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1 Newtonian Mechanics

e Set Fiy = 0 to find the point when two objects separate (ex. ball rolls off hemisphere)

e Momentum (p = mv, L = Iw) is conserved for all collisions; energy is conserved for elastic collisions

e Force = —VU

e For periodic motion, if the equation of motion is & 4 £z = 0, the frequency is w = V&, If the equation
has a term linear in %, that is a damping term.

o Power: P=4E = AW — F.5=7.4

1.1 Angular Motion
o Use v = wr, z = 6r, a = ar for basic angular motion

mu? 2

e Circular motion: ma = ™= = mw*r

e Torque: %’ti =r=7FxF=JIa=Fdsinf
e Period T = 22

¢ Remember: it’s often easier to find dsin@ than to find d and 6 separately

e To derive moment of inertia: | = f r2dm; solve for dm in terms of dr

e Can still also use ©F = ma if it helps. Consider all forces acting at same point (point particle)

2 .
e Orbits: ngﬁf—f— > 0 for stable orbits. Use %‘: = ( for circular orbits

e Parallel Axis Theorem: I,c, = Iorigina + MR?
Helpful moments of inertia:

e sphere: I = %MR2

e disc: ] = I MR?

Rocket Ships: Use m = mass of ship, dm'=ejected mass, v=velocity of ship, —u=ejected mass velocity
relative to ship. Then we have:

pi =ps — 0= (m—dm')(v+dv) +dm'(v—u) (1)

Set v = 0 for simplicity, and dm = —dm’. After that it’s mostly algebra/calculus.



2 Virtual Work

The principle of virtual work presents an alternative to Newtonian solutions for force problems. This method
uses the equations:

5W=ZF;@~5@=0 5W=ZQ;"5qi=0 (2)

In these equations, ﬁf represent the net applied forces, and Qf represent the differentiated constraint equa-
tions. Transform the Q¢ equation into the generalized (simplest) coordinates, and solve the resulting equa-
tions.

For example, if the constraint equation is for two blocks connected by a massless rod: 2?2 4y — 12 =0,
with £ = [cos§ and y = [sin §:

W = Q%q; = 0 — 2xdz + 2ydy = 0 — dxcosf + fysinf =0 (3)
%

2.1 D’Alembert’s Principle

The virtual work method given previously works for systems in static equilibrium. To generalize this method
to dynamic systems, D’Alembert introduced a new “force of inertia” that modifies the virtual work equation
that governs forces:

w=3" [F* - mﬁ:i} 67 =0 (4)

3 Lagrangian & Hamiltonian

3.1 Lagrangian
o L=T-U
o Fuler Lagrange Equation: 1oL oL
&?a_q v 0 (5)
o We can always add a total time derivative of a function to the Lagrangian for free (without changing

equations of motion):
dF(q,q, ¢
o (6)

This kind of trick can give a simplified Hamiltonian, even making it a constant of the motion.

L'=L+

e A variable g; is cyclic if it does not appear in the Lagrangian. In that case, the associated momentum p;
is conserved /constant, and subtracting the associated p;¢; transforms the Lagrangian into the Routhian:

pi=%=ai - R=L-mq (7)
3.2 Hamiltonian
o Legendre Transformation: H =pg— L
[ ] pq = %—
o Hamilton’s equations of motion: p, = —%—IZ and ¢ = STI{,

e Solve for q(t) using the E-L equation or Hamilton’s equations of motion (take %—t‘l and plug in for pg)

e We can see that H is conserved (thus representing the total energy) if %ﬁi = ( and if it includes no
terms that depend linearly on a momentum variable (only quadratically}.



e We can go farther, and write a momentum-space “Lagrangian®, similar to how we did the first Legendre
transform: K(p,p,t) = ¢;p; + H{q,p,1t)

o KE yindrical = 5m (r‘2 +7r2¢? + z'?‘)
b KEsph,erical - %m (7"2 + 7‘20'2 + 7'2 Sil’l2 9¢2)

3.3 Undetermined Multipliers

If we can't include some constraints when writing the Lagrangian, we have to take these constraints into
account in the Euler-Lagrange equation as undetermined multipliers:

d 8L 0L PR
Y Q +;/\jaﬂ (8)

Each A; corresponds to each constraint equation f;, and each ay; corresponds to —f;l
Each Q“ corresponds to applied forces that cannot be written as part of the potential energy:

o
;= —L . F 9
Q aql 7 ( )
A constraint is holonomic if:
p0f 0 of 0
Oy 0x Oz Oy
3.4 Canonical Transformations
“Guess” the @ & P to transform into in order to make %Iti = 0. Show canonical by [@, Plq, =1
Use existing p and ¢ definitions to find generating functions:
p= @)y OBeQ) (1)
dq ar
8F2(qap) 8F2(Q7P)
dq @ opP (12)
8F3(Q,p) aF&(Qyp)
= LS Pow 20007 13
8F4(p,P) 3F4(p,P)
- = AL ) 14
0q @ apP (14)
The generating function(s) result in a new Hamiltonian:
oF:
K(Q.P.t) = Higpt) + 7 (15)
The new Hamiltonian results in corresponding new equations of motion:
. 0K . 0K
p-_92 i 16
50 Q=35 (16)

H=T+Uif % =0, no explicit time dependence, AND no terms linear in momentum/velocity



3.5

Small Oscillations with Effective Potentials

To find frequency of small oscillations:

1

2

Quick way to get frequency: Make the Lagrangian look like: L = 3m/n? — L2, Then w =4/ %
2 2

3.6
The

. Write the Hamiltonian and find the effective potential, Vs (all terms that depend on q)
. Find %Hq:qmm where ¢ represents the variable with small oscillations
. Write the V matrix as: 2V
le g 1 eff 2
. Write the 7' matrix as: 1
T = §T42 (18)

. Solve for the frequency using Vand T: 3 _

V—w'T =0 (19)

1%

m’

Variational Calculus

Euler-Lagrange equation can also solve other physics of path minimization, such as the brachistone

problem of minimizing time for a particle in a force field to travel between two points. To use the E-L for

this type of problem:
1. Write an equation that describes the motion and the element to minimize, such as dt = %. The element
to minimize should be alone on the LHS.
2. Add an integration symbol on both sides: t = [ 4
3. Write the RHS differential in terms of path variables, such as dz and dy, in order to evaluate the
integral, such as: t = [ %dy
4. Use the E-L equation on the integrand, using the appropriate variables, such as: %;3 - d—'z% =0
5. Solve the resulting equation by separation of variables, such as z(y) = ji \/Tm——g:g—r—;dy
4 Vector Potentials
Remember that the vector potential due to a particle in a magnetic field is:
A= 3 Bolyi ~ ) (20)
And to find the potential, use: .
U=qp—qA- -7 (21)

where ¢ represents the electric potential.



5 Small Oscillations

Standard coordinates define how the blocks are displaced relative to each other, while small coordinates
(usually n) define how the blocks are displaced relative to their original equilibrium position. Start by writing
the Lagrangian in standard coordinates, then transform to small coordinates. Then use these notations:

... 1
L= sTn; — 5Vnin (22)
2 2
Use g,%.hoz' = 0 to find the minimum point go;, and V = 626‘;'}“ lqoi = f;n *‘;7” lo to find V.
Then use T and V to solve for the frequency(s):

[V - AT| =0 (23)
where A = w?, to solve for the frequencies w;. To find the eigenvectors:
(V-A\T)E =0 (24)

these ¢; also make up the amplitude ratios for A;, ﬁ—;:

A\
(V-M\T) < Ay ) = (25)
To normalize the eigenvectors: . o
C; = N;g — CITC; =1 (26)
Solve for N;. Finally, to write the displacement of the system as a function of time:
A; = C]'Tn(0) (27)
w? > 0 = w;B; = CFT%H(0) (28)
w; =0 — B; = CTT7H(0) (29)
The general solution can now be written as:
= Z C_"i(Aicoswit + B;sinw;t) + C_"i(Ai + B;t) (30)
w?>0 w?:()

Smaller w’s correspond to more symmetry in the oscillation mode.

6 Central Forces &
the Hamilton Jacobi Equation

Whenever we have two masses exerting a force on each other, we can move into the center of mass reference
frame and consider the reduced mass combination acted on by a central force, since the center of mass of the
system does not move.

Orbits & Stability

e A circular orbit is stable if ———‘#i >0

¢ To find the radius for circular orbit, set 7)1 = 0 and solve for r (can also use Hamilton’s equations)

2
¢ To find the condition on the radius for circular orbit, find a—avr"}ﬁ > 0 and substitute in the radius for
circular orbit

Steps for Solving Motion with the Hamilton-Jacobi



1. Background: We can transform H without loss of generality to K = H + %—? = 0. Assuming then that
)

S, Hamilton’s principle/generating function is separable (S(g,t) = Si(t) + S2(g)) and p = %ﬁ—, we can
rearrange K to be:
1 552 2 aSl
— — — e — 1
2m < Oq > +V(o) ot (31)

Now the variables are separated, and we can set both sides equal to a constant, E. This makes solving
for S; and Sy a matter of maths.

2. Write Hamilton’s equation, and substitute aa—i? for each p, term. (S is sometimes referred to as w)

3. Separate variables - this usually entails writing everything not dependent on r inside a bracket, and
setting that bracket equal to ag. (This is usually the total angular momentum, which we can see is a
constant of the motion by finding [L, H] = 0). Or solve so that 7 is on one side of the equation, and ¢
and ¢ are on the other side, then set both sides equal to as.

4. Assuming W is separable (example W (r, 8, ¢) = W, +Wy+Wy), find integrals defining each component
of W.

Use pg = %vg_ to find the meaning of ag and .

T

6. Use the form %%V =t + B to solve for the motion of r depending on E and a’s.

7. Additional: It may be useful to also remember that @ = %%— = %%’l and Q = —‘g—g = —g—@.

The “action”, J is equivalent to S2(q) as long as S(q,t) is separable:

J = / pdq = / PdQ (32)

_9E
ey

where E came from integrating the action J and solving for E(J).

Given this J, the frequency of motion is:

vy

7 The Poisson Bracket

The poisson bracket is a good method of determining which elements associated with a Hamiltonian are

constants of motion:
du ou

P [u, H]gi,pi + Bt o

"/ OudH OudH

Hgs pi = Op.  Op; Oq;
[u, Hgip Z (8%- Op;,  Ops 5%‘) (35)

i
For example, given angular momentum J = g1p2 — g2p1, the poisson bracket of J with H quickly shows that

the angular momentum is conserved:
dJ

dr = {J> H]qi,m’ =0 (36)
In general, to find whether an element is a constant of motion:

1. Write the element A in terms of ¢; and p;

2. Write the Hamiltonian according to the physical description

3. Find 4 = [A, H]gi pi + 52

For canonical variables:

l9i:¢5] =0 lginps) = di5  [pisps} =0 (37)
The poisson bracket also helps verify that transformations are properly canonical:
[Q>P]q,p =1 (38)



8 Extra

8.1 Conservative Forces

A force is conservative if V x F = 0. In Cartesian coordinates, can find this as:

8.2 Nonhomogeneous Equations

Solving a non-homogeneous equation requires the combination of a particular and a complementary solution:

gtay=0 —  yt) = yp(t) + y(t)

(39)

1. The particular solution should be of the form y,(t) = At?+ Bt +C, keeping only the terms so that y,(t)
is a polynomial of the same order as the right hand side of the original equation. So in this example,

yp(t) =C.

2. The complementary solution solves y(t) for the right hand side equalling zero: § 4+ ay = 0. Solve this

the usual way, including the constant of integration.

3. Write y(t) = yp(t) + ye(t), and substitute these results back into the original equation. Use the original

equation and initial conditions to solve for the constants of integration.

Remember that a second derivative equation of motion can be handled as a first derivative equation by writing

it in terms of velocity instead of position: § +ay =b — 0y +av, = b

9 Coordinate Systems

9.1 Cartesian

Convert to spherical: z = rsinfcos¢, y = rsinfsing, z = rcosf

Convert to cylindrical: z = pcos¢, y = psing, z = z

9.2 Spherical
7 = sin 6 cos ¢ + sin 8 sin ¢ + cos 62
or or

9=%&¢=%

Derivation of a small chunk of circular area (such as in Kepler’s law for orbits):

S =71 —dS=rdd — dA = R*d0

9.3 Cylindrical

7 = cos 0% + sin A

3>

6 =

gl

(40)

(41)

(43)

(44)
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1 Basic Thermo

Definitions:
e Adiabatic: No heat is exchanged in or out of system. d@ = 0
e Quasi-static: Uniform pressure throughout system
o Isoentropic: Adiabatic, quasi-static, and constant entropy
e Reversible: constant entropy
Equations:

e Most all basic thermo relations can be derived from these two equations/derivations:

F=E-TS > dF =dE—-TdS - SdT (1)
dU =TdS — PdV + ZudN (2)

¢ Internal energy:
AU=Q-W (3)

e Work done by the system is calculated as:
W = / Pdv (4)

o Relationship between pressure, force and area:
' F
P== o
- 5)

o Ideal Gases:

— Ideal gas law equation: PV = NkT = nRT. N = # of particles, n = # of moles of particles
— Energy of an ideal gas = —g—kT, where N represents degrees of freedom.

Energy of a monatomic ideal gas = %N kT
Energy of a diatomic ideal gas = %N kT

e Clausius-Clapeyron Equation:
dP L

aT ~ T(Vg - Vi) (©)

e We can also see from the free energy equation that we can relate the pressure derivative to the entropy
at equilibrium:

dP S-Sy
T~ Vg -Vi @)
e Enthalpy:
H=FE-pV (8)



1.1 Extensivity

A thermo property such as entropy is properly extensive if: S(AN,AE,\V) = AS. Equations of state can
be given as intensive instead. That means they are given as a per-particle measurement - such as:

E v S
C—N ’U—N S—']v (9)

All the same derivative relations still hold for these intensive properties.

