 1 can be used to convert mechanical quantities, and Table 3 will help in converting
electromagnetic quantities.
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Quantity SI unit  Gaussian unit Conversion
Charge g Coulomb  statcoulomb 1 C = (3) x 10? statcoulombs
Potential ® Volt statvolt 1 statvolt = (3)00 Volts
Electric field E Volt/m  statvolt/cm 1 statvolt/cm = (3) x 10* V/m
Magnetic field B Tesla Gauss 1 Tesla = 10* Gauss

Table 3. Conversion of electromagnetic quantitics between SI and Gaussian wnits. The notation (3) represents
2.9979. .., the same number (apart from a power of 10) that occurs in the speed of light. Note that one statvolt/cm is
the same as one Gauss.

4, Useful Things to Remember

The following is a list of useful things to remember when converting numbers, equations, or

concepts between SI and Gaussian units.

It is useful to remember that 1 statvolt is (approximately) 300 Volts, and that 1 Tesla is exactly
10* Gauss.

It is worthwhile memorizing Maxwell’s equations in both systems of units, both the vacuum
equations (14)—-(17), and the macroscopic equations (40)—(41).

Equations of electrostatics without D can be converted from SI to Gaussian units by replacing
1/4mep by 1. Gaussian electrostatic equations (without D) containing e? can be converted to
SI units by replacing e? by e%/4meg. Probably the easiest way to convert other equations in
electrostatics and all magnetic equations is to look them up in a table (see Sec. 5.)

In Gaussian units, all the fields E, B, P, M, D and H have the same dimensions. In particular,
this means that in Gaussian units one statvolt/cm (the unit of E) is identical to 1 Gauss (the
unit of B). Also, in Gaussian units the scalar and vector potentials ® and A have the same
dimensions. This makes it easy to remember where to put the factors of ¢ in Maxwell’s equations
and other places.

The electric polarization vector P is defined as the electric dipole moment per unit volume, and
the magnetization vector M is defined as the magnetic dipole moment per unit volume, in both
Gaussian and SI units.

The encrgy of a electric dipole p or a magnetic dipole m in an external electric or magnetic
field is given by —p - E or —m - B in both SI and Gaussian units. However, the dimensions of
m and B are different in the two systems (because of the 1/¢ factor discussed above).

5. Dictionary of Electromagnetic Equations in SI and Gaussian Units

It is possible to give general rules for converting an equation from Gaussian to SI units or vice

versa, but in practice it is easier to look things up in a dictionary. In this section we list the principal

equations of electromagnetism in both SI and Gaussian units, apart from equations involving D and
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H, which are given in Sec. 6. The SI equations are on the left and the Gaussian equations on the
right. If an equation is the same in both systems, it is listed only once.
The continuity equation:
V~J+Q£:0 (SL, G). (3)
ot
Coulomb’s law:

1 q1¢2 q1q2
— Podelclal R 4
yrmtee SNCE F=12 (@), (4)

where F' is the force between the two particles, directed along the line joining the particles and
considered positive if repulsive, negative if attractive. Potential produced by charge distribution
p(r) in electrostatics:

B(r) = — / NI OB B(r) = / e L5 gy (5)

- drreg |r — v/ v — /|

Electric field in terms of potential in electrostatics:
E=-V® (SI,G). (6)

Potential in terms of electric field in electrostatics:

B(r) = — / E()-dr' (SL,G), 1)
ro
where the path connecting ro and r is arbitrary. Poisson equation in electrostatics:
V2 = —6ﬁ (SI), V2 = —dnp  (Q). (8)
0

In magnetostatics the current is steady and satisfies V- J = 0. Vector potential in terms of
current in magnetostatics:

Alr) = ﬂ/dSr’;—(_r%—' (sD), Afr) = %/d%«' I @), (9)

4, [r —r/|

where A is in Coulomb gauge (V- A = 0).
Electric and magnetic fields in terms of potentials in the general (time-dependent) case:
OA 16A
E=-Vo—~— 1 E=-Vb-_"= 1
(5D, ve--=2 (G), (10)

B=VxA (SLG). (11)

These are valid in any gauge.

