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1 Newtonian Mechanics

e Set Fiy = 0 to find the point when two objects separate (ex. ball rolls off hemisphere)

e Momentum (p = mv, L = Iw) is conserved for all collisions; energy is conserved for elastic collisions

e Force = —VU

e For periodic motion, if the equation of motion is & 4 £z = 0, the frequency is w = V&, If the equation
has a term linear in %, that is a damping term.

o Power: P=4E = AW — F.5=7.4

1.1 Angular Motion
o Use v = wr, z = 6r, a = ar for basic angular motion

mu? 2

e Circular motion: ma = ™= = mw*r

e Torque: %’ti =r=7FxF=JIa=Fdsinf
e Period T = 22

¢ Remember: it’s often easier to find dsin@ than to find d and 6 separately

e To derive moment of inertia: | = f r2dm; solve for dm in terms of dr

e Can still also use ©F = ma if it helps. Consider all forces acting at same point (point particle)

2 .
e Orbits: ngﬁf—f— > 0 for stable orbits. Use %‘: = ( for circular orbits

e Parallel Axis Theorem: I,c, = Iorigina + MR?
Helpful moments of inertia:

e sphere: I = %MR2

e disc: ] = I MR?

Rocket Ships: Use m = mass of ship, dm'=ejected mass, v=velocity of ship, —u=ejected mass velocity
relative to ship. Then we have:

pi =ps — 0= (m—dm')(v+dv) +dm'(v—u) (1)

Set v = 0 for simplicity, and dm = —dm’. After that it’s mostly algebra/calculus.



2 Virtual Work

The principle of virtual work presents an alternative to Newtonian solutions for force problems. This method
uses the equations:

5W=ZF;@~5@=0 5W=ZQ;"5qi=0 (2)

In these equations, ﬁf represent the net applied forces, and Qf represent the differentiated constraint equa-
tions. Transform the Q¢ equation into the generalized (simplest) coordinates, and solve the resulting equa-
tions.

For example, if the constraint equation is for two blocks connected by a massless rod: 2?2 4y — 12 =0,
with £ = [cos§ and y = [sin §:

W = Q%q; = 0 — 2xdz + 2ydy = 0 — dxcosf + fysinf =0 (3)
%

2.1 D’Alembert’s Principle

The virtual work method given previously works for systems in static equilibrium. To generalize this method
to dynamic systems, D’Alembert introduced a new “force of inertia” that modifies the virtual work equation
that governs forces:

w=3" [F* - mﬁ:i} 67 =0 (4)

3 Lagrangian & Hamiltonian

3.1 Lagrangian
o L=T-U
o Fuler Lagrange Equation: 1oL oL
&?a_q v 0 (5)
o We can always add a total time derivative of a function to the Lagrangian for free (without changing

equations of motion):
dF(q,q, ¢
o (6)

This kind of trick can give a simplified Hamiltonian, even making it a constant of the motion.

L'=L+

e A variable g; is cyclic if it does not appear in the Lagrangian. In that case, the associated momentum p;
is conserved /constant, and subtracting the associated p;¢; transforms the Lagrangian into the Routhian:

pi=%=ai - R=L-mq (7)
3.2 Hamiltonian
o Legendre Transformation: H =pg— L
[ ] pq = %—
o Hamilton’s equations of motion: p, = —%—IZ and ¢ = STI{,

e Solve for q(t) using the E-L equation or Hamilton’s equations of motion (take %—t‘l and plug in for pg)

e We can see that H is conserved (thus representing the total energy) if %ﬁi = ( and if it includes no
terms that depend linearly on a momentum variable (only quadratically}.



e We can go farther, and write a momentum-space “Lagrangian®, similar to how we did the first Legendre
transform: K(p,p,t) = ¢;p; + H{q,p,1t)

o KE yindrical = 5m (r‘2 +7r2¢? + z'?‘)
b KEsph,erical - %m (7"2 + 7‘20'2 + 7'2 Sil’l2 9¢2)