1.2 Basic Temperature & Entropy Relationships
e Heat to raise/lower temp: @ = Cpm [dT
e Heat to melt ice: Q@ = mL
o AS = %; plug in @ and then integrate (the integral in definition of Q)

e C, and C,, for a liquid are basically the same

At high temperatures, we expect the macrostate of a system to be in its most random state. That
means that every microstate should have equal probability of occurring.

1.3 Maxwell Relations

Knowing the dU and dF equations listed previously, we can find additional physics by taking mixed partial
derivatives. Since partial derivatives can switch order without changing the result, doing so can lead to
additional physics relationships. For example:

g 0S8 0 9§ 9]

0085 _ 088 91 OE
8EBV 0V OE  OE

P
T avr T (10)
1.4 Engines

e Work done by an engine is positive if the area under the curve of a P-V diagram is positive.

¢ A Carnot cycle consists of two isotherms and two adiabats.

e An adiabat line goes from a lower isotherm to a higher isotherm line (so an adiabat line is steeper
than an isotherm line).

o Adiabat: dQ = 0; and since dS = %9-, we find that dS = 0.
Also for an adiabat:
PV? = constant & TV~ = constant (11)

Where v = ffﬂ = g and f represents the degrees of freedom (3 for monatomic ideal gas).

v

o Isotherm: dT =0
o Isochore: dV =0, and Q@ = C,mAT

Efficiency:
_benefit W 1 Q.

cost _-Q—h: @Z

2 Classical Statistical Mechanics

Classical stat mech systems are usually distinguishable and energy levels can be either discrete or
continuous. Usually the question must give information about the particles’ energy levels and
distinguishability.

Given an average measurement per time 7i;, we find the variance as:

(Ang)? =< (ng— < ng >)? >=< n? > —n? (13)



2.1 Ensembles
2.1.1 Microcanonical Ensemble (E, N, V fixed)

Entropy:
S=klnQ (14)

Where Q represents multiplicity, which is the number of possible states present.

Partition function is —517

Binomial distribution:

<%> - n!(NNi )l 15)

If asked to calculate the multiplicity 2 or other derivations in the MCE for a more complicated system, such

as a classical harmonic oscillator (H = 5’% + Zw?2?), remember that ) represents the total number of states

present - so integrate with a step function in order to include all energies up to the given energy:

Q= /—d%dspe E-Y LA ’ (16)
- h3 - om T 29"

We can write this as a 6-dimensional sphere of radius v/E in phase space. (Probably won't encounter it.)

2.1.2 Canonical Ensemble (N, V, T fixed)

The canonical ensemble represents a system in equilibrium with a reservoir.

Use this partition function for a single particle:

z = ie‘ﬁ” (17)
n=0

and for N particles (add an 7 if indistinguishable):

Z =N (18)
Along with the relations derived from the dF and dU equations, we also have:
0 1 OF
E=-—1 F=—-—=InZ g 1
5 nZz 5 n Cy 5T (19)

More CE details:

o If given energy in term of p or k (in CE or GCE), as long as it is not bosons or fermions, integrate over
all phase space to find the partition function. This means the partition function in 3D looks like:

1

TR

Remember that if integrating over momentum space, p, divide by a factor of h for each dimension in

the integration. If integrating over k space instead, only divide by a factor of 27 for each dimension.

z e AEEP) Brddp (20)

¢ If a system has multiple sources of energy, the partition function is the multiplicative combination of
each energy source. For example, for a system of indistinguishable particles with internal energy as
well as translational energy (if they are point particles):

N
Z = Ziransbinternal = m(ztv'anszint(srnal) (21)

These 2’s can be calculated independently. For example, if given point particles with two internal
energy states, 0 and A:

N

1 - N d3iL'd3p _an2
Z:m[eo—l—e AR [/ R Ap/2m) (22)




e Similarly, if we have a gas made up of two or more particles, the combined partition function is the
multiplicative combination of each kind of particle. For example, the partition function for a gas made
up of two particles, A and B, looks like:

Z=17aZp (23)

e If two or more gases/liquids are in equilibrium in the same volume, their chemical potentials must be
equal.

o If asked for less traditional calculations (such as the average height of atoms in a gravitational field),
look at the partition function and see what derivative to take to bring that quantity down from the
exponent (and divide by any extraneous terms that would come down). For example, for the average
height of atoms in a gravitational field:

- 73,03 , N
1 9

2.1.3 Grand Canonical Ensemble (V, T, 4 fixed)
Along with the dU and dF equations, use the grand potential G to derive relations for the GCE:

Q:F—pNzE—TS—,uN:—sz—lenQ:——%an (26)

Use the grand partition function with this ensemble:

Q = TePrN e~ PEnN (27)
Another entity used in GCE is the grand canonical potential, 1 (is actually derivable from dg as ¢ = %);

As with CE, if given a composite substance (such as electrons and positrons), it’s easiest to write the partition
function as a product of the two partition functions:

Quot = Q+ Q- (29)
This also works if given an energy that varies based on spin, such as H = ﬁ—;’f—;— +m, B, where m, = +1.
Qtat - Q(mz = 1) X Q(mz = _1) (30)

3 Quantum Statistical Mechanics

Quantum statistical mechanics particles usually have discrete energy levels and are usually
indistinguishable, but in the case of bosons or fermions, we take care of indistinguishability when we
calculate the partition function according to distribution functions rather than just using the % that we
used for classical particles.

Usually we use the Grand Canonical Ensemble to analyze quantum systems, but we can no longer sum
over N in the partition function (Z), since we need to sum over states rather than particles.

For example, for a Fermi gas with a particular defined energy:

Q= Z PN o =BEs (31)
=0 {0}



oo

We must convert our sum over N to a sum over states, so N = Zni:
i=0
e E n:f(n—E;) o
0= 3 (e &

i =0 7 i =0

It’s easiest to calculate this for spin zero particles, in which case n; = 0, 1:
Q=T (1+e 7B (33)

For nonzero spin, the n; should be multiplied by a factor of 25 + 1. So for example, for a particle with spin
g, 25 4+ 1 = 6 and the grand partition function becomes:

Q=11 (1 + e—ﬁ(Ei—m)G (34)

As a general rule, quantum effects should dominate at low temperatures; classical effects should dominate at
high temperatures.

3.1 Photons

Remember that IN is not conserved for photons, and likewise, p = 0.

3.2 Condensates
How to tell if we have a condensate:

Set =0 and T = 0. If N — oo, no condensate. If N — 0 or N — a number, condensate.

Or, solve for p, set T = 0 and see if we have any restrictions on N to make u equal the ground state en-
ergy. No restrictions on N = no condensate. Essentially if you can even find p by itself, there’s no condensate.

How to find critical temperature:
Set 4 = 0 and solve for T as a function of N. This is the critical temperature.

3.3 Distribution Functions

We can use the probability distribution f(e;) for bosons and fermions to calculate various useful things. (We
can derive these distribution functions from the canonical ensemble, where Z has an added g for bosons.)
In these formulas:

e The distribution function f(e;) represents the number of particles with energy ¢;. When called a
“probability function”, it does not include g, in the numerator; when used to calculate “population”,
it does. Be careful with wording and note which case you are assuming.

e Spin degeneracy g, represents the spin degeneracy of state i being calculated. This is 2.5 +1 except
in the case of massless particles, which have spin degeneracy 25. If the energy ¢; depends on the spin,
this is just 1.

e ¢; represents an energy that the state can have.

e g(k) and g(e) represent the density of states. These must be calculated depending on the energy and
dimensions of the question. The easiest way to do that is:

o0 = [ (—;—) aF 3(e - ) (35)

Y

In this definition for density of states, dk should be written according to the number of dimensions,
and e is the reference energy relating ¢ and k (for example, ¢, = pc = hkc). Write dk in terms of



energy and the integral becomes trivial.

Remember this definition does not include spin degeneracy gs, which some people do include in

their definition of density of states.

The following calculations assume that g, is not included in the distribution function f(e) or the density of

states g(e).

Bosons: )
&)= gem—1

Fermions: )
&)= g

Boltzmann Distribution: .

fle) = prcEm)

The following are particularly helpful for quantum systems:

Average internal energy:

U=/ww®ﬂ&k

Number of particles:

N=/%Wﬁwﬁ

Specific heat capacity:

C= {% /egs g(e) f(e)de

The average of any random quantity n, if we know that quantity in terms of e, n(e):

<m=/w¢mmmw

We can also find the average of a quantity by integrating over phase space:

<a=3/ehﬂmgM»fk&x

At T = 0K, we can find a few more properties:

N = ]fg(e)de
0

pw=c¢5 at T =0K

(36)

(37)

(41)



4 Phase Transitions & Mean Field Theory

Magnetization:
oF
M= —-——= N, —N_ 4
55 po (N — N_) (46)
Magnetic Susceptibility :
oM
— 47
X= 35 (47)

Evidence of Phase Transition:
e Divergence of E or M (or divergence of their derivatives)
o Multiple states for a fixed temperature (example, high and low density states simultaneously present)

To find the solution(s) of a transcendental equation, set the slope of each side equal to each other.
For example, when looking for spontaneous magnetization, remember that the slope of tanh(ax) at x = 0 is

a (or just take the derivative of the function to get the slope! evaluate result at M=0 for most linear case).
So, to find solutions for Sz = tanh{ax), set the slopes equal: § = « in this case.

5 Helpful Maths

Taylor expansion:

dF d’F
F(zo + dzx) = Fao) + d:c%[x:xo + d:JcQW[z:zO + .. (48)
Don’t forget the chain rule for derivatives:
dT _ 9T 9P (19)
dz 0P 0z
Stirling’s approximation:
InN!'=NInN-N (50)
To take the derivative of a function that has multiple variables, such as S(7, N,V ):
as as oS
N = — —d _— 1
dS(T,N,V) 8TdT+ N N + anV (51)
We can think of this from taking the whole time derivative and “canceling out” the dt from each term:
d 9sdT  8S dN 85 dV
el il e Wi 2
GOV = G m o a Tava (52)
Expansions for small x (useful for temperature limits!):
(1+z)"~1+nz (53)
e ~1+z+.. (54)
Helpful summation tricks
> 1
> ol = - a1 (55)
N=0 —a
= 1 N x

N=0

Sometimes a partition function (grand partition functions especially) cannot be easily calculated. Then it
helps to look at the high and low temperature limits. For example:

Z o~y e (57)



For T - 00, B — 0, so exponent gets small. Integrate.
For T — 0, 8 — 00, so e~ #F gets small. Sum, keeping only the first couple terms.

Remember this integral for help solving N in grand canonical ensemble problems:

0 gn—l
| S =T (58)
Standard deviation:
An® = (n?) — (n)? (59)
Gamma function:
Pn+1)=nl(n) T (%) _ T (60)
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CHAPTER 19 -

Heat Engines and Refrigerators

Table 19.1 sum
work done by the system, O the signs are oppo

marizes the results for specific gas processes. This table shows W, the
site those in Chapter 17.

Process Gas law Work W, Heat Q Thermal energy
ST SN, B I —— A e e
i3 \DQ/\(\"“) %”\6‘” Isochoric plT = pil Tt 0 aCyAT AE, =0
Isobaric VIT, = VT, pAV nCeAT AE, = Q — W,
Isothermal Vi = pive nRT In(Ve/ V3) 0=W, AE, =0
pVIn(Ve/ V)
Adiabatic pVir = pVi Ve — VDI =) 0 AEy = — W,
TVl = VA —nCyAT
Any AZINS peVil Ty area under curve AEy, =

TABLE 19.2 Properties of monatomic and
diatomic gases
adiii-e>

Diatomic

Monatgnﬂigf
Eq, inRT 2nRT
Cy iR IR
G 3R IR
v 3 =167 1=1.40

nCVA’T

M—ﬁﬁf

There is one entry in this table that you haven’t seen pefore. The expression

N peVe — nivi . . .
L= TT (work in an adiabatic process) (19.12)
for the work done in an adiabatic process follows from writing W, = —AEy =

—nCyAT, which you learned in Chapter 17, then using AT = A(pV)/nR and the defi-
nition of . The proof will be left for a homework problem.

You learned in Chapter 18 that the thermal energy of an ideal
its temperature. Table 19.2 lists the thermal energy, molar specific
heat ratio y = Cp/Cy for monatomic and diatomic gases.

gas depends only on
heats, and specific

A Strategy for Heat-Engine Problems

The engine of Example 19.1 was not a realistic heat engine, but it did illustrate the
kinds of reasoning and computations involved in the analysis of a heat engine. A basic
strategy for analyzing a heat engine follows.
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Possibly Useful Information
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Classical Mechanics

1. A block of mass m; sits atop a triangular wedge of mass mo, which is
itself on a frictionless plane, as shown. The two are initially at rest,
and the block is a height A above the surface of the plane, a horizontal
distance L from the bottom edge of the wedge. The wedge has an
opening angle 6, as shown.

(a)

(d)

Assume that there is no friction between the block and the wedge.
The block slides down the wedge. What are the velocities (mea-
sured with respect to the fixed inertial reference frame denoted by
the z and y axes shown) of the block and wedge just as the block
reaches the lower edge of the wedge? (3 points).

11038 LiiC U L2 R WA §

Now replace the block by a ball of radius R (and mass my). The
ball rolls down the wedge without slipping. What are the velocities
of the ball and wedge just as the ball reaches the lower edge of the
wedge? (3 points).

Return to the block problem, but now assume that the coeflicients
of static and kinetic friction between the block and the wedge are
@ (they have the same value). What is fimin, the minimum value
of u for which the system is stable? (1 point).

If 44 < pmin, calculate the minimum horizontal force that can be
applied to the wedge such that the block will not accelerate down
the wedge. (3 points).