Gauge transformation:

A =A+Vy (SLQ), (12)

e) 18 .
<I>’=<I>—8—§ (S1), P = —Ea—f (G), (13)
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where g is the gauge scalar converting one choice of potentials (¥, A) into another choice (&', A').

Vacuum Maxwell equations:

v-E=f— (SD), V-E=4mp (G), (14)
0
OF: 1 OF ]
VxB = ppJ + 60/1,0——8—; (SI), VxB = -—~J + ZE (G), (10)
OB 10B
VXE = ——8? (SI), VxE = *—Z—a-? (G), (16)
V-B=0 (SLG). (17)

Force on a charged particle of charge ¢ in an electric and magnetic field,
1
F = ¢(E + vxB) (SD), F:q(E+zv><B> (@), (18)

where v is the velocity of the particle.

Electric dipole moment of a static charge distribution p(r):

:/dsrrp(r) (SL, G). (19)

The electric polarization vector P is the electric dipole moment per unit volume in both systems of

units. It gives rise to a bound charge density,

pp=-V-P. (SL,G) (20)
Energy of an electric dipole p in an external electric field:

W=-p-E (S,G). (21)

See Sec. 6 for the electric susceptibility, the permittivity and dielectric constant, and the displacement
vector D.

Magnetic dipole moment of static current distribution J(r
1 .
m = §/d3rr><.](r) (ST), _ —/d%rxJ (@), (22)

The magnetization vector M is the magnetic dipole moment per unit volume in both systems of
units. The bound current density J;, depends on both M and P in time-dependent systems,

oP oP
= VxM+ = (SD), Jy=cVxM+ = (G). (23)

Energy of a magnetic dipole m in an external magnetic field:
W=-m-B (SLG). (24)

See Sec. 6 for the magnetic susceptibility, the permeability, and the magnetic field vector H.
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The vacuum energy density of the electromagnetic field:

60E2 32 . 1

- = (sI ’+B? . 2
w= Tt (8D, w=(F*+B%) (G) (25)
The vacuum energy flux (Poynting vector):
1 c
S=—ExB I = —ExB . 2
—ExB(31), S=_BxB (G) (26)

The vacuum momentum density g is (1/c?) times the Poynting vector in both systems of units,
1
g =cExB (S]), g = Z——;EXB (G). (27)
e

Elementary treatments of u, S and g in the presence of matter arc often flawed by the neglect of
thermodynamic considerations. Many of the equations found in textbooks involving these quan-
tities are only correct at zero temperature, or under conditions of local thermal equilibrium and

adiabaticity.

6. The Macroscopic Fields D and H

The vectors P, D, M and H apply in the presence of bulk matter and are defined by some kind
of macroscopic and/or statistical averaging process. The fields E and B can be either microscopic
or macroscopic, depending on context.

The definitions of D in terms of E and P and of H in terms of B and M in Gaussian and SI
units cannot be reconciled by taking the relation (2) into account, or (in the case of H, B and M)
the extra factor of ¢ in the definitions of magnetic quantities. Instead, one must take into account
an extra factor of 47 that has been inserted into the definitions in one of the two systems of units.
This is an extra layer of confusion in the comparison between the two systems of units. In practice
it is probably easiest to look formulas up.

The displacement vector D in terms of the electric field E and the polarization P:
D=¢E+P (SI), D=E+47P (G). (28)
In a linear medium, the polarization P is a linear function of the electric field E,

Pi=coy (xe)y By (SI), Pi=3 (x)ii B (G), (29)
i 7

where the dimensionless electric susceptibility tensor (x.)i; is characteristic of the medium. In an

isotropic medium, x. becomes a scalar, and we have
P = ¢yx.E (SI), P=xE (G). (30)
Although x. is dimensionless, it does not have the same value in the two systems of units:

Xe' = dmx. (31)
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In a linear medium (for simplicity taken to be isotropic), D is proportional to E,
D=¢E (SLG), (32)

where €, the permittivity or dielectric constant of the medium, is given in terms of the susceptibility
by
e=¢eo(l+xe) (D), e=1+4dmx. (G). (33)

The permittivity € is dimensionless in Gaussian units. The same quantity is sometimes called the
relative permittivity in SI units, and denoted ¢, = €¢/eq.