3.3 Undetermined Multipliers

If we can't include some constraints when writing the Lagrangian, we have to take these constraints into
account in the Euler-Lagrange equation as undetermined multipliers:

d 8L 0L PR
Y Q +;/\jaﬂ (8)

Each A; corresponds to each constraint equation f;, and each ay; corresponds to —f;l
Each Q“ corresponds to applied forces that cannot be written as part of the potential energy:

o
;= —L . F 9
Q aql 7 ( )
A constraint is holonomic if:
p0f 0 of 0
Oy 0x Oz Oy
3.4 Canonical Transformations
“Guess” the @ & P to transform into in order to make %Iti = 0. Show canonical by [@, Plq, =1
Use existing p and ¢ definitions to find generating functions:
p= @)y OBeQ) (1)
dq ar
8F2(qap) 8F2(Q7P)
dq @ opP (12)
8F3(Q,p) aF&(Qyp)
= LS Pow 20007 13
8F4(p,P) 3F4(p,P)
- = AL ) 14
0q @ apP (14)
The generating function(s) result in a new Hamiltonian:
oF:
K(Q.P.t) = Higpt) + 7 (15)
The new Hamiltonian results in corresponding new equations of motion:
. 0K . 0K
p-_92 i 16
50 Q=35 (16)

H=T+Uif % =0, no explicit time dependence, AND no terms linear in momentum/velocity



3.5

Small Oscillations with Effective Potentials

To find frequency of small oscillations:

1

2

Quick way to get frequency: Make the Lagrangian look like: L = 3m/n? — L2, Then w =4/ %
2 2

3.6
The

. Write the Hamiltonian and find the effective potential, Vs (all terms that depend on q)
. Find %Hq:qmm where ¢ represents the variable with small oscillations
. Write the V matrix as: 2V
le g 1 eff 2
. Write the 7' matrix as: 1
T = §T42 (18)

. Solve for the frequency using Vand T: 3 _

V—w'T =0 (19)

1%

m’

Variational Calculus

Euler-Lagrange equation can also solve other physics of path minimization, such as the brachistone

problem of minimizing time for a particle in a force field to travel between two points. To use the E-L for

this type of problem:
1. Write an equation that describes the motion and the element to minimize, such as dt = %. The element
to minimize should be alone on the LHS.
2. Add an integration symbol on both sides: t = [ 4
3. Write the RHS differential in terms of path variables, such as dz and dy, in order to evaluate the
integral, such as: t = [ %dy
4. Use the E-L equation on the integrand, using the appropriate variables, such as: %;3 - d—'z% =0
5. Solve the resulting equation by separation of variables, such as z(y) = ji \/Tm——g:g—r—;dy
4 Vector Potentials
Remember that the vector potential due to a particle in a magnetic field is:
A= 3 Bolyi ~ ) (20)
And to find the potential, use: .
U=qp—qA- -7 (21)

where ¢ represents the electric potential.



5 Small Oscillations

Standard coordinates define how the blocks are displaced relative to each other, while small coordinates
(usually n) define how the blocks are displaced relative to their original equilibrium position. Start by writing
the Lagrangian in standard coordinates, then transform to small coordinates. Then use these notations:

... 1
L= sTn; — 5Vnin (22)
2 2
Use g,%.hoz' = 0 to find the minimum point go;, and V = 626‘;'}“ lqoi = f;n *‘;7” lo to find V.
Then use T and V to solve for the frequency(s):

[V - AT| =0 (23)
where A = w?, to solve for the frequencies w;. To find the eigenvectors:
(V-A\T)E =0 (24)

these ¢; also make up the amplitude ratios for A;, ﬁ—;:

A\
(V-M\T) < Ay ) = (25)
To normalize the eigenvectors: . o
C; = N;g — CITC; =1 (26)
Solve for N;. Finally, to write the displacement of the system as a function of time:
A; = C]'Tn(0) (27)
w? > 0 = w;B; = CFT%H(0) (28)
w; =0 — B; = CTT7H(0) (29)
The general solution can now be written as:
= Z C_"i(Aicoswit + B;sinw;t) + C_"i(Ai + B;t) (30)
w?>0 w?:()

Smaller w’s correspond to more symmetry in the oscillation mode.