Note: you can neglect the finite size of the block in your calculation, and
you are asked for the velocities before the block or ball make contact
with the frictionless plane.



OO

Jon

Gxx ¥ 1(\\ S0
¥ Tind o

Qt@(

When

C f\/“ (,‘(w

~ I ores

¥ Block = < -F

£ \WDedae
i)

- l;(\ef‘% o,

:Mgl.\(ljj\ ' ‘\)‘/Z b "{ﬁ?

i =
Tocosd- thy

...... -~ & . k"
! coe (v vy s

\m&“mﬂ Woa / VZ. W ( M e v, '\

Sod 7

Sindks O



- ; (i v, )
b) ¥ Bleck 15 vewy all colling /o Slpping e Viear Ve J
; Ny s h

m 1T
i

e £ s >
< s, Gln ! 4
) : - ! -
[4 Y [ e ;" o 4

b ‘3,\ o Ty N N AU I FEANR sl
{\(\{ q o s i /‘ FAN I ST LAV _L_ & “\'\x,_\x"v{




2. Consider a point particle of mass m constrained to move on a parabola
in the x-z plane, i.e.,
& 2
z = —x*

2

Assume the constraint force is frictionless and gravity acts vertically
(F, = —mg).

(a) Use Lagrangian mechanics to write a second order differential
equation for x(¢). (2 points)
(b) Find a first integral of this equation (any way you can) and eval-

uate the constant of integration using the maximum value z,,4,
reached by z. (4 points)

(c) Assume that the particle is pulled a short distance from the origin
and allowed to oscillate. Calculate the period in the limit of small
oscillations, € = amax << 1. (4 points)
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3. Angular momentum and the Rungé-Lenz vector: Given a point
particle of mass m, trajectory 7(t), and momentum p(¢), we can define
the angular momentum

(a) Prove that the Poisson bracket of H and L is zero, that is:
{H,L} =0

(3 points).
(b) Prove that the Poisson bracket of H and A is zero, that is:

{H,A}=0.

(3 points)

(c) What do your results in parts (a) and (b) imply about the behavior
of A and L? (1 point)

(d) Evaluate 7- 4 = rAcosd, using the explicit form for 4 above.
Use this to calculate the orbital motion of the particle (that is,
a relationship between r and 0 as the particle moves about its
orbit). (3 points)
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Statistical Mechanics

4. Heat Engines: A pulse jet operates under a Lenoir cycle. This con-
sists of an adiabat, an isobar, and an isochore, as shown.

ﬁA

isentropic expansion

pressure

) @)
=< constant volume heat addition

constant pressure heat rejection

volume

Assuming that the working fluid is an ideal 3D monoatomic gas of N
particles:

(a) Find the work done in one complete cycle. (3 points)

(b) Find the heat exchanged in each step in the cycle. (3 points)

(c¢) Find the efficiency of the engine. Express your answer in terms of
pressures and volutmes. (3 points)

(d) To produce work, should the engine cycle operate clockwise (A —
B — C' — A) or counterclockwise (A — C — B — A) ? (1 point)
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5. Consider a classical ideal gas in 3D that feels a linear gravitational
potential,
V(z) = mgz
where m is the mass of a single gas atom and 0 < z < oco. This is

not an interaction between gas atoms, it is simply their gravitational
potential energy near the surface of the Earth.

The gas is in a box of dimensions L, L,, and L,, so that:

0< 2z <L,
0< 2 <L,
0< y <1

(a) Calculate the partition function in the canonical ensemble. (3
points)

(b) Determine the internal energy of the gas. (3 points)

(c) Calculate the specific heat ¢,. (3 points)

(d) Explain the behavior of the specific heat when BmgL, >> 1 and
when fmglL, << 1. (The approximation for the gravitational
potential may or may not be valid for large L,. Don’t worry

about that.) (1 point)
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6. Boson Magnetism Consider a gas of non-interacting spin-1 bosons
in 3D, each subject to the Hamiltonian

2
H(p,s,) = ?%ﬁ — posB

where s takes on one of three possible states, s € (—1,0,+1), and
k= 7/h. In this Hamiltonian B is the z-component of the magnetic
field, m is the mass of a particle, and po is the Bohr magneton. (We
will ignore the orbital effect (or Lorentz force) where the momentum p

would have been replaced, § — p+ ef-l‘/ c).

(a) In a grand canonical ensemble of chemical potential u (which is
not to be confused with the Bohr magneton, po, above) and tem-

perature T, write down ns(E), the average occupation number of
the state with wave vector k and spin s. (1 point).

(b) Show that the total number of particles in a given spin state s is

given by v
N = Fws’ﬂ g3/2(zeﬁ“05B)
where z is the fugacity, z = e#, X is the thermal de Broglie
wavelength,
5 = h

v 2rmkgT

and g,(2) is defined on the formula section on page 2 above. (4
points)
(¢) The magnetization for fixed p and T is given by

M(T, 1) = po(Nex) — Ni-y)
Show that the zero field susceptibility, x, is given by:

oMl _ 2 spV

X=9B|,, kT N g1/2(2).

(5 points).
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Classical Mechanics

1. The ballistic pendulum: Consider a pendulum with a bob of mass
m connected to a frictionless pivot by an ideal massless rigid rod of
length ¢. A projectile of mass em (0 < € << 1) moving horizontally
at speed vp hits the center of the bob, as shown. When it strikes, it
becomes imbedded in the bob.

(a)
(b)

Pivot

What is the minimum initial speed of the projectile such that the
pendulum will make a full rotation? (2 points)

The rod is replaced by an ideal massless non-rigid string. What
is the minimum initial speed of the projectile such that the pen-
dulum will make a full revolution without the string going slack?
(3 points)

Now assume that projectile rebounds elastically from the bob in
the horizontal direction. What is the minimum initial speed of
the projectile such that the pendulum will make a full revolution
without the string going slack? (2 points)

Finally, assume that the projectile passes completely through the
pendulum bob, in a time ¢ << \/277; After it exits, it carries
with it some of the original mass of the bob, such that the exiting
projectile now has a mass 2ern and moves at a speed 3uvo /4. What
is the minimum initial speed of the projectile such that the pen-
dulum will make a full revolution without the string going slack?
(3 points)
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2. The isotropic harmonic oscillator.

(a)

(b)

(d)

Write the Lagrangian for a point mass m moving under the influ-
ence of an isotropic 3-dimensional harmonic oscillator potential

k A .
Ve, y,z) = 72—(:v2 + 9%+ 22).

There is no external gravitational field. (1 point)
Using the Lagrange equations of motion show that angular mo-
mentum is conserved. i.e.,

£1~L = —(L(r x mv) = 0.

dt dt

Because the Lagrangian is invariant under rotations about the
origin, you can choose coordinates so that motion is constrained to
the x-y plane, i.e., the angular momentum points in the z direction.
(3 points)

For 2-dimensional motion in the x-y plane choose cylindrical polar
coordinates and proceed to solve the Lagrange equations of mo-
tion. You can leave the solution for r(¢) as an integral of the form
t = [ f(r)dr. (Don’t forget to use conservation of energy, Fo.) (3
points)

Compute the minimum and maximum values or the radial coor-
dinate r as functions of the constants m, Eo, k, L*. (3 points)
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3. Consider a particle attracted by a fixed gravitating body while also in
a uniform gravitational field oriented along the z-axis. The potential
energy is of the form:

Vir,z) = —m (—fi +g ;v)

where m is the particle’s mass, £ and ¢ are constants, and r is the
standard radial coordinate:

r =/ +y?+ 22

You are to examine the problem in cylindrical parabolic coordinates
defined by

( = r+z
n = r—z
¢ = arctany/z

In these coordinates we may write the Cartesian coordinates as:

T =+/(ncos¢
Yy =V(nsing

z =3(C—n)

(a) Show that the kinetic energy, T', is given hy:

_ é £2 Ty no.ooi9
rogl(veg) e (10 g) € e ens

in these coordinates. (2 points)

(b) What are the canonical momenta, p;, p,, and pg, expressed in
cylindrical parabolic coordinates? (2 points)

(¢) Use Hamilton-Jacobi theory to find the constants of the motion.
Hint: While the total energy E does not separate in these coor-
dinates, E(( + n) can be used to produce a quantity that does
seperate. (3 points)

(d) What is Hamilton’s characteristic function associated with ¢7 (1
point)

(e) Express Hamilton’s characteristic functions associated with (, 7
as definite integrals. (2 points )
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Statistical Mechanics

4. Helmholtz Free Energy: The Helmholtz free energy of an ideal
monoatomic gas can be written as

/
F(T,V,N)= NET {A — log [TB/Q‘N]}

where N is the total number of gas atoms, V' is the volume, T is tem-
perature, k is Boltzmann’s constant and A is a dimensionless constant.

Consider a piston separating a system into two parts, with equal num-
bers of particles on the left and the right hand side. The whole system
is in good thermal contact with a reservoir at constant temperature 7',
Initially, Vi = 2V,. The total volume, Vioy = Vi + V2, is fixed for this
whole problem.

Thermally conducting piston

Heat Reservoir

(a) Calculate the equilibrium position of the piston, once it is released.
You must prove your answer, and not simply assert it. (3 points)

(b) Calculate the maximum available work the system can perform as
it changes from the initial condition to the equilibrium position.
(3 points)

(¢) Calculate the change in the internal energy, U of gas 1 and gas 2
in the process. (2 points)

(d) Given your answers above, explain the source of energy for the
work done during the expansion. (2 points)



5. Consider a gas of N non-interacting one dimensional diatomic
molecules enclosed in a box of “volume” L (actually, just a length)
at temperature 7.

(a) The classical energy for a single molecule is:

_2 )2 1 -
R LACTEEN

E(py, pa; 21, 22) = 2m  2m '

where p; and p, are the classical momenta of the atoms in one
diatomic molecule, z; and z are their classical positions, and K is
the spring constant. Calculate the specific heat for the gas. (You
should assume that KL2?/2 >> kgT, where kg is Boltzmann’s
constant.) (4 points).

(b) In the quantum limit the energy levels of the molecule are discrete.
In a semiclassical approach we can write the energy of one molecule
as: = .
E(P,n) = yr + fiw(n + 5)
where P is the momentum of the diatomic molecule (of mass 2m),
and w is the natural frequency of the oscillator, and n is a non-
negative integer (n > 0). Calculate the specific heat. (4 points).

(c) Calculate the high and low temperature limits of your result in
(b), and explain how they relate to the result of (a). (2 points)

-~J



6. Fermions:

(a) Show that for any non-interacting spin 1/2 fermionic system with
chemical potential y, the probability of occupying a single particle
state with energy p + § is the same as finding a state vacant at an
energy p — 6. (2 points)

(b) Consider non-interacting fermions that come in two types of en-
ergy states:

Ei(i:) = £v/m2ct + h?k2c?

At zero temperature all the states with negative energy (all states
with energy E_(l?)) are occupied! and all positive energy states
are empty, and that u(T = 0) = 0. Show that the result of part (a)
above means that the chemical potential must remain at zero for
all temperatures if particle number is to be conserved. (2 points)

(¢) Using the results of (a) and (b) above, show that the average
excitation energy, the change in the energy of the system from it’s
energy at T = 0 in three dimensions is given by:

dk:
(2m)?

- 1
EL (k)

AE = E(T) - E0) =4V | T oE®

(2 points)
(d) Evaluate the integral above for massless (m = 0) particles. (2
points)

(e) Calculate the heat capacity of such particles. (2 points)

1Technically this means the total energy of the system diverges. If this bothers you,
you can assume some large cut-off to the wavevectors, fikmaxc >> kT', which will have no
effect on your final answers.
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Classical Mechanics

1. Two masses, m; and my, are connected together by an ideal massless
spring of spring constant k and equilibrium length [, but are otherwise
free to slide on a straight frictionless rail. Their positions with respect
to a fixed origin are denoted z; and x, respectively.

X2

(a) Determine the equation of motion for each mass using Newton’s
Laws of Motion. (Do not solve them yet.) [2 pts.]

(b) Write the Lagrangian for this system and use it to derive the
equation of motion for each mass. (Again, do not solve them yet.)
[3 pts.]

(c) Using either of your results, determine the frequency of oscillation
of the two masses about their center of mass. [2 pts.]

(d) Given the initial conditions, «1(0) = 0, v1(0) = 0, 2(0) =/ and
v2(0) = vy, solve for the subsequent motion. [3 pts.]
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2. A particle of mass m moves under the influence of a central force whose
potential is given by V(r) = K r®, where K > 0.

(a) For what energy and angular momentum will the orbit be a circle
of radius Ry about the origin? (3 pts.)

(b) What is the period of this circular orbit? (2 pts.)

(¢) If the particle is slightly displaced from the circular orbit, what
will be the period for small oscillations about r = Re? (3 pts.)

(d) For the 1/r gravitational potential we know that Kepler’s Second
Law: “A line joining a planet and the sun sweeps out equal areas

during equal intervals of time.” Does this hold true for the cubic
potential as well? Prove your answer. (2 pts.)



3. You are in a rocket ship in outer space, initially at rest. You have a
nuclear reactor that supplies a constant power, P, and a large supply of
iron pellets. The iron pellets comprise 99/100 of your ship’s mass, m.
You can use the power to eject the tiny iron beads out the back of your
ship with an electromagnetic “gun”. You can control the rate at which
you fire them and their velocity, but you are limited by your power
plant. (You can’t fire an arbitrarily large mass at an arbitrarily large
velocity.) As you fire off the beads, your ship moves in the opposite
direction to conserve momentum. In addition, the mass of your ship
decreases.

(a) Calculate your final speed as a functional of m(t) and ri(t) =
dm/dt. Your expression should take the form of an integral over
time, 0 < ¢t < ty. (2 pts.)