The magnetic field vector H in terms of B and magnetization M:

H:%B—M (SD), H=B-4rM (G). (34)
0

In a linear medium, the magnetization M is a linear function of the magnetic field H,

M; = Z(Xm)ij H} (SL G)v (35)

where the dimensionless magnetic susceptibility tensor (xm)i; is characteristic of the medium. In
an isotropic linear medium, ., becomes a scalar, and we have
M=x,H (SLG). (36)
Although X, is dimensionless, it does not have the same value in the two systems of units:
X = 4mxi (37)
In a linear medium (for simplicity taken to be isotropic), B is proportional to H,
B=pH (81,G), (38)
where 1, the permeability of the medium, is given in terms of the magnetic susceptibility by
p=po(l+xm) (SD), p=1+4drxm (G). (39)

The permeability p is dimensionless in Gaussian units. The same quantity is sometimes called the
relative permeability in SI units, and denoted p, = p/po.

The inhomogeneous, macroscopic Maxwell equations (in the presence of matter) are

V-D=p; (SI), V-D=dmp; (G), (40)
oD 4 16D
VXH:Jf—f—Ft— (SD), VXH—‘—C_—Jf—‘_;E- (G), (41)

where py and J; are the free charge and current densities, respectively. The homogeneous Maxwell

equations are the same as in vacuum, Eqgs. (16)—(17).
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7. The Physics Behind the Choices

Fundamental physical concepts are independent of any choice of units, but can be lost in the
mass of conventions that are employed. Therefore it is worthwhile looking at some of the basic
physics of electromagnetism and the rationales that led to choices listed above.

Coulomb’s law states that two charges exert a force on one another that is proportional to the
product of the charges and inversely proportional to the distance between the charges,

F=k, sz (42)

where (1 and Q2 are the charges and d is the distance. The force F is a scalar in this equation but
the force vector is directed along a line between the particles and is repulsive (attractive) if ' > 0
(F' < 0).

The constant k., obviously depends on the units chosen for charge. One possibility is to use an
arbitrary definition, for example, the amount of charge deposited on a standard glass rod by three
rubs with a standard cat fur, or the amount of charge needed to deposit so many grams of silver
in an electrochemical cell. Arbitrary systems of units like this were once common, for example,
the original definition of the second was 1/86,400 of a day (the rotational period of the earth), and
the meter was originally defined (by Napoleon’s commission) as 1/10,000,000 of the distance from
the equator to the north pole of the earth. Later these definitions were changed several times to
enhance the reproducibility of the standards. Now the second is defined in terms of the period of
the radiation produced in a hyperfine transition of the cesium 133 atom, and the meter is defined
so that the speed of light in vacuum is 299,792,458 m/sec exactly.

If an arbitrary unit of charge is chosen, then the constant k, must be measured experimentally.
Another possibility is to define the unit of charge so that the constant k. takes on a simple value.
The value k. = 1 is especially simple, and this is the choice made in the Gaussian system of units
(with the cgs system used for units of distance and force). That is, the statcoulomb is the charge
such that two charges of one statcoulomb each at a distance of one centimeter exert a force of one
dyne on one another. In SI units, the unit of charge (the Coulomb) causes the electrostatic force
constant ke not to have a particularly simple value, so that insofar as electrostatics is concerned,
the definition of the Coulomb appears to be arbitrary. Actually, the Coulomb is defined so that
the magnetic force law looks (somewhat) simple, a point we will return to below. In SI units, the
constant k. is written as 1/4mey. Given that the value of k, is not particularly simple, there is the
question as to why this constant is written in such a complicated way. The purpose of the 47 is to
rationalize Maxwell’s equations, but the manner of writing ¢ in the constant and the O-subscript
are unfortunate, since they make the simple physics of Coulomb’s law look complicated.

Next we consider the definition of the electric field. We begin with an imaginary experiment,
in which a set of charges are present in some region of space. We treat these charges as if they were
the only charges in the universe (any others are assumed to be far enough away that they have no
effect on our experiment). The charges may be in an arbitrary state of motion. We pick out one
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charge @, call it the “test” charge, and measure the force on it under different circumstances. When
Q is stationary, we call the force F,, on @) the “electric” force, and we find experimentally that it is
proportional to . It also depends on the position x of () and the time ¢ at which the measurement

is made. Then we define the electric field E(x, ) as the force per unit charge on @), so that
F. = QE(x,1). (43)

This definition of electric field (electric force per unit charge) is the same in both SI and Gaussian
units.

