E & M Qualifier

January 13, 2011

To insure that the your work is graded correctly you MUST:

1. use only the blank answer paper provided,

2. write only on one side of the page,

3. put your alias on every page,

4. put the problem # on every page,

5. start each problem by stating your units e.g., SI or Gaussian,

6. number every page starting with 1 for each problem,

7. put the total # of pages you use for that problem on every page,

8. staple your exam when done.

Use only the reference material supplied (Schaum’s Guides).



1. A parallel plate capacitor has the region between its plates filled with

a dielectric slab of dielectric constant K = ¢/¢p and mass m. The
plate dimensions are: width w, length ¢, and plate separation d. The
capacitor plates are connected to a battery of constant voltage V (A¢ =
V in the figure). Neglect the fringe field and friction, and assume the
slab is constrained to move in the plane parallel to the capacitor plates.

(a) {2 pts} Compute the capacitance C' = ¢q/V of this capacitor as a
function of z.

(b) {2 pts} If the slab is withdrawn half way (to z = £/2) and held
in place, what is the magnitude and direction of the force on the
slab caused by the electric field?

(c) {2 pts} At z = £/2 the slab is released and given a velocity vy to
the right. Find the current supplied by the battery at the instant
it is released.

(d) {2 pts} At z = £/2 the slab is again released but with zero velocity.
Describe the motion of the slab (in words). What is the maximum
velocity achieved by the slab?

(e) {2 pts} Sketch the displacement of the slab versus time.



2. This problem investigates the shifting frequency of electromagnetic ra-

diation that is reflected off a moving target. Incident and reflected
frequencies and angles are not the same if the target is moving.

Assume that in the lab frame of reference, the target is a flat mirror
traveling upward in the positive x-direction parallel to the mirror’s
normal with velocity v = ScX (see the figure). Also assume the wave is
a linearly polarized plane wave traveling in vacuum towards the moving
mirror at angle ; (relative to the mirror’s normal). If the polarization
is in the 2 direction, the incident electric field is given by

_ 5 Sukrr—wrt
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with o
k; = —ci(—— cosf; X +siné; §).

(a) {2 pts} Write the Lorentz boost A as a function of 8 and v =
\/1 — 32 that transforms the Lab coordinates r and ct to coordi-
nates r’ and ct’ co-moving with the mirror. Also give the inverse
A1 of the Lorentz boost A that transforms the moving coordi-
nates r’ and ct’ into Lab coordinates r and ct.

(b) {3 pts} By rewriting the above wave’s phase in both reference
frames, i.e.,
ky-r—wit =k ' —wit
as a function of the co-moving mirror coordinates r’ and ct’ (i.e.,

use A1) find k} and wj as observed in the co-moving frame. These
will be functions of 3,7, and 6; as well as wy.

(c) {2 pts} By writing the incident wave vector just obtained in the
moving frame in the form
</d/
K, = -C—f(— cos 0 % +sin 0, 9),
determine the incident angle 8} as seen by observers moving with
the mirror (e.g., give cos 6} as a function of §;,w; and the Lorentz
parameters /3, 7).



(d) {3 pts} If, as seen by observers moving with the mirror, the re-
flected wave has the same frequency as the incident wave wp = w}

and a reflection angle that-is the same as the incidence angle
L. 9/ M
=01 1e,

P
=

cos 07 X -+ sin 67 §),

what is the frequency wg of the reflected light as measured in the
laboratory frame? Hint: again use

kp r—wpt =Ky 1 —wht,

and the Lorentz boosts A.
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3. Consider a square with sides of length s and charges -g at the corners
as shown:

(a)

{2 pts} What is the potential at the center of the square if the
potential is zero at co?

{2 pts} How much work does it take to bring in another charge -¢
from oo to the center of the square?

{3 pts} How much work does it take to assemble the original
configuration of 4 negative charges (no charge at center)?