(b) Find the function m(t) that maximizes your final velocity after a
time . (4 pts.)

(c) What is your final velocity? (2 pts.)

(d) Prove that your answer in part (c) is larger than the velocity you
would obtain by firing at a constant rate such that your pellets
are used up by . (2 pts.)



Statistical Mechanics

4. The gas turbine (jet engine) can be modeled as a Brayton cycle. Below
is the P-V diagram for this process.

stant

A gin
p =con
\d

pressure

’ p = constant

q out

-
volume

Assume that the working fluid is an ideal monatomic gas.

(a) Calculate the work done by the gas on each step in the cycle. (3
pts.)

(b) Find the heat for each step in the cycle. (3 pts.)

(c) Find the efficiency of this engine. Your answer should be in terms
of the pressures (P; and P,) and the volumes ( Vi, V;, V3, and V).
(3 pts.)

(d) To produce work, which way does the cycle operate? Clockwise
or counter clockwise? (1 pt.)
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5. By shining an intense laser beam on a semiconductor, one can create
a metastable collection of electrons (charge —e and effective mass m.)
and holes (charge +¢ and effective mass my,). These oppositely charged
particles may pair up to form an ewxciton, or they may dissociate into
a plasma. This problem considers a simple model of this process. In
this problem the densities of electrons and holes are so low that you
can ignore their fermionic nature and treat them as classical particles
in three dimensions.

(a)

(b)

Calculate the free energy F(T,V,N) of a gas of N, electrons
and N, holes at temperature T', treating them as classical, non-
interacting, ideal gas particles in a 3D volume V. (2 pts.)

By pairing into an exciton, each electron-hole pair lowers its energy
by AE. Calculate the free energy of a gas of N, excitons, treating
them as classical, non-interacting, ideal gas particles. (2 pts.)

Calculate the chemical potentials e, pt5, and pu, of the electrons,
holes, and exciton pairs respectively. What is the condition of
equilibrium between excitons and eletrons and holes? (3 pts.)

Consider the case where the numbers of electrons and holes are
equal, so that n, = n. = ng. Determine the approximate density
of excitons as a function of ng in the high temperature limit (when
the exciton population is low). (3 pts.)

-1



6. Consider a free, non-interacting spin zero Bose gas in two dimensions.
The energy of each particle is given by:

E(k) = h*k*/2m

where m is the mass of the boson. Assume your system is confined to
a square region of length L on a side.

(a) Write down an expression for the grand canonical free energy
G(T,V,ut) as a sum over k states. Do not evaluate the sum. (1
pt.)

(b) Calculate the number of particles in the system as a function of
T,V and p. (3 pts.)

(c) Analyze your expression for N(7',V, u) in the limit 7' — 0. What
does it imply about the possibility of a Bose-Einstein transition
in this system? (3 pts.)

(d) Prove that the pressure is equal to the energy density, so that
PV = U. (Hint: you do not have to do any sums over states -
you need only prove that this holds using analytic expressions for
P and U in this particular system). (3 pts.)
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Classical Mechanics

1. Rolling spheres: Given that the moment of inertia of a sphere of mass
m and radius R is (2/5)mR?, please answer the following.

(a)

A sphere of radius R and mass m rolls without slipping down an
inclined plane on to a horizontal table (left figure). The condi-
tion of “rolling without slipping” forces a relationship between v,
the speed of the center of mass of the sphere, and w, the angu-
lar velocity of the sphere about its center of mass. What is this
relationship? (0.5 pt.)

Calculate the speed of the sphere at the bottom of the ramp if the
center of mass of the sphere has dropped a distance A when it just
touches the table. Assume that b >> R. (1.5 pt.)

The ramp is now replaced by two narrow rails separated by a
distance R (right figure). Again the ball rolls downward with-
out slipping, supported by the two rails. In this case, what the
relationship between v and w? (1 pt.)

In this second case, calculate the speed of the sphere at the bottom
if the center of mass has dropped a distance h. (2 pts).

After the ball reaches the bottom of the rails (part b) it continues
to move on the horizontal table. It will either be rolling too fast
or too slow to roll without slipping. Which will it be? You must
prove your result. (1 pt.)

Friction between the sphere and the plane will adjust the speed

of the sphere until it can again roll without slipping. If the mag-
nitude of the force of friction between the sphere and the plane is



pumg, determine the speed of the ball when it again rolls without
slipping. (If you did not solve part (b) above, assume the sphere is
moving at speed vp without rolling and determine its speed when
it rolls without slipping). (4 pts.)






2. A point particle of mass m travels on the frictionless inner surface of an
inverted cone. The cone is oriented so its symmetry axis is parallel to
the z-axis, with an opening angle & between the z-axis and the surface
of the cone. The force of gravity points in the negative z-direction.

(a)
(b)

()

Write the Lagrangian for the problem in cylindrical coordinates.
(1 pt.)

Assume the particle is moving in a uniform circular orbit at dis-
tance d from the cone tip, measured along the surface of the cone.
Determine the angular frequency of the system. (3 pts.)

The opening angle of the cone is abruptly decreased by Aa << a.
This is done in a manner that does not impart an impulse or do
work on the particle. (Imagine that the cone is instantaneously
stretched so that its tip moves slightly downward, but the particle
is not, displaced during the stretching). Describe the subsequent
motion of the particle in this limit. Express your answer in terms
of po, the original radius of the circular orbit, m, «, Ac, and
g. Explain any approximations you are making in deriving your
result. (6 pts.)
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3. Consider the Lagrangian for a 1D system with generalized coordinate

q:

. M., Ml
Havint) = [ - T )

In the above expression, m is a mass, wg is a frequency, and A is a
positive and dimensionless constant.

Derive the equation of motion for the system. (1 pt.)
What is the canonical momentum, p? (1 pt.)
Calculate the Hamiltonian. (3 pts.)

We wish to make a canonical transformation (g, p) — (@, P) using
the generating function

Fy(q, P,t) = eMl’mg P

What is the new coordinate and canonical momentum in terms of
the old? (2 pts.)

Show that the canonically transformed Hamiltonian is not time
dependent. (3 pts.)
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Statistical Mechanics

4. Tt can be shown that the Helmholtz free energy for a photon gas is
given by:

F(T,V,N) = — %UVT‘*

where o is the Stefan-Boltzmann constant. Using this relation, answer
the following:

(a)
(b)

What are the equations of state (that is, P, S, and p as functions
of T,V and N)? (3pts.)

Consider a Carnot cycle using a photon gas as its working fluid.
The cycle is driven by one hot and one cold temperature Teservolr,
with temperatures T, and T, respectively. Draw the cycle in the
P-V plane. Caution: This is not an ideal gas! Think carefully
about the steps in a Carnot cycle and use your results from above
to determine what the cycle will look like. (2pts.)

Solve for the heat exchanged in each leg of your Carnot cycle.
Your answer may depend upon Tk, T¢, and any other variables
you might choose in defining your cycle. (2pts.)

Using these values for the heat exchanged, calculate the efficiency
of a Carnot cycle that uses a photon gas as its working fluid. If
you cannot calculate it, devise a careful argument for its value.

(3pts.)



5. A particular solid is made up of N distinguishable spin 1 atoms each
on a fixed position in a lattice. The energy of each atom is given by:

E(o;) = ~Voo? — woo: B

where Vj arises from an internal field in the crystal, B is the applied
external magnetic field and pq is the Bohr magneton. The z-component
of the spin of an atom can take on values o; € {0,=%1}

(a) Calculate the free energy, F(T, B, N). (2 pts.)
(b) Calculate the specific heat. (4 pts.)

(c) Calculate the magnetic susceptibility, x(7, B, N) when B = 0. (4
pts.)



Mechanics and Statistical Mechanics Qualifying Exam
Spring 2010



Problem 1: (10 Points)

A child of mass m is playing on a swing hanging from a support by a
uniform chain of length L and negligible mass. In this question, you
will explore the behavior of the swing in a number of situations.

a. Determine the equation of motion for the system in polar coordi-
nates. (2 Points)

b. Consider small oscillations about the equilibrium position. What
is the equation of motion for these conditions? (1 Points)

c. What is the oscillation frequency for the conditions described in
part (b.)? (2 Points)

d. By starting at a sufficiently large speed at the bottom of the swing
(9 = 0°) the child can go ’over the top’ (6 = 180°). If the chain remains
maximally extended at the top of the loop, what is the minimum
velocity the child must have at the bottom of the loop (6 = 0)? 6 is
the angle that the chain forms with the vertical. (2 Points)

e. What is the minimum force applied to the child by the swing, that
the child experiences at the bottom of the loop in part (d.)? (1 Point)

f. If the chain is replaced by a rigid rod of negligible mass, what is
the minimum velocity of the child at the bottom required to go over
the top? (1 Point)

g. What is the minimum force applied to the child by the swing, that
the child experiences at the bottom of the loop in part (f.)? (1 Point)
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Problem 2: (10 Points)

L AL

A hemisphere of radius R rests on the ground. A particle of mass m
starts from rest on the sphere at an angle of 6 from the vertical that
passes through the center of the sphere. Express answers in terms
of R, 6, and the acceleration due to gravity near the surface of the
earth, g.

L

a. The particle is released and slides without friction. At what angle,
9, measured relative to the vertical, does the particle leave the surface
of the sphere? (4 Points)

b. What is the angle § when 6, = 07 (1 Points)

c. Assume the particle was released with 6y = 0. Once the parti-
cle leaves the sphere, how long does it take it to hit the ground?
(3 Points)

d. How far from the center of the sphere is the particle when it hits
the ground? (2 Points)
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Problem 3 (10 Points):

A nonrelativistic electron of mass m and charge —e moves between a
wire of radius a at negative electric potential —¢o and a concentric
cylindrical conductor of radius R at zero potential. There is a uniform
constant magnetic field B parallel to the axis. The electric scalar and
magnetic vector potentials can be written as:

B In(r/R)
¢= ~¢01n(a/R)

I
A= EBT'H
where 6 is a unit vector in the increasing ¢ direction.

a. Give the Lagrangian and Hamiltonian in cylindrical coordinates.
Specify all the constants of motion for this system justifying your
answer. Recall that the electric and magnetic potentials can be given in
terms of a velocity dependent potential U (T, f‘) = q¢ — q;& ¥, where q is the
charge. (5 Points)

b. For an electron starting at rest on the inner wire (r = a), there
is a value of the magnetic field B, such that for B < B, the electron
reaches the outer conductor and for B > B, it does not reach the outer
conductor. Determine an expression for B, in terms of the variables
given; you can assume that a < R. (5 Points)
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Problem 4 (10 Points):

Assume that air obeys the ideal gas equation. Take M to be the molar
mass, P the pressure, R the ideal gas constant, T' the temperature, 2
the altitude, p the density, and g the acceleration due to gravity.

a. The density of our atmosphere decreases with increasing altitude.
This is a consequence of hydrostatic equilibrium, where the pressure
of the air at an altitude z, must balance the pressure from below and
the weight of the column of air above. Given that air has a mass
density p = MP/RT, find dP/dz. Assume that the atmosphere is
isothermal. Neglect the curvature of the earth and the variation of g
with altitude. (4 Points)

b. Using the model in part (a.), consider a volume of air that is
moved adiabatically within the atmosphere and able to do work on
its surroundings; that is, expand and contract to maintain the same
pressure as the surrounding air. If this section is moved upwards, it
will cool as it is lifted, thus increasing in density compared to the
surrounding air, and tend to sink back to its original altitude. Find
dT/dz, the adiabatic lapse rate for the air. Assume the air is composed
of diatomic molecules (N3). (Hint: first find dT/dP). (4 Points)

The significance of the adiabatic lapse rate is that it determines
the stability of the atmosphere to convection. The temperature in the
lower part of the real atmosphere (troposphere) is not isothermal, but
decreases with increasing altitude because it is heated by the ground.
If the temperature gradient in the atmosphere is greater than the
lapse rate, convection can occur.

c. If the section of air was wet so that condensation can occur, how
does the lapse rate change? Explain your reasoning. (1 Points)

d. A helium balloon ascends in the atmosphere, expanding adiabat-
ically just as the section of air in (b.). Will the lapse rate of helium
be higher, the same, or lower than air? Explain. (1 Points)



Problem 5 (10 Points):

A system consists of N identical non-interacting particles in equilib-
rium with a heat bath. The total number of individual states available
to each particle is 2N. Of these states, N are degenerate with energy
0 and N are degenerate with energy e. It is found by observation that
the total energy of the system is Ne /3.

a. What is the average number of particles in the excited state?
(1.5 Points)

Find the temperature of the system under the following three dif-
ferent assumptions.

b. The particles are bosons. (2 Points)
c. The particles are fermions. (2 Points)
d. The particles obey a Boltzmann distribution. (2 Points)

e. Are the temperatures you found in (b.), (¢.) and (d.) the same?
Why or why not? Explain your answer. (2.5 Points)



Problem 6 (10 Points):

A large flat surface is in contact with a mono-atomic gas above it.
The volume of gas above the surface acts as an infinite reservoir of
gas atoms, but does not otherwise enter into the problem. The suface
consist of a square lattice of sites that gas atoms can occupy; denote
the number of gas atoms on site i by n;, where n; € {0,1}, and the
total number of lattice sites by Ns;. The energy of the system is given
by:

E({n:}) = Zme—kvoz Z nin; (1)

i JEn.n.

where ¢ is a binding energy of atom to the substrate, v is an interac-
tion between adjacent atoms, and the sum over j is restricted to the
nearest neighbors of 4.

a. Write down an expression for the grand canonical partition func-
tion Z(T, ). Your answer should be in the form of a sum over states.
(2 Points)

b. Calculate the grand canonical free energy, (T, 4, N;) when vp = 0.
(2 Points)

c. Calculate N, the number of gas atoms adsorbed to the surface, as
a function of T', u and N; when vy = 0. (2 Points)

d. When vg # 0 the problem is in general more difficult. To simplify
it, replace n; in the above sum by 7, a constant that will be set equal
to the average occupation of any site. Calculate the number of gas
atoms adsorbed to the surface, N, as a function of T, u, N, and 7.
(2 Points)

e. Discuss the possibility of a phase transition in 7 as a function
of 8. This can be done by graphically investigating the requirement
that N(T, u,7)/Ns = @i, or by returning to the expression for the energy
given in equation (1) and mapping it on to other well known problems
in statistical mechanics. (2 Points)
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Problem 1: (10 Points)

Two blocks are free to move in one dimension along a frictionless
horizontal surface. The blocks of mass 2M and M are connected to
each other and to a fixed wall by two springs with stiffness 2k and
k as shown in the figure. Choose the dynamical coordinates of the
system to be the position of block 1, x;, and block 2, xg, from their
respective equilibrium positions. Consider only small oscillations so
that the springs are linear. Neglect all damping.