6 Central Forces &
the Hamilton Jacobi Equation

Whenever we have two masses exerting a force on each other, we can move into the center of mass reference
frame and consider the reduced mass combination acted on by a central force, since the center of mass of the
system does not move.

Orbits & Stability

e A circular orbit is stable if ———‘#i >0

¢ To find the radius for circular orbit, set 7)1 = 0 and solve for r (can also use Hamilton’s equations)

2
¢ To find the condition on the radius for circular orbit, find a—avr"}ﬁ > 0 and substitute in the radius for
circular orbit

Steps for Solving Motion with the Hamilton-Jacobi



1. Background: We can transform H without loss of generality to K = H + %—? = 0. Assuming then that
)

S, Hamilton’s principle/generating function is separable (S(g,t) = Si(t) + S2(g)) and p = %ﬁ—, we can
rearrange K to be:
1 552 2 aSl
— — — e — 1
2m < Oq > +V(o) ot (31)

Now the variables are separated, and we can set both sides equal to a constant, E. This makes solving
for S; and Sy a matter of maths.

2. Write Hamilton’s equation, and substitute aa—i? for each p, term. (S is sometimes referred to as w)

3. Separate variables - this usually entails writing everything not dependent on r inside a bracket, and
setting that bracket equal to ag. (This is usually the total angular momentum, which we can see is a
constant of the motion by finding [L, H] = 0). Or solve so that 7 is on one side of the equation, and ¢
and ¢ are on the other side, then set both sides equal to as.

4. Assuming W is separable (example W (r, 8, ¢) = W, +Wy+Wy), find integrals defining each component
of W.

Use pg = %vg_ to find the meaning of ag and .

T

6. Use the form %%V =t + B to solve for the motion of r depending on E and a’s.

7. Additional: It may be useful to also remember that @ = %%— = %%’l and Q = —‘g—g = —g—@.

The “action”, J is equivalent to S2(q) as long as S(q,t) is separable:

J = / pdq = / PdQ (32)

_9E
ey

where E came from integrating the action J and solving for E(J).

Given this J, the frequency of motion is:

vy

7 The Poisson Bracket

The poisson bracket is a good method of determining which elements associated with a Hamiltonian are

constants of motion:
du ou

P [u, H]gi,pi + Bt o

"/ OudH OudH

Hgs pi = Op.  Op; Oq;
[u, Hgip Z (8%- Op;,  Ops 5%‘) (35)

i
For example, given angular momentum J = g1p2 — g2p1, the poisson bracket of J with H quickly shows that

the angular momentum is conserved:
dJ

dr = {J> H]qi,m’ =0 (36)
In general, to find whether an element is a constant of motion:

1. Write the element A in terms of ¢; and p;

2. Write the Hamiltonian according to the physical description

3. Find 4 = [A, H]gi pi + 52

For canonical variables:

l9i:¢5] =0 lginps) = di5  [pisps} =0 (37)
The poisson bracket also helps verify that transformations are properly canonical:
[Q>P]q,p =1 (38)



8 Extra

8.1 Conservative Forces

A force is conservative if V x F = 0. In Cartesian coordinates, can find this as:

8.2 Nonhomogeneous Equations

Solving a non-homogeneous equation requires the combination of a particular and a complementary solution:

gtay=0 —  yt) = yp(t) + y(t)

(39)

1. The particular solution should be of the form y,(t) = At?+ Bt +C, keeping only the terms so that y,(t)
is a polynomial of the same order as the right hand side of the original equation. So in this example,

yp(t) =C.