{3 pts} Now suppose that instead of the 4 charges being located
at the corners of a square, a net charge of —4q is distributed
uniformly on the surface of a sphere of radius s. How much work
does it take to bring in another charge g from oo to the center of
the sphere?
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4. Consider an isolated spherical surface of radius R centered on the origin,
that is kept at a known potential V(6), i.e.,

B(r = R,0) = V(9)

where (7,0, ¢) are the usual spherical polar coordinates, i.e., 6 is mea-
sured with respect to a z-axis passing through the center of the sphere
and ¢ is the azimuthal angle about the z-axis measured from the z axis.

(a) {2 pts} Write down expressions for the general solution to V2®(r, §) =
0 for the electrostatic potential as a linear combination of Legen-
dre polynomials in the respective regions 0 < r < R and r > R.
Assume that the potential vanishes at r — oo and has azimuthal
symmetry i.e., no dependence on the angle ¢. Do not include
terms that must vanish. Do not attempt to evaluate the constants
that appear in the linear combination but do give the correct r
dependence of each term.

(b) {2 pts} What boundary conditions must your two expressions sat-
isfy at the junction r = R to have a unique solution to Maxwell’s
equations?

(c) {2 pts} If the particular surface potential imposed is
O(r = R,0) = Vycost
where V} is a constant, what is the explicit form of your potential

for both regions r < R and r > R?

(d) {2 pts} Determine the resulting electric field on both sides of the
r=R surface.

(e) {2 pts} What is the surface charge density o(¢) on the spherical
shell at r=-R.



Wave —>

crystal

Wave travels into page.

5. A plane polarized monochromatic light wave traveling in the +z direc-
tion enters a large flat slab of transparent crystal of thickness d, located
between z = 0 and z = d. This crystal has the property that the index
of refraction depends on the direction of polarization as follows: Plane
waves traveling in the z direction but polarized in the direction

&, = cos PpX -+ sin Poy,

travel with speed v, = ¢/n, < ¢ but those polarized in the orthogonal
direction

&5 = —sin ¢oX + cos ¢y,
travel with the faster speed vy = ¢/ny < ¢ where n, = ny + dn.

Assume the wave, just after entering the crystal (i.e., for very small
z << A < d), is polarized in the y direction and hence has the form

E(z = 0,t) = Eg§e ™"

(a) {4 pts} Prove that in general the initial plane wave becomes ellip-
tically polarized when it reaches z = d by deriving the following

expression
E(z = d,t) = [E, & + B, §] e/,
where
= W [ng+ng
k=—| ———
()
and
E, = iFEqsin 2¢g sin d,
E, = Ey(cos 0 ~ i cos 2¢g sin ),
with p
d = —dn.
2c &

Hint: Write the wave at z=0 as a combination of slow and fast
plane polarized parts using § = sin ¢o&; + cos ¢oéy.

7



(b) {3 pts} For what values of ¢ and 8y will the wave emerge from the
crystal as a circularly polarized wave? (E,/FE, = *i).

(c) {3 pts} For what minimum crystal thicknesses d = dpn will the
wave emerge as a plane polarized wave (F,/E, = real) and what
will its polarization direction be?
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6. A permanent magnet in the shape of a solid sphere of radius a is ori-
ented on the z-axis as shown in the figure. The magnetization of the
magnet is given by M = My3. [Recall that V x H = 0 implies the ex-
istance of a magnetic scalar potential ®,,(r, 8) related to the magnetic
field by H = —V®,,(r,0).]

(a) {4 pts} Compute the scalar magnetic potential ®,(r,0) at all
points r < a and 7 > a.

(b) {3 pts} Compute the magnetic Field H = —V®,,(r, 0) at all points
r<aandr>a.

(c) {3 pts} Compute the magnetic induction B, where

B/uy = H+M, (S1)
B = H+47M, (Gaussian)

at all points r < ¢ and 7 > a.

Hints: The magnetic potential is axial symmetric about the z-axis and
satisfies the Laplace equation at all points except r = a. Legendre
polynomials are useful.