2k — Kk 2 .,

a. Write down the equations of motion for each mass. (2 Points)

b. Show that the frequencies of the normal modes of the system are
V2wo and and wy/v2 where wp = y/k/m. (2 Points)

¢. Find the eigenvectors that describe the normal modes and sketch
them. (3 Points)

d. Suppose you grab mass M and push it slowly to the left by an
amount Ag. When mass 2M is in equilibrium show that it is Ag/4
from its equilibrium position. (1 Point)

e. If you release the system from the starting position in (d.), what
will be the displacement of the system as a function of time? Write
an expression for the displacement of block 1 (mass 2M) as a function
of time from its original equilibrium position. (2 Points)






Problem 2 (10 Points):

An isolated uniform sphere of mass m and radius R is rotating with
angular velocity wp about an axis running through the sphere. Through
only internal forces, the radius increases linearly to 2R in a time 7,
while maintaining uniform density and ‘,‘§9}3§§‘i&gglw§‘ymmet£y.

a. At time 7, what is the angular velocity of the sphere? (2 Points)

b. Find an expression for the angular velocity as a function of time.
(1 Points)

c. When the system reaches 2 R it immediately reverses and its radius
linearly decreases to R over the period 7 to 27. By what angle A¢ is
the object behind in its rotation compared to a situation where the
sphere does not expand between 0 and 277 (4 Points)

d. Consider the case where the radius of the sphere expands expo-
nentially with some time constant 7.. How much does the sphere
rotate compared to the case where there is no expansion as t— oo?
(3 Points)
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Problem 3 (10 Points):

Consider the following Lagrangian

1 1
L= (§mc}2 - §mw2q2> et

assuming that w > v for the questions that follow.

a. Determine the Hamiltonian associated with this Lagrangian.
(3 Points)

b. Find a transformation to new phase space variables that make H
independent of time and show that these form a canonical transfor-
mation by determining a generating function of the form Fy(q, P,t).
(4 Points)

c. Using the equations of motion for the transformed Hamiltonian
K(Q, P,t), solve for Q(t) and transform back to get ¢(t). (3 Points)
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Problem 4 (10 Points):

The coffee purchased at rest stops is often too hot to drink. One way
to cool off your coffee is to add ice, but how much ice should you
add? Take the initial conditions for the coffee to be T = 80°C and
V = 400ml. Take the initial conditions for the ice to be Ti® = 0°C.
The final temperature for the coffee and ice that you want to achieve
is Ty = 60°C. For the following questions assume that the coffee
is pure water (a good assumption for most rest stop coffee) and the
process is adiabatic with respect to the surroundings. Neglect volume
changes of the coffee and ice and any temperature dependence of the
heat capacity. The following thermodynamic properties of water may
be useful:

M = 18.0gmole™!, molar mass

p = 1.00g/cm?, density

AHfys = 6.00kJmole™ ", heat of fusion

C, = 75.4%8 Jmole ' K™!, heat capacity of liquid

For parts (a.)-(c.) your answers should be in terms of the variables
described here.

a. Find a general (algebraic solution) expression for the mass of ice,
m, that is needed to cool the coffee to 74?7 (4 Points)

b. Calculate, numerically, how many grams of ice you should add to
your coffee to lower the temperature to T¢ = 60°C. (1 Points)

c. What is the entropy change of the system (coffee + ice)? Find an
algebraic solution. (3 Points)

d. What is the entropy change of the surroundings? (1 Points)

e. Is this a thermodynamically reversible process?  Explain.
(1 Points)



Problem 5 (10 Points):

Consider a one dimensional ideal gas of electrons as a model for the
conduction electrons in a one dimensional wire.

a. Determine the density of states g(E) for the one dimensional non-
interacting electron system confined to a length, L. (3 Points)

b. What is the Fermi energy for this system? (2 Points)

c. What is the root mean square velocity of the electrons at 7' = 0°K?
(3 Points)

d. What is the entropy of the electrons at T = 0°K? Justify your
answer. (2 Points)



Problem 6 (10 Points):

The following questions refer to a stream of photons in equilibrium
at temperature T (thermal light - say from a light bulb) incident on
a perfect detector which detects (counts) all the particles that hit it.
Your final answers should be in terms of the mean particle number.

a. Given #i; photons are counted on average in time t, calculate the

variance in the photon number ng, (Ang)?. (2 Points)

b. Calculate the fractional fluctuation of the detector signal defined as
the square root of the variance divided by the mean photon number,

fis, squared, 1/(An,)2/n2. This is the inverse of the signal to noise
ratio. (2 Points)

The following questions refer to a stream of electrons in equilibrium
at temperature T incident on a detector which detects (counts) all
the particles that hit it. Again, your final answers should be in terms
of the mean particle number.

c. Given 7, electrons are counted on average in time t, calculate the

variance in the electron number n., (Ang)?. (2 Points)

d. Calculate the fractional fluctuation of the detector signal defined as
the square root of the variance divided by the mean electron number,

fie, squared, 1/ (An)2/n2. (2 Points)

e. Compare the two results. Are the results the same or different? Do
the counts detected clump (bunch) or anti-clump (anti-bunch)? Why?
(2 Points)
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Classical Mechanics

1. A solid uniform marble with mass m and radius r starts from rest on top of a
hemisphere with radius R. It will start to roll to the right, and eventually fly
off the hemisphere.

(a)

(b)

Assume that the marble rolls without slipping at all times. Calculate 6y,
the angle with respect to the vertical at which the marble loses contact
with the hemisphere. (3pts).

Where will the marble hit the ground, as measured {rom the center of the
hemisphere? You may use the variable 0; in your answer. (If you do not
solve part (a), you can still attempt this problem by writing your answer
in terms of this variable.) (3pts).

Now assume that the force of friction between marble and the hemisphere is
1N, where N is the normal force between the marble and the hemisphere.
Calculate the angle 8, at which the marble will no longer roll without
slipping. (4pts).
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2. Consider a point particle of mass m moving under the influence of a central

force:
F =i
(F) = —— 1
where n is an integer greater than one (n = 2,3,...), the variable r is the

distance from the origin of the force (r = |7]) and # is a unit vector in the radial
direction. In this problem, we will examine when circular orbits are stable for
such a central force.

(a) Calculate potential energy of this force. Choose the zero of the potential
to be at infinity (r = co). (1pt)

(b) Show that the angular momentum about the origin, L, is conserved. (You
may use the Newtonian, Lagrangian, or Hamiltonian formulations of the
problem). (2pts)

(¢) Write an expression for the total energy of the particle E as a function of
r, dr/dt, L, k, and n. (1pt)

(d) Assume the particle is moving in a circular orbit about the origin, so that
dr/dt = 0. Calculate the radius of the orbit and the velocity of the particle
as a function of the above variables. (3pts)

(¢) When is this circular orbit stable? (Hint: look at dE/dr and d*E[dr*.)
(3pts)
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3. A particle of mass m is constrained to move on an infinitely long cylinder of
radius a. The center of the cylinder is oriented along the z-axis, as shown. An
attractive central potential, U(r) = U(Va? 4 22), is located at the origin, where
r is the radius is spherical coordinates.

(a) Write down the Lagrangian for the problem. (1pt)

(b) From the Lagrangian, explicitly derive the Hamiltonian for the particle.

(2pts)

(¢) Is angular momentum about the z-axis conserved? Prove your answer.
(2pts)

(d) Under what conditions is motion in the z-direction bounded? (2pts)

e) Assume that the potential is U(r) = L2, Solve the equations of motion,
2

and reduce the problem to quadrature. (3pts)

”
J
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Statistical Mechanics

4. Consider an ideal monatomic gas used as the working fluid in a thermodynamic
cycle. The number of particles is ng. It follows a cycle consisting of one adiabat,
one isochore and one isotherm, as shown below.

12 : : :

1.0 A

08
§}&6 B

04

02 C

0953 1.0 1.5 2.0 2.5
V/Vy

(a) Calculate the pressure, temperature, and volume at each corner of the
cycle, A, B, and C, expressing your answer in terms of Fo, Vo, no and
perhaps R, the ideal gas constant. Note that point A the pressure is Fp
and the volume is Vp. (3pts)

(b) Calculate the work done on the system, the heat into the system and the
change in the internal energy of the system for each process step. (4.5pts)

(¢) What direction around the ycle must the system follow to be used as a
functional heat engine? (1/2pt)
(d) What is the efficiency of the cycle, run as an engine? (1pt)

(¢) What is the efficiency of an ideal Carnot engine run between reservoirs B
and C? (1pt)
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5. Consider the quantum mechanical linear rotator. It has energy levels

h‘Z
FEy=—J(J+1
=3 IJ (J+1)
where [ is the moment of inertia and J is the angular momentum quantum
number, J = 0,1,2,.... Each energy level is (2J + 1)-fold degenerate.

(a) In the low temperature limit (2*/2] > kT) determine approximate ex-
pressions for:
i. The rotation partition function. (2pts)
ii. The internal energy. (1pt)
iii. The specific heat. (1pt)
(b) In the high temperature limit (A*/2] < kT') determine approximate ex-
pressions for:
i. The rotation partition function. (2pt)
ii. The internal energy. (1pt)
iii. The specific heat. (1pt)
(¢) How do the quantum results compare with the equipartition theorem for
a classical rotator with two transverse degrees of freedom? (2pts)

-



6. Consider the “bogon,” a spin 5/2 fermion with the charge of an electron but
with a dispersion relationship
E = ¢p”.

where p = || Assume that your bogons are confined in a three dimensional
sample and are non-ineracting.

(a) Working in the grand canonical ensemble, determine the density, p =
(N)/V, as a function of the chemical potential, z (or the fugacity, z = ey,
T, and V. (3pts)
(b) What is the bogonic Fermi energy (u at 7' = 0) as a function of their
density? (3pts) (Hint: This should not involve any complicated integrals).
(¢) Derive a series expansion in z for the grand canonical free entropy, = =
! g Yo

| £Y =log Z, where Z is the grand canonical partition function. (4pts)
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A very small object with mass m is placed on the top of a stationary
large sphere with radins 1 (the upper hemisphere might represent the
top of a grain silo). Choose the center of the large sphere to be the
origin of the coordinate system, and the vertic al axis as the z axis, and
0 as the polar angle of the center of the small object relative to the
coordinates defined here (see Figure), Assume the object is n’mmziy al
rest on top of the large sphere, i.c., at 0 = 0, and that it begins to slide
withoui friction down the spherical surface.

(a) (2 pt) Obtain an expression for the velocity ol the center of mass
of the small sliding object as a function of ¢.

(b) (2 pt) Find the angle 8. at which the sliding object loses contact
with the spherical surface.

(¢) (4 pt) Now let the object be a small solid homogencous sphere

N

\Lh(n ig, having uniform mass density) having a radius r and tot:
mass m. Assune the small sphere rolls without slipping xhut
sesume that there is no rolling friction) and that v < R, Again,
obtain an expression for the velocity of the center of the rolling
sphere as a function of 0.

(d) (2 pt) Again, find the angle 6, at which the small sphere loses
contact with the large sphere. Is this larger or smaller than the
angle found in part 1b? Give a physical reason for this.

2



2. A homogencous disk of radius R and mass M rolls without shippmg

¢

ot a horizontal surface. The disk’s center is attracted to a point
distance d below the plane. See the figure. The force of attraction is
proportional to the distance from the disk’s center of mass, [(0). This
could be accomplished with a spring with spring constant k& attached
to the point d below the plane and the center of the disk,

(a
(b
(¢

(d

3 pt) Find the Lagrangian for the system in terms of  and .

7

2 pt) Determine the equation of motion for .

} (3 pt) Solve the equation of motion.
) (2 pt) What is the frequency of oscillation about the position of
equilibrium?




Consider the bound motion of a particle in the non-central potential

where k and /3 are positive, real constants, and », 0, and ¢ ave spherical
polar coordinates of the particle.

(a) (1 pt) Write down the Hamiltonian for this system in spherical
coordinates.

(L) (2 pts) The characteristic function (sometimes called Hamalton's
characteristic function) is separable in the form
Wir, 0,¢) = W.(ry + We(0) + Wy(d).

]

S}"i()\‘«' thﬂi} wWe may wr ite Hym(m} = gD, W h(}“f) [4F is a constant,
& AN P / )
21.“('11 (fi{'ll(iulﬂ;t(? t;h(f? ‘cl'/',,i'!]’l{iti'léﬂ action

/) dq
Jorbit,

associated with one orbit of the particle.

W,

ad

14 {;“) s

(2 pts) Given the separable form above, show that W,.(r) ana
Wy(0) must satisfy

f.,.\
i~
R

where «y is a separation constant, and /¢ is the energy.