2. The complementary solution solves y(t) for the right hand side equalling zero: § 4+ ay = 0. Solve this

the usual way, including the constant of integration.

3. Write y(t) = yp(t) + ye(t), and substitute these results back into the original equation. Use the original

equation and initial conditions to solve for the constants of integration.

Remember that a second derivative equation of motion can be handled as a first derivative equation by writing

it in terms of velocity instead of position: § +ay =b — 0y +av, = b

9 Coordinate Systems

9.1 Cartesian

Convert to spherical: z = rsinfcos¢, y = rsinfsing, z = rcosf

Convert to cylindrical: z = pcos¢, y = psing, z = z

9.2 Spherical
7 = sin 6 cos ¢ + sin 8 sin ¢ + cos 62
or or

9=%&¢=%

Derivation of a small chunk of circular area (such as in Kepler’s law for orbits):

S =71 —dS=rdd — dA = R*d0

9.3 Cylindrical

7 = cos 0% + sin A

3>

6 =

gl

(40)

(41)

(43)

(44)
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1 Basic Thermo

Definitions:
e Adiabatic: No heat is exchanged in or out of system. d@ = 0
e Quasi-static: Uniform pressure throughout system
o Isoentropic: Adiabatic, quasi-static, and constant entropy
e Reversible: constant entropy
Equations:

e Most all basic thermo relations can be derived from these two equations/derivations:

F=E-TS > dF =dE—-TdS - SdT (1)
dU =TdS — PdV + ZudN (2)

¢ Internal energy:
AU=Q-W (3)

e Work done by the system is calculated as:
W = / Pdv (4)

o Relationship between pressure, force and area:
' F
P== o
- 5)

o Ideal Gases:

— Ideal gas law equation: PV = NkT = nRT. N = # of particles, n = # of moles of particles
— Energy of an ideal gas = —g—kT, where N represents degrees of freedom.

Energy of a monatomic ideal gas = %N kT
Energy of a diatomic ideal gas = %N kT

e Clausius-Clapeyron Equation:
dP L

aT ~ T(Vg - Vi) (©)

e We can also see from the free energy equation that we can relate the pressure derivative to the entropy
at equilibrium:

dP S-Sy
T~ Vg -Vi @)
e Enthalpy:
H=FE-pV (8)



1.1 Extensivity

A thermo property such as entropy is properly extensive if: S(AN,AE,\V) = AS. Equations of state can
be given as intensive instead. That means they are given as a per-particle measurement - such as:

E v S
C—N ’U—N S—']v (9)

All the same derivative relations still hold for these intensive properties.

1.2 Basic Temperature & Entropy Relationships
e Heat to raise/lower temp: @ = Cpm [dT
e Heat to melt ice: Q@ = mL
o AS = %; plug in @ and then integrate (the integral in definition of Q)

e C, and C,, for a liquid are basically the same

At high temperatures, we expect the macrostate of a system to be in its most random state. That
means that every microstate should have equal probability of occurring.

1.3 Maxwell Relations

Knowing the dU and dF equations listed previously, we can find additional physics by taking mixed partial
derivatives. Since partial derivatives can switch order without changing the result, doing so can lead to
additional physics relationships. For example:

g 0S8 0 9§ 9]

0085 _ 088 91 OE
8EBV 0V OE  OE

P
T avr T (10)
1.4 Engines

e Work done by an engine is positive if the area under the curve of a P-V diagram is positive.

¢ A Carnot cycle consists of two isotherms and two adiabats.

e An adiabat line goes from a lower isotherm to a higher isotherm line (so an adiabat line is steeper
than an isotherm line).

o Adiabat: dQ = 0; and since dS = %9-, we find that dS = 0.
Also for an adiabat:
PV? = constant & TV~ = constant (11)

Where v = ffﬂ = g and f represents the degrees of freedom (3 for monatomic ideal gas).

v

o Isotherm: dT =0
o Isochore: dV =0, and Q@ = C,mAT

Efficiency:
_benefit W 1 Q.

cost _-Q—h: @Z

2 Classical Statistical Mechanics

Classical stat mech systems are usually distinguishable and energy levels can be either discrete or
continuous. Usually the question must give information about the particles’ energy levels and
distinguishability.