Suppose now that the test charge @ in our imaginary experiment is in motion with velocity v.
Then we define the “magnetic force” on Q as the total force F minus the electric force F. (the force

that @ would experience if it were stationary),
F,=F- Fe- (44)

Then we can take the following as experimental facts. First, F,, (like F.) is proportional to Q.
Second, it is linear in the velocity v, that is, if we do several measurements with the same Q but
with different velocities, we find that if velocity vy gives magnetic force F,,,; and velocity vg gives
magnetic force F,,o, then velocity a1vi + a2vy gives magnetic force a1F 1 + aF e, Third, the
magnetic force is orthogonal to the velocity, v - Fp, = 0. The first and second properties mean that
there is a matrix M, a function of the position x of @ and the time ¢ of the measurement, such that

F,, = QMv, (45)

while the third property means that M is antisymnetric, M;; = —Mj;. An antisymmetric matrix has
3 independent components, which are conveniently expressed in terms of a vector X = (X, Xy, X.)

by
0 X, -X,

M=|-X, 0 Xe |, (46)
X, —-X; 0
so that Eq. (45) has the form
F,, = QvxX. (47)

Now we define the magnetic field. Unlike the definition of the electric field, the magnetic field
is defined differently in the SI and Gaussian systems. In the SI system, the magnetic field is defined
by B = X, whereas in the Gaussian system, it is defined by B = ¢X. This explains the extra factor
of ¢ in the Gaussian force law (18). The Gaussian definition causes E and B to have the same
dimensions (the statvolt/em and the Gauss are actually identical units).

In these imaginary experiments we have not said how the force on the test charge @ is specified
by the rest of the charges (the “source” charges). Two cases are simple. If the source charges are
stationary (and have been so for a long time), then the electric force on the test charge is given by

X —x'

F, = keQ/d3x’ p(x)———= (48)

|x —x/|3’
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where p is the source charge density, k. is the electric constant introduced in Eq. (42) and x is the
position of the test charge. If the sources charges are in motion but the source current is steady
(and has been so for a long time), then the magnetic force on the test charge is given by

x—x

F,, = knQvx / dx' J(x')x (49)

where J is the source current density and k,, is & new constant (the magnetic force constant).
Equations (48) and (49) have been written purely in terms of forces, without reference to the electric
or magnetic fields (the latter of which is defined differently in the two systems of units), because
we wanted to have expressions for the electric and magnetic forces that were as independent of
conventions as possible. No asswmptions have been made about the unit of charge or the definitions
of the electric and magnetic fields in these equations.

Taking the ratio, dimensionally speaking, of Eqs. (48) and (49) shows that the ratio k. /k,, has
dimensions of velocity?. Therefore the value of this ratio is independent of the choice made for the
unit of charge. In fact, both k. and k,, can be measured in laboratory experiments (using some
arbitrary unit of charge, if necessary), and their ratio computed. This was done in the early history
of electromagnetism, and it was found that

— =

= , (50)

to experimental accuracy. Now we believe that the relation (50) is exactly true (at least, it is a
fundamental tenet of electromagnetic theory). Thus, the electric and magnetic force constants are
not independent. In Gaussian units, Eq. (50) implies ky, = 1/c?, and in SI units, where k,, is usually
written po/4m, it implies egpg = 1/¢%. The situation is sunmarized in Table 4.

Units ke ko
1
Gaussian 1 -
c
1 Ho
SI L
dmeq  4Am

Table 4. Electric and magnetic force constants in the different systems of units.

In ST units, the unit of charge (the Coulomb) is chosen so as to make the magnetic force constant
km = po/4m take on the value 1077 (exactly). One could say this is a way of making the magnetic
force law look simple (instead of the electric force law, the choice made in Gaussian units). Of course,
1077 is not as simple as 1, but the result is that the Ampere (one Coulomb/sec) is a reasonable unit

in simple laboratory experiments and common electrical devices.