() (3 pts) Show that the radial action

OW.
"42‘ o [ (],7""‘
Jorbit o

associated with one orbit of the bound particle is given by (/7 is

negative)

[Hint: Ewaluate the integral over the orbit by regarding 1t as a
complex contour integral around a branch cut, and then use the
residue theorem.]

i
H



(e} (2 pts) The action Ag associated with motion in # is diffienls o
H

calenlate. However, it can be shown that the Hamiltonian can be
written in terms of the action

J

(A, + Ay + 245 + 25

From this determine the elementary frequencies v, of the motion,
using
OH
aA,

Are the orbits open or closed?



4. Consider a svstem of volume V in thermal equilibrium with a heat
reservoir at temperature T, for which the canonical partition function

el

. TV
A' R y

where a is a real, positive constant,

(a) (2 pts) Derive a formula for the Helmbholtz free encrgy I,

(b) (2 pts) What are the normal (canonical) variables for F'7 Give
an expression for the thermodynamic identity for dF and derive
expressions for the conjugate variables.

(¢) (2 pts) In terms of the normal variables from part 4b, derive an ex-
pression for the internal energy, {7, and heat capacity at constant

volume, ¢,. How is U related to F7?

() (2 pts) Does your expression for ¢, agree with the prediction of
the equipartition theorem? Explain your answer.

(e) (2 pts) Does your expression for ¢, agree with the prediction of
the Third Law of Thermodynamics? Explain your answer.

O



I

o)

Inn this problem we will consider a lattice of N atoms, each with a spin
of 1/2. Because the atoms can be labeled by their position on the
ce, we will treat them as distinguishable particles, not s identical

lattic
Fermions.

Tn an external magnetic field, each atom can be in one of two possi ible
energy states, lyy = du¢,

(a) (2 pts) The possible total energics for the spins can be written as
Jo, = ne, where nis an integer. What are t the possible values for n?
What is the number of distinet microstates, (N, fo,) = Q(N, n},
i terms of N and n, that have this encrgv? Remember, we are

considering the atoms to be distinct particles.

(2 pts) Let us treat the number of microstates (N, [4,) as the
structure function for the microcanonical ensemble for the spin
lattice. Therefore, we define the entropy as

.
-
'

{Y/{\T ]1\ s \‘H(Z '\i ]f)

where & is Boltzmann’s constant. Use this entropy to calculate the
temperature 1" for the qg)in systemn. Show that there are energies
where the temperature is negative. Explain the meaning of these

negalive temperatures.

(¢} {2 pts) What is the energy of the spin lattice as a function of tem-
perature, F(N,T)?7 Show that your result makes physical sense
in the limits 77— 0 and T —

() (2 pt) Write down the partition function Z(N,I') in the canonical
ensemble for the spin lattice,

{e) (2 pts) Using the canonical enscible, calenlate the average encrgy
for the spin lattice. Compare this result to what you found in past

Se for the microcanonical ensemble. FExplain any differences.



. This problem concerns Fermi gases in [ spatial dimensions

{(a) (2 pts) Consider a gas of noninteracting nonrelativistic Fermions in
D dimensions. Show that the grand-canonical potential, ¢ = In &,
where Z is the grand partition function, has the form, (8 = 1/8T")

o] i A A -
¥ = Vyp / de P72 My (1 4 o0 “‘) ;
0 -

where vp is a constant that is different for cach dimension, p is
the chemical potential, and Vp is the D-dimensional volume.
(HY (2 pts) Write down an expression for the number of particles NV
L) Le B } }
and the total cnergy J2 of the ideal Fermi gas as an integral over
the single-particle energy states e
2 i) The prand-canonical potential is proportional to the pros.
! !fﬁ ]

sure, because

SO

= V.

Using the expression above for 44, show that

9

‘[) ‘//) /) /‘,

{d) (2 pts) Show that the resnlt from part Ge agrees with the ideal gas
Jaw in the 70— oo limit. You will need to consider the limit the
of 2 for large T, determined by the fact that the number of atoms

in the gas is fixed.

{e) (2 pls) Finally, find an expression for the Fermi energy at T = 0)

E \

in D dimensions.
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Problem 1: (10 Points)

A mass m moves on a frictionless table. It is tied to a string that runs through a hole in
the table. A mass M hangs from the other end of the string and is acted upon by gravity.
M is constrained to move vertically and the hole in table is small and smooth (frictionless).

a. For a mass m orbiting at radius » and velocity v with mass M stationary, determine an
equation relating r and v. (2 Points)

b. Now imagine replacing the mass M with a force F provided by your hand. What
happens if you pull the string to shorten r, what is conserved? How much work, AW, is
done to change r by Ar? Put your answer in terms of r. (2 Points)

c. By pulling the string a distance d < r, how does the speed of mass m change? (2 Points)

d. Using the expression for AW ,in terms of r and Ar from b.), how much work is done to
change the orbital radius from r to r/2? (2 Points)

e. What is the change in angular frequency in part d.)? (Show this for the change from r
to r/2) (1 Points)

f. For the change described in part d.), does the system obey the work energy theorem?
(1 Points)



Problem 2 (10 Points):

A thin uniform rod of mass M and length (AB) = L lies on a horizontal frictionless surface
aligned along the y direction as shown below. An object with mass m moving along the =
direction with a speed of v collides with the rod at point C.

e o
I~

4

a. What is the moment of inertia of the rod about point A? (1 Points)

b. At what point should the object hit the rod so that immediately after the collision, the
rod has pure rotation about the point A? Express your answer for (AC) in terms of L.
(3 Points)

¢. Now assume the object with mass m collides with the rod at point C such that (AC) =
3L/4 and the collision is elastic. After the collision, when the rod becomes aligned along
the z direction for the first time, what is the distance the center of mass of the rod has
moved? For part (c) and forward, assume that m = M (which simplifies the problem) and
express your apswer in terms of L only. (4 Points)

d. At the same moment in time as (c), what is the distance the object with mass m has
moved? (2 Points)



Problem 3 (10 Points):

A uniform ladder of length £ and mass m has one end on a smooth frictionless, horizontal
floor and the other end against a smooth, frictionless vertical wall. The ladder is initially
at rest making an angle 8, with respect the horizontal.

a. Using the angle 6 (with respect to the horizontal) as the only Lagrangian coordinate,
derive an appropriate equation of motion for the time period before the ladder loses contact
with the vertical wall. (2 Points)

b. Find the height of the upper end of the ladder when the ladder loses contact with the
vertical wall. (2 Points)

¢. Derive a new Lagrangian using the angle 8 and the z coordinate of the top of the ladder.
(2 Points)

d. Find the equations of motion for both coordinates using a Lagrange multiplier.
(2 Points)

e. What physical quantity in the problem does the Lagrange multiplier represent?
(2 Points)

f. Repeat part (b) using your new equations of motion. (2 Points)



Problem 4 (10 Points):

Consider a rubber band of length L which is being stretched by external force f.

a. Write down the thermodynamic identity (st law of thermodynamics) relating the
change in the internal energy dU to infinitesimal change in length dL, and to the heat T'dS.
(2 Points)

b. In one experiment the length of the band is fixed to L = 1m and the temperature of
the band T = 300K is raised by a small amount AT = 3K. This causes the force needed
to maintain the length of the band to increase by the amount Af = 1.2N. In another
experiment, the band is stretched from L to L + AL at constant temperature 7. As a
result, the band exchanges heat with the environment.

1. Find a differential expression for dF, the free energy, in terms of the thermodynamic
variables. (2 Points)

2. Using your result for the free energy, find the appropriate Maxwell relation for this
process. (2 Points)

c. What is the amount of heat exchanged with the environment for AL =2cm? (2 Points)

d. Is the heat released or absorbed by the rubber band? (2 Points)



Problem 5 (10 Points):

A given solid state system consists of V spin 1 atoms, so that the projection of spin on a
quantization axis ¢ € {—1,0,1}. The energy of the i-th atom is

E(0;) = €a? + ho,

where ¢ and h are constants. In this problem you will calculate the partition function in
different ensembles.

a. The canonical ensemble: Our goal is to calculate the free energy F(T',h, N).
1. Calculate the partition function Z(T, h, N) in the canonical ensemble. (1 Points)

2. From the result in 1., determine the free energy in the canonical ensemble, F(T, h, N).
(1 Points)

3. What is the magnetization in this ensemble, M (T, h, N)? (2 Points)

b. The microcanonical ensemble: Our goal is to calculate the entropy S in terms of
the extensive quantities, which are the internal energy U, the magnetization M, and the
number of atoms, N. Denote the number in each spin orientation as n_,, n() and n,,

respectively.

1. Calculate Q(N, N, ,n(_)), the number of micro-states available to the system of N
atoms for fixed va.l)ues of n,, and n_,. (2 Points)

2. The total magnetization of the system is given by
M = po(nyy — )
and the total internal energy is given by
U(N,ngyomy) = e(ng, +n ) +hng, —n,)

Use these relations and your answer to the question above to determine the entropy
in the microcanonical ensemble, S(U, M, N). (2 Points)

3. What is the temperature in this ensemble, T(U, M, N) (Hint: use Stirlings approxi-
mation)? (2 Points)



Problem 6 (10 Points):

A classical system of N distinguishable noninteracting particles each with a mass m is
placed in a three-dimensional harmonic well:

a. Find the partition function. (4 Points)

b. Find the Helmholtz free energy. (1 Point)

c. Taking V as an external parameter, find the thermodynamic force P=- (%)T conju-

gate to this parameter, exerted by the system. (1 Points)
d. Express the equation of state in terms P,V,T. (1 Point)

e. Find the entropy, internal energy, and total heat capacity at constant volume.
(3 Points - 1 Point for each)

You may need the following integration formula:

bt m2ne-aax2dz — (2"’)! 7r
0 nl22n+1\ g2n+1
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Problem 1: (10 Points)

Imagine a race between different objects rolling or sliding down a simple inclined plane.
Let the mass of each object be M, the angle of the inclined plane be ©, and the height be
H, where the center of mass of all the objects change by H over a race. You will consider a
cylinder with walls of negligible thickness and puck (short solid cylinder) in this problem.
Assume the rolling objects roll without slipping.

Sliding puck Rolling puck Rofling tube

a. Determine the velocity of a sliding puck (short cylinder) at the bottom of the inclined
plane. (3 Points)

b. Determine the velocity of a round, symmetrical, smooth rolling object whose moment
of inertia is I = aMR?, where « is a geometrical factor and R is the radius. (3 Points)

c. Show which wins, a sliding or rolling puck? (2 Points)
d. Discuss how your result depends on a, M and R. Use your answer to determine if a

rolling puck or tube of mass M and negligible thickness would win a race down the incline.
(2 Points)



Problem 2 (10 Points):

A yo-yo with a mass of m and moment of inertia I falls straight down and spins due to
gravity. The string unwinds from the yo-yo around an axle of radius a. The other end of
the string is attached to an ideal spring with spring constant k. Define z as the extension
of the spring measured with respect to its unstretched length.

a. Using the generalized coordinates z and © write the Lagrangian for this system.
(2 Points)

b. Derive the Lagrange equations of motion. (2 Points)

c. Derive a differential equation that describes the oscillation of the spring while the yo-yo
is falling down and unwinding. (2 Points)

d. What is the oscillation frequency of the spring while the yo-yo is falling down and
unwinding? (2 Points)

e. Consider the limit of a thin axle (ma? < I) and solve the differential equation found in
(c) for the variable z. (2 Points)

f. Explain in words the motion described by the equation found in (e). (1 Points)



Problem 3 (10 Points):

A spherical pendulum consists of a particle of mass m that is in a gravitational field §
and is constrained to move on the surface of a sphere of radius £. Use the polar angle 6
(measured from the downward vertical) and the azimuthal angle ¢.

a. Derive the Lagrangian for this system. (2 Points)

b. Derive the Hamiltonian for this system. (2 Points)

c. Find the Hamiltonian equations of motion. (1 Points)

d. Consider the system is undergoing uniform circular motion in ¢ at constant polar angle
6,. Assuming small variations in 6, expand the Hamiltonian in 6 to second order around

0 =6,. (4 Points)

e. Show that the motion in ¢ is simple harmonic with angular frequency given by:

2_ 9 2
w —ECOS00(1+3cos 6,).

(1 Points)



Problem 4 (10 Points):

The diesel engine uses the Otto cycle. Below is the P-V diagram for this process. Assume
a monatomic ideal gas.

P A p: pressure
V: volume

a. Find the work done during each cycle. (3 Points)
b. Find the heat exchanged each cycle. (3 Points)
c. What is the efficiency of this engine? (3 Points)

d. To produce work, which way does the cycle operate? Clockwise or counter clockwise in
the diagram. (1 Points)
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Problem 5 (10 Points):

An electron confined to a 1D ring of radius R in a perpendicular magnetic field B has
energy levels

I

2
— ¢ ( _ 1”.)
%o
where ¢ = 7R2B is the magnetic flux through the ring, ¢, is the magnetic flux quantum

(¢o = e/hc) and m is the angular momentum quantum number, m = 0,£1,+2,.... In this
problem we will consider a set of N rings, and neglect the spin of the electron.