Given an average measurement per time 7i;, we find the variance as:

(Ang)? =< (ng— < ng >)? >=< n? > —n? (13)



2.1 Ensembles
2.1.1 Microcanonical Ensemble (E, N, V fixed)

Entropy:
S=klnQ (14)

Where Q represents multiplicity, which is the number of possible states present.

Partition function is —517

Binomial distribution:

<%> - n!(NNi )l 15)

If asked to calculate the multiplicity 2 or other derivations in the MCE for a more complicated system, such

as a classical harmonic oscillator (H = 5’% + Zw?2?), remember that ) represents the total number of states

present - so integrate with a step function in order to include all energies up to the given energy:

Q= /—d%dspe E-Y LA ’ (16)
- h3 - om T 29"

We can write this as a 6-dimensional sphere of radius v/E in phase space. (Probably won't encounter it.)

2.1.2 Canonical Ensemble (N, V, T fixed)

The canonical ensemble represents a system in equilibrium with a reservoir.

Use this partition function for a single particle:

z = ie‘ﬁ” (17)
n=0

and for N particles (add an 7 if indistinguishable):

Z =N (18)
Along with the relations derived from the dF and dU equations, we also have:
0 1 OF
E=-—1 F=—-—=InZ g 1
5 nZz 5 n Cy 5T (19)

More CE details:

o If given energy in term of p or k (in CE or GCE), as long as it is not bosons or fermions, integrate over
all phase space to find the partition function. This means the partition function in 3D looks like:

1

TR

Remember that if integrating over momentum space, p, divide by a factor of h for each dimension in

the integration. If integrating over k space instead, only divide by a factor of 27 for each dimension.

z e AEEP) Brddp (20)

¢ If a system has multiple sources of energy, the partition function is the multiplicative combination of
each energy source. For example, for a system of indistinguishable particles with internal energy as
well as translational energy (if they are point particles):

N
Z = Ziransbinternal = m(ztv'anszint(srnal) (21)

These 2’s can be calculated independently. For example, if given point particles with two internal
energy states, 0 and A:

N

1 - N d3iL'd3p _an2
Z:m[eo—l—e AR [/ R Ap/2m) (22)




e Similarly, if we have a gas made up of two or more particles, the combined partition function is the
multiplicative combination of each kind of particle. For example, the partition function for a gas made
up of two particles, A and B, looks like:

Z=17aZp (23)

e If two or more gases/liquids are in equilibrium in the same volume, their chemical potentials must be
equal.

o If asked for less traditional calculations (such as the average height of atoms in a gravitational field),
look at the partition function and see what derivative to take to bring that quantity down from the
exponent (and divide by any extraneous terms that would come down). For example, for the average
height of atoms in a gravitational field:

- 73,03 , N
1 9

2.1.3 Grand Canonical Ensemble (V, T, 4 fixed)
Along with the dU and dF equations, use the grand potential G to derive relations for the GCE:

Q:F—pNzE—TS—,uN:—sz—lenQ:——%an (26)

Use the grand partition function with this ensemble:

Q = TePrN e~ PEnN (27)
Another entity used in GCE is the grand canonical potential, 1 (is actually derivable from dg as ¢ = %);

As with CE, if given a composite substance (such as electrons and positrons), it’s easiest to write the partition
function as a product of the two partition functions:

Quot = Q+ Q- (29)
This also works if given an energy that varies based on spin, such as H = ﬁ—;’f—;— +m, B, where m, = +1.
Qtat - Q(mz = 1) X Q(mz = _1) (30)

3 Quantum Statistical Mechanics

Quantum statistical mechanics particles usually have discrete energy levels and are usually
indistinguishable, but in the case of bosons or fermions, we take care of indistinguishability when we
calculate the partition function according to distribution functions rather than just using the % that we
used for classical particles.