2
a. In the high temperature limit (e = #Zﬁg << kT) determine approximate expressions
for:

1. The canonical partition function, Z(T, N, B). (1 Point)

2. The internal energy, U(T, N, B). (1 Point)

3. The magnetization, M = g% (2 Points)

b. In the low temperature (%ﬁl >> kT) and weak field (—¢o/2 < ¢ < ¢o/2) limit

determine approximate expressions for:
1. The canonical partition function, Z(T, N, B). (1 Point)
2. The internal energy, U(T, N, B). (1 Point)

3. The magnetization, M = g% (If your result is quite complicated, make sure that
you keep only the leading term in part (i) above. (2 Points)

c. Are your results similar or different? Explain either why they are similar or why they
differ. (2 Points)



Problem 6 (10 Points):

Consider a system consisting of a large number N of distinguishable, noninteracting par-
ticles. Each particle has only two (nondegenerate) energy levels: 0 and ¢ > 0. Let E/N
denote the mean energy per particle in the thermodynamic limit N — oo.

a. What is the maximum possible value of E/N if the system is not necessarily in thermo-
dynamic equilibrium? (1 Point)

b. What is the value of E/N if the system is in equilibrium at temperature T'? (4 Points)

c. Explicitly take the low (T — 0) and high (T — o) limits of your result of part a). Sketch
your results. (2 Points)

d. Find the entropy per particle s = S/N. (2 Points)

e. Explicitly take the T — 0 and T — oo limits of your result of part d). Explain.
(2 Points)
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Classical Mechanics

1. A solid spool of uniform density has a mass m, and diameter d. It rests
on a frictionless table and is attached by a massless string to a hanging
ball with mass m; and radius 7. The string runs over an ideal massless,
frictionless pulley as shown. The system is released from rest with the
spool a distance L from the edge of the table. When it is released, the
spool starts to slide and rotate as it is pulled by the string. Denote the
acceleration of gravity by the constant, g. \

d L

(a) Consider the spool to be a uniform cylinder and calculate the
moment of inertia of the spool rotating about its center of mass.
Do not simply state the result. (1 point)

(b) Find the constant acceleration of the spool as it moves to the
right, in terms of the variables given, and g, the acceleration due
to gravity. (3 points)

(c) What is the velocity of the ball when the spool has travelled a
distance L and reaches the edge of the table? (3 points)

(d) What is the ratio of the total kinetic energy of the spool (transla-
tional and rotational) to the kinetic energy of the ball? (3 points)



2. Wilberforce Pendulum: A mass m is suspended from the ceiling by a
long coiled spring, forming a Wilberforce Pendulum. The system can
oscillate in the vertical direction (2) and twist about its vertical axis,
(0). The Lagrangian for the system is:

l9492 - %)\zﬁ

1 o, 1, 1,
L=-mz +2IH 2kz 5

2
(a) Explain each term in the Lagrangian. (1 point).

(b) Determine the equations of motion for the system. (3 points).
(c) Determine the frequencies of the normal modes. (3 points).

(d) At time ¢ = 0 the ball is displaced upwards a distance 7, from its
equilibrium position, without any twist, and then released from
rest. Determine the motion. You might find it helpful to define:

w, = k/m
Wy = Q/I

and/or other constants to simplify your algebra. (3 points)




3. Let [F,G] denote the Poisson bracket of the quantities F' and G.

(a) Show that: (2 points)
i. [pia pJ] =)
ii' [p‘l:’ q.?] = _6"'-1.7.
where g; is a co-ordinate and p; is its canonical momentum.

(b) If L is the angular momentum in three dimensions given by

L

I

FXP

show that: (5 points)
i. [Ls, L;] = L, for 4, j, k in cyclic order.
ii. [L?, L] =0
(c) Based on the above, can L;, Ly, and L, serve as a set of canonical

momenta for some set of generalized coordinates in a central force
problem? Why or why not? (3 points)



Statistical Mechanics

4. A thermodynamic system consists of n moles of an ideal mono-atomic
gas confined in an insulating cylinder by a piston of cross-sectional
area A. Initially the piston is locked into place so that the gas is in
equilibrium with an initial volume Vj, temperature Ty, and pressure Py.
A spring of spring constant k is attached to the piston, but is initially
neither stretched nor compressed. The volume occupied by the spring
on the right hand side of the cylinder is a vacuum, (there is no gas to
exert a pressure back on the piston.

When the piston is released, it will compress the spring. Eventually, the
system will come to equilibrium with some of the internal energy of the
gas transferred to the potential energy stored in the spring which has
been compressed a distance z. Denote the final volume, temperature
and pressure by V;, 71 and P;. You should neglect the heat capacities
of the cylinder walls, the piston and the spring.

It is trivially true that (V; — V) = Agz; in parts (a) and (b) you are
asked to use physics to determine other relationships between z and
the variables in the problem.

(a) Find the relationship between the change in temperature of the
gas, Ty — Ty and the final compression of the spring, z, in terms
of the variables above. (1 point)

(b) What is the relationship between the final pressure, P and the
final compression of the spring, z, in terms of the variables above?
(1 point)

(c) You are told that the when equilibrium is reached, the volume of
the gas has doubled ( V; = 2V;). What will be the ratio of the
final temperature to the initial temperature? Your answer should
be dimensionless. (5 points)

(d) If the above case, what will be the ratio of the final pressure to the
initial pressure? Your answer should be dimensionless. (3 points).



5. Consider a system of N non-interactiong, distinguishable spin-1/2 par-
ticles in a magnetic field B at an initial temperature T. Each spin
has energy +gpuoB/2 depending on whether it is alligned (—) or anti-
alligned (+) with the applied magnetic field. They have no other en-

ergy.
(a) Show that the entropy is given by:

NguoB gieB
9T tanh kT

. B — 9l
S(N,T; B) = Nksln (2 cosh - kBT)

(3 points)

(b) The magnetic field is reduced adiabatically. Show that if the field
B is reduced to half its value, the temperature will also be reduced
to half its value. (1 point)

(c) Evaluate the entropy of the spin system in the limits guoB/kpT —
oo and guoB/kpT — 0. Explain your answers. (1 point)

(d) The above spin system is placed in thermal contact with an ideal

mono-atomic gas of N particles in a volume V' where the canonical
partition function for a single gas atom is:

Z atom = CVT3/2

(the value of N is the same as the number of spins). What is the
entropy of the ideal gas by itself? (2 points)

(e) Initially the two systems are in equilibrium at temperature Tp and
guoB/ksTy >> 1. If we adiabatically reduce the magnetic field
to zero and the two systems remain in thermal contact, what is
the final temperature, 71, of the gas? (3 points)



6. Consider a non-relativistic gas of N electrons confined on a two dimen-
sional surface of area A = L.

(a) Show that the density of states of the gas is

mA
g(e) = )

(3 points)
(b) Find the Fermi energy Ep (in terms of N and A) (2 points)

(c) Find the average energy per electron at T' = 0 (in terms of Ep)
(2 points)

(d) Write down the expression for the total number of particles at
temperature T' # 0. Use this expression to find p = u(T). (3
points).

(e) Take the T' — oo limit. Do you recover the classical limit? What
about the T' — 0 limit? (1 point)

(f) Calculate (in order of magnitude) Er for a gas of density -’1—‘;- =
10'%m~2, Is this Fermi gas degenerate at room temperature and
why or why not?(1 point)
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Classical Mechanics

1. A bar of mass M and length L has a hole drilled in it one third along its length.
This is used as a frictionless pivot point.

(a) Calculate the moment of inertia of the system about the pivot point. You
may assume that the rod is one-dimensional. (2 points).

(b) In equilibrium, the bar hangs vertically (6 = 0). The bar is rotated about
its pivot, and released from rest when § = m/2. Caculate the angular
velocity of the system when 6 = 0. (3 points)

(c) Find the force exerted by the pivot in the above case just as 6 passes
through zero. (2 points)

(d) Find an expression for the period of oscillation for small angles § << 1.
Express you answer in terms of the quantities given, and g, the acceleration
due to gravity. (3 points).




9. Consider the Earth as a frame rotating about its axis with frequency w. In this
frame of reference particles are subject to the Coriolis force given by:

—

F, = —2m(& x 7,)

where #, is the velocity of the particle relative to the rotating frame and m is
the mass of the particle. Choose the z-axis to be normal to the surface of the
Earth and pointing outward from the center; the y-axis to point North, and the
x-axis to point East. Let z = 0 be on the surface of the Earth. Assume you are
in the Northern Hemisphere at a colatitude @ (that is, the angle between the
z-axis and @ is @).

The goal of this problem is to calculate the “horizontal” deflection of an object
thrown “straight up” in the rotating reference frame of a person on the surface
of the Earth.

(a) A particle close to the surface of the Earth (z << R where R is the radius
of the Earth) moves under the influence of gravity and the Coriolis force.
(You may neglect the centrifugal force in this non-inertial frame for this
problem). Write the equations of motion in the z, y, and 2 directions,
under the approximations that |v,] >> |v,| and |v,| >> |v,|. (2 points)

(b) The particle starts from rest (in the rotating frame) and is dropped from
a height h above the ground, and it arrives at the ground with a speed
vZgh. Find the magnitude and direction of the deflection of its end point
due to the Coriolis force. (3 points)

(c) The particle is now thrown vertically upward from the ground with an
initial speed vg so that it reaches a maximum height h and then falls back
to the ground. Find the magnitude and direction of the Coriolis deflection.
(3 points)

(d) Compare your results from parts (b) and (c) above. Explain why they are
the same or different. (1 point).

(e) In the above calculation of the deflection we neglected the centrifugal force;
was that reasonable? Why? (1 point)



3. Consider a particle confined to one dimension subject to a force increasing
linearly in time, F' = At.

(a) Find the Hamiltonian of the system. (2 points)
(b) What is the corresponding Hamilton-Jacobi equation? (2 points)

(c) Show that Hamilton’s principal function, S can be written in the form:
1,2
= —2-At z + az — ¢(t),

where « is a constant. (2 points)

(d) (x pts) Solve the resulting equation for ¢(t), finding the position and mo-
mentum as a function of time. (3 points)

(e) Verify your solution by directly solving Newton’s equations of motion for
this force and compare this to your answer above. (1 point)



Statistical Mechanics

4. The latent heat of melting ice is L per unit mass. A bucket contains a mixture
of water and ice at the melting point of the ice, Tp. We want to use an ideal,
maximally efficient, cyclic (reversible) refrigerator to freeze a mass m amount
more of the liquid water in the bucket into ice. Assume that this refrigerator is
powered by some external source of work, and that it rejects all heat to a finite
external reservoir of constant heat capacity C and initial temperature Tg.

(a) What is the change in the entropy of:
i. The ice and water mixture in the bucket, Spucket, (2 points)
ii. The external reservoir, Syes, (2 points)
iii. The refrigerator aparatus Sgiqge itself when run over several cycles, (1
point)
during the process where a mass m of the water is turned into ice?
(b) What is the change in the Gibbs free energy during the process? (1 point)

(c) What is the minimum mechanical work required to run the refrigerator for
this process? Hint: The most efficient process will have the smallest total
entropy change. (4 points)



5. A lattice gas is a system of volume V divided into N, cells of volume b so that
N, = V/b. Each cell can have either one or no atoms in it (n; € {0, 1}) and has
c nearest neighbors. The energy of the system is:

E({n}) = — [-;— X wnmj]

i jEn.n.

where w is an interaction between adjacent atoms, and the sum over j is re-
stricted to the nearest neighbors of ¢ and the factor of 1/2 is present to avoid
double counting. We will work in the grand canonical ensemble so that the total
number of particles,
N = Zni
1

is not fixed.

(a) Write down an expression for the grand canonical partition function
Z(T,V,u) as a sum over the values of n;. Because this expression de-
pends on the product of n; and n;, you will not be able to evaluate it. (1
point)

(b) In the mean field approximation we rewrite the energy as

Bus({os}) = — |3 S eunn

where we have replaced n; by it’s average value, fi. This value must be de-
termined self-consistently, so for the moment treat it as simply a constant.
Calculate Z(T',V, u; ), performing the sum over n,. (2 points)

(c) From your partition function calculate the average value of the number of
atoms, (N) = N(T,V, ;7). (3 points)

(d) In order for this result to be self-consistent, we must have that

N(T,V, p;7)

N, "

which can be thought of as the intersection of the function N(@)/N, with
the “function” f(n) = @, (that is, a line of slope unity). Explain the
behavior of this intersection as y is varied from large negative to large
positive values. (4 points).



6. Consider a photon gas enclosed in a volume Vand in equilibrium at a tempera-
ture T'. The photon is a massless, spinless particle so that e(p) = pc = huw, where
¢ is the speed of light. Photons can have two possible transverse polarizations.

Throughout this problem you may reduce integrals to quadrature, ie. defi-
nite integrals containing no physical parameters and thus equivalent to simple
constants.

(a) What is the chemical potential of the gas? (Recall that the number of
photons is not conserved). (1 point)

(b) Write down the grand thermodynamic potential  and replace the sum
with an appropriate integration. ( 2 points)

(¢) Using your result of part a) and b) extract the temperature dependence of
the free energy F. (2 point)

(d) Using your result of part c) extract the temperature dependence of the
pressure P and the entropy S. (2 point)

(e) Using your previous results, find the relationship between the energy E
and the free energy F. (1 point)

(f) Write down the energy as E = E(P,V). (1 point)
(2) Find the temperature dependence of the number of photons N. (1 point)
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Classical Mechanics

1. A block with mass 2m is initially at rest at the bottom edge of a wedge of mass M
and angle 6. The wedge sits on a horizontal table. The table-wedge surface and block-
wedge surface are frictionless. At ¢ = 0 a bullet of mass m and velocity vy traveling
parallel to the upper surface of the wedge collides with and embeds in the block.

(a) What is the maximum height above the table reached by the block? (4 points)

(b) At that time, what is the speed of the wedge? (2 point)

(c) How much time does it take for the block to reach its maximum height? (2 points)
)

(d) How far has the wedge moved along the table at that time? (2 points)

M T 2m

T~

‘\.m
Vg



2. A thin rod of length £ and total mass m has a linear mass density (mass per unit
length) given by A(z) = ax, where « is a constant. We will denote the end of the rod
with vanishing mass density as A, and the acceleration due to gravity by g.