Usually we use the Grand Canonical Ensemble to analyze quantum systems, but we can no longer sum
over N in the partition function (Z), since we need to sum over states rather than particles.

For example, for a Fermi gas with a particular defined energy:

Q= Z PN o =BEs (31)
=0 {0}



oo

We must convert our sum over N to a sum over states, so N = Zni:
i=0
e E n:f(n—E;) o
0= 3 (e &

i =0 7 i =0

It’s easiest to calculate this for spin zero particles, in which case n; = 0, 1:
Q=T (1+e 7B (33)

For nonzero spin, the n; should be multiplied by a factor of 25 + 1. So for example, for a particle with spin
g, 25 4+ 1 = 6 and the grand partition function becomes:

Q=11 (1 + e—ﬁ(Ei—m)G (34)

As a general rule, quantum effects should dominate at low temperatures; classical effects should dominate at
high temperatures.

3.1 Photons

Remember that IN is not conserved for photons, and likewise, p = 0.

3.2 Condensates
How to tell if we have a condensate:

Set =0 and T = 0. If N — oo, no condensate. If N — 0 or N — a number, condensate.

Or, solve for p, set T = 0 and see if we have any restrictions on N to make u equal the ground state en-
ergy. No restrictions on N = no condensate. Essentially if you can even find p by itself, there’s no condensate.

How to find critical temperature:
Set 4 = 0 and solve for T as a function of N. This is the critical temperature.

3.3 Distribution Functions

We can use the probability distribution f(e;) for bosons and fermions to calculate various useful things. (We
can derive these distribution functions from the canonical ensemble, where Z has an added g for bosons.)
In these formulas:

e The distribution function f(e;) represents the number of particles with energy ¢;. When called a
“probability function”, it does not include g, in the numerator; when used to calculate “population”,
it does. Be careful with wording and note which case you are assuming.

e Spin degeneracy g, represents the spin degeneracy of state i being calculated. This is 2.5 +1 except
in the case of massless particles, which have spin degeneracy 25. If the energy ¢; depends on the spin,
this is just 1.

e ¢; represents an energy that the state can have.

e g(k) and g(e) represent the density of states. These must be calculated depending on the energy and
dimensions of the question. The easiest way to do that is:

o0 = [ (—;—) aF 3(e - ) (35)

Y

In this definition for density of states, dk should be written according to the number of dimensions,
and e is the reference energy relating ¢ and k (for example, ¢, = pc = hkc). Write dk in terms of



energy and the integral becomes trivial.

Remember this definition does not include spin degeneracy gs, which some people do include in

their definition of density of states.

The following calculations assume that g, is not included in the distribution function f(e) or the density of

states g(e).

Bosons: )
&)= gem—1

Fermions: )
&)= g

Boltzmann Distribution: .

fle) = prcEm)

The following are particularly helpful for quantum systems:

Average internal energy:

U=/ww®ﬂ&k

Number of particles:

N=/%Wﬁwﬁ

Specific heat capacity:

C= {% /egs g(e) f(e)de

The average of any random quantity n, if we know that quantity in terms of e, n(e):

<m=/w¢mmmw

We can also find the average of a quantity by integrating over phase space:

<a=3/ehﬂmgM»fk&x

At T = 0K, we can find a few more properties:

N = ]fg(e)de
0

pw=c¢5 at T =0K

(36)

(37)

(41)



4 Phase Transitions & Mean Field Theory

Magnetization:
oF
M= —-——= N, —N_ 4
55 po (N — N_) (46)
Magnetic Susceptibility :
oM
— 47
X= 35 (47)

Evidence of Phase Transition:
e Divergence of E or M (or divergence of their derivatives)
o Multiple states for a fixed temperature (example, high and low density states simultaneously present)

To find the solution(s) of a transcendental equation, set the slope of each side equal to each other.
For example, when looking for spontaneous magnetization, remember that the slope of tanh(ax) at x = 0 is

a (or just take the derivative of the function to get the slope! evaluate result at M=0 for most linear case).
So, to find solutions for Sz = tanh{ax), set the slopes equal: § = « in this case.

5 Helpful Maths

Taylor expansion:

dF d’F
F(zo + dzx) = Fao) + d:c%[x:xo + d:JcQW[z:zO + .. (48)
Don’t forget the chain rule for derivatives:
dT _ 9T 9P (19)
dz 0P 0z
Stirling’s approximation:
InN!'=NInN-N (50)
To take the derivative of a function that has multiple variables, such as S(7, N,V ):
as as oS
N = — —d _— 1
dS(T,N,V) 8TdT+ N N + anV (51)
We can think of this from taking the whole time derivative and “canceling out” the dt from each term:
d 9sdT  8S dN 85 dV
el il e Wi 2
GOV = G m o a Tava (52)
Expansions for small x (useful for temperature limits!):
(1+z)"~1+nz (53)
e ~1+z+.. (54)
Helpful summation tricks
> 1
> ol = - a1 (55)
N=0 —a
= 1 N x

N=0

Sometimes a partition function (grand partition functions especially) cannot be easily calculated. Then it
helps to look at the high and low temperature limits. For example:

Z o~y e (57)



For T - 00, B — 0, so exponent gets small. Integrate.
For T — 0, 8 — 00, so e~ #F gets small. Sum, keeping only the first couple terms.

Remember this integral for help solving N in grand canonical ensemble problems:

0 gn—l
| S =T (58)
Standard deviation:
An® = (n?) — (n)? (59)
Gamma function:
Pn+1)=nl(n) T (%) _ T (60)
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CHAPTER 19 -

Heat Engines and Refrigerators

Table 19.1 sum
work done by the system, O the signs are oppo

marizes the results for specific gas processes. This table shows W, the
site those in Chapter 17.

Process Gas law Work W, Heat Q Thermal energy
ST SN, B I —— A e e
i3 \DQ/\(\"“) %”\6‘” Isochoric plT = pil Tt 0 aCyAT AE, =0
Isobaric VIT, = VT, pAV nCeAT AE, = Q — W,
Isothermal Vi = pive nRT In(Ve/ V3) 0=W, AE, =0
pVIn(Ve/ V)
Adiabatic pVir = pVi Ve — VDI =) 0 AEy = — W,
TVl = VA —nCyAT
Any AZINS peVil Ty area under curve AEy, =

TABLE 19.2 Properties of monatomic and
diatomic gases
adiii-e>

Diatomic

Monatgnﬂigf
Eq, inRT 2nRT
Cy iR IR
G 3R IR
v 3 =167 1=1.40

nCVA’T

M—ﬁﬁf

There is one entry in this table that you haven’t seen pefore. The expression

N peVe — nivi . . .
L= TT (work in an adiabatic process) (19.12)
for the work done in an adiabatic process follows from writing W, = —AEy =

—nCyAT, which you learned in Chapter 17, then using AT = A(pV)/nR and the defi-
nition of . The proof will be left for a homework problem.

You learned in Chapter 18 that the thermal energy of an ideal
its temperature. Table 19.2 lists the thermal energy, molar specific
heat ratio y = Cp/Cy for monatomic and diatomic gases.

gas depends only on
heats, and specific

A Strategy for Heat-Engine Problems

The engine of Example 19.1 was not a realistic heat engine, but it did illustrate the
kinds of reasoning and computations involved in the analysis of a heat engine. A basic
strategy for analyzing a heat engine follows.
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