(a) Find « in terms of m and £. (1 point)

(b) Calculate the distance between A and the center of mass and express it in terms
of m and £. (1 point)

(c) Find the moment of inertia of the rod about the end A about an axis perpendicular
to the length of the rod and express it in terms of m and £. (1 point)

(d) The end A is attached to a fictionless pivot and then rotated azimuthally at
constant angular frequency w about the vertical line passing through the pivot.
It is still free to rotate in the 6 direction as well. Write down the Lagrangian of
the system. (3 points)

(e) Find the equation of motion for the system for 4. In the limit that w? >> g/¢
there are two equilibrium solutions in which 6(¢) is a constant.

i. Show that (t) = 0 is a solution and prove that it is unstable. (1 point).

ii. There is a second solution in which the rod is nearly horizontal as it rotates.
Derive an expression for the value of the equilibrium angle, 6, as a function
of g, £ and w and determine the frequency of small oscillations about this
angle. (3 points)




3. Angular momentum and the Rungé-Lenz' vector: Given a point particle of
mass m, trajectory 7(¢), and momentum p{(t), we can define the angular momentum

L

FXp
and the Rungé-Lenz vector .
A= —p X L—+¢
m
We consider the explicit case of a 1/r potential, so that

2
P 1
H= — — -
2m r

(a) Prove that the Poisson bracket of H and L is zero, that is:
{H,L}=0.

(3 points).
(b) Prove that the Poisson bracket of H and A is zero, that is:

{H,A} =0.

Hint: Expand the Poisson bracket of A and use the fact that you know { H, E} =0.
(3 points)

(c) What do your results in parts (a) and (b) imply about the behavior of A and L?
(1 point)

(d) Evaluate 7- A = rAcos#, using the explicit form for A above. Use this and your
answer to part (c) above to calculate the orbital motion of the particle (that is,
a relationship between r and 6 as the particle moves about its orbit). If you use
the fact that . '

Eo(ﬁxC) (:"~(A'x§)

your answer should not involve much algebra. (3 points)

1This vector is commonly called the Rungé-Lenz vector, but they were not the first to discover it. His-
torically it may be more accurate to call this the “Hermann-Bernoulli vector,” while it is also referred to as
the “Laplace-Runge-Lenz vector.” Others prefer to dodge the whole question of naming rights and simply
refer to it as “the axial vector.”?

2The above footnote has nothing to do with the solution of this problem.

5



Statistical Mechanics

4. A total of n moles of a spinless, mono-atomic, ideal gas is contained in a balloon of
radius r and temperature T'. The balloon is an ideal black body with emissivity of
unity, and it exerts a constant pressure P, on the gas, independent of the size of the
balloon. As the balloon radiates heat, it will cool, and shrink. You should assume
that otherwise the balloon is in vacuum (there is no mechanism of heat loss other than
radiation, and that there is no other force on the gas other than the constant balloon
pressure).

(a) Show that the rate of temperature change for the balloon due to radiation is given
by:
d' _ 8wor?T*
d¢  5nR
where o is the Stefan-Boltzmann constant and R is the ideal gas constant. You
should assume that the balloon does not absorb any heat from its surroundings.

(4 points)

(b) As the balloon shrinks, the elastic in the balloon compresses it and therefore does
work. Derive an expression for dW/dt, the rate at which the balloon does work
on the gas. Express your answer in terms of the variables V, n and P, as well as
any numerical or physical constants you need. (3 points)

(c) Given that the initial temperature of the gas is Ty, how long does it take for the
gas in the balloon to lose half of its internal energy? Assume that the gas in
the balloon has a uniform temperature, and ignore the specific heat of the elastic
materal of the balloon itself. (4 points)

Note that you do not need to solve part (a) to solve parts (b) or (c).



5. Consider a lattice of N non-interacting, magnetic moments of magnitude pu, that are
fixed in distinguishable locations. A magnetic field B is applied to the system such
that each magnetic moment has two possible energy levels, £uB. Denote the number
of moments in the higher energy state by the variable n.

(a) Find an expression for the entropy in terms of N and n in the micro-canonical
ensemble. (1 point)

(b) Find the value of n for which the entropy is a maximum and sketch a graph of
S(n). (2 points)

(c) Derive an expression for the energy of the system, U, in terms of N and n. In
the micro-canonical ensemble this is an algebraic relationship, and not a result of
ensemble averaging. (1 point)

(d) Derive an expression for the temperature and show that it can be negative. (3
points)

(e) If this system is put into thermal contact with a heat bath with positive temper-
ature which way does the heat flow? Justify your answer. (3 points)



6. Consider an ideal gas of bosons confined in a two-dimensional surface of linear size L.
An elementary criterion for the existence of Bose-Einstein condensation at a critical
temperature Ty is

Nr=) n(gpu=0T=T)=N (1)
eg#0
where n is the Bose-Einstein distribution function and N is the total number of parti-
cles. (Assume periodic boundary conditions.)

First consider a gas which obeys the dispersion relation e; = Avk, where v is a positive
constant.

(a) Write down the Bose-Einstein condensation criterion explicitly. (1 point)

(b) Find the density of states. (2 points)

(c) Perform the sum in part a) by going to the continuum and calculate T, in terms
of N, L,v. (3 points)

(d) Now consider a gas which obeys the dispersion relation ez = F’k?/2m, where
m is the particle mass. Repeat steps b) and c¢) and show that Bose-Einstein
condensation can only happen at zero temperature. (4 points)

You may find it helpful to refer the table of formulae at the front of the exam in
evaluating your sums.
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Classical Mechanics

1. A block of mass m; sits on a frictionless horizontal table and is attahed to a
hanging block with mass mg by an ideal massless rope draped over an ideal
massless, frictionless pulley. We wish to put an object on top of the block, and
will consider two cases.

[}

(a) Consider the case on the left, where we place a block of mass ms on top of
the first block, and release the system from rest. Determine the minimum
value of the coefficient of static friction, u, between blocks 1 and 2 that
will prevent block 2 to from slipping when block 1 accelerates to the right.

(3 points)

(b) Consider the case on the right, where we place a sphere of mass m, on
top of the first block. Assume that the sphere at all times rolls without
slipping.

i. Find the acceleraion of block 1 to the right. (5 points)
ii. Find the acceleration of the sphere to the right. (1 point)
iii. Find the rotational acceleration of the sphere. (1 point)

The moment of inertia of a sphere and mass m and radius R is (2/5)mR?.



2. Consider two identical blocks of mass m connected by an ideal massless spring
of spring constant k and equilibrium length £. (The equilibrium length is the
length of the spring when there are no net external forces on it, such as when
it is decoupled from the blocks) You should assume that k¢ > mg.

(a)

1

The system is oriented vertically and the top block (labeled block “17)
is depressed a distance yo and then released from rest. Find y(()min), the
minimum value of yo such that the lower block (block “2”) is barely lifted
off the ground by block 1. Be sure to draw a co-ordinate system and
indicate what direction is positive. (3 points)
Now assume that block 1 is compressed an initial distance yo = £/2 >
y$™m - Determine the trajectories y1(t) and ys(t) up until the time the
second block hits the ground. You do not have to determine this final
time. You will want to look at the trajectories over two different intervals:
i. Before block 2 leaves the ground. (2 points)
ii. After block 2 leaves the ground. (5 points)

Again, be sure to draw a co-ordinate system and indicate what direction
is positive.

Assume that all motion is in the vertical direction, and note that you do not
have to solve part (a) to solve part (b).



3. Assume that we have generalized co-ordinates q = (gi,¢2) and associated
momenta p = (p1,p2) that satisfy Hamilton’s equations of motion, so that
G = {q, H} and p; = {p;, H}, where the notation {z,y} gives the Poisson
bracket of z and y with respect to the variables g and p. We wish to make a
transformation to a new set of variables, q'(q, p) and p’(qg, p).

(a)

Show that if

{q,iap’j} = Oij
qli)ql' —_ O
%p" p’Ji =0
¥
then
{F,G} = {F, GY

for any quantities F and G where {z,y}’ is the Poisson bracket of z and y
with respect to ¢’ and p’. (4 points)

Consider the system described by the Hamiltonian:

1
H(q,p) = 5 (P} +73) + cos (201 + @)

We would like to move to a new set of co-ordinates:

¢ = 21+ q
qlz = q2

which decouples the position co-ordinates. Find the p’; and p’, that make
this transformation canonical, and express the new Hamiltonian in these
new co-ordinates. (4 points)

Looking at the new Hamiltonian, it should be clear that there are two
constants of the motion. One will be the Hamiltonian itself, because there
is no explicit time dependence. What is the second constant of the motion,
in terms of the original co-ordinates? (2 points)



Statistical Mechanics

4. Consider a thermally insulated vessel, divided into two parts by a partition. One
side contains n, moles of nitrogen gas that occupies a volume V; at temperature
T, and pressure P; and the other contains 1y moles of argon gas that occupies a
volume V4 at Ty and P,. Assume nitrogen to be an ideal gas with ¢, = (5/2)R
and argon to be an ideal gas with ¢, = (3/2)R. The goal of this problem is
to calculate the change in entropy of the system when the partition is removed
and each gas expands freely through the container.

Since entropy is a function of state, the change in entropy between an initial
and final state of a system is independent of the path taken to get from one
state to another. That means we can break this problem into separate segments
of a path connecting the initial and final states such that the entropy change
for each segment is more easily calculated.

(a) First let the two parts of the system equilibrate thermally at constant
volumes. Find the final temperature, Ty, and the entropy change of the
system. (3 points)

(b) Second let the pressure of the two parts of the system equilibrate at this
constant temperature (ie., letting the partition between the chambers
move). Find the entropy change of the system for this step. (3 points)

(c) Finally, remove the partition and let the molecules of the gas mix. Find
the entropy change for this step. (3 points)

(d) What is the total entropy change in this process? (1 point)
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5. Consider a set of N distinguishable atoms that has an energy given by:

N
E=Y eol+ho;

i=1

where o; € {~1,0,1}. The quantity o; is the value of an atomic spin, € is an
internal crystal field, and h is an externally applied magnetic field. We will
analyze this system in the canonical ensemble.
(a) What is the partition function for this system, Z(T', N)? (1 point)
(b) What is the internal energy, U(T, N)? (2 points)
(c) Calculate the magnetic susceptibility,
oM
X = oh
where M = (3 0;) is the magnetization. (4 points)

(d) Show that x(h) for large positive € has a peak as a function of increasing
Bh, and explain physically why this is so. (3 points)



6. A Dirac fermion is a particle which obeys Fermi statistics and has an energy
given by .
E(k) = hvg |k| = hug k

where v is a characteristic velocity. In this problem we will work in the grand
canonical ensemble and analyze Dirac fermions in a two dimensional system,
similar to what is found in graphene.

(a) Calculate the density of states, D(E) for spin-1/2 Dirac fermions in two
dimensions. (3 points)

(b) What is the Fermi energy, Ey, as a function of the fermion density, N/A,
where A is the area of the system? (3 points)

(c) Calculate the energy of the system as a function of T', A, and . (By this
we mean that the thermodynamic variable dependence is on T, A, and p.
Your answer will involve other mathematical and physical constants such
as h or vg.) Your answer should involve the Polylogarithm function, Li,(2),
defined on page 2. (4 points)
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Classical Mechanics.

1. A car of mass m travels on a flaf road at constant velocity v, and the coefficient of
friction between the car tires and the road is u. It comes to a circular curve of radius
R. If the car is moving very fast, it may either slide off the road, (if  is small) or even
flip up on two wheels (if p is large). In the figure below, the velocity of the car is into
the page, and the center of the curve is to the right.

) Towards curve
Xem center

—_—

y cm

When the car is at rest, the center of mass of the car is located at a point y., above
the road and a distance zm, from either wheel. Treat the wheels as having a negligible
width.

(a) Draw a free-body diagram for the car showing the forces that act on the car. (1
point).

(b) Write down Newton’s second law for the motion of the car tangential to the curve,
perpendicular to the curve (outward) and for rotation of the car about the point
marked “X”. (2 point).

(¢) If the coefficient of friction is small, the car will skid or slide off the road. At what
velocity will that occur for a given value of m? (3 points)

(d) Assume that the car never skids or slides sideways. At what velocity will the car
start to flip over? (3 points)

(e) Finally assume that the car does not skid, but exceeds the above speed and starts
to flip. If it continues at the same speed, will it continue to flip, or will it achieve
equilibrium at an angle 8o with the road? If the former, prove it, if the latter,
calculate the equilibrium angle. (1 point)



2. A stationary disk of radius R is aligned vertically so that its axis is parallel to the
ground. The disk is fixed and does not rotate. A string of length £ is attached to the
top of the disk, and ¢ > 7wR. A point mass m is attached to the end of the string and
can swing in a vertical plane (left to right in the figure below). As the mass m swings,
the point P where the string just contacts the disk will move. Assume that the string
is always taut. The angle between P and the vertical is 6; it will be the generalized
coordinate in this problem.

(a) Determine the z and y position of the point mass as a function of 4, R and ¢. Use
the center of the disk as the origin of your coordinate system. (Hint: Knowing
the value of 6 determines both the amount of string wrapped on the disk and the
angle the straight length of string makes with the vertical.) (1 point)

(b) Treating 6(t) as the generalized coordinate, determine the kinetic energy of the
point mass as a function of m, 0, 8, R, and £. (2 points)

(c) What is the Lagrangian for the system in terms of this generalized coordinate?
(2 points)

(d) What are the equations of motion? (1 point)

(e) Assume that the point mass makes small oscillations about some angle 0 (which

might not be zero). Determine y and the angular frequency of these oscillations.
(4 points). .
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3. Consider a double pendulum, consisting of a mass m suspended from a point with a
massless cord of length £, with a second mass m suspended from the first with another
massless cord of equal length ¢. At a given instant, the first mass makes an angle 6
with respect to the vertical, while the second mass makes an angle ¢ with respect to
the vertical. A uniform gravitational field, with gravitational acceleration g, acts in
the vertical direction.

(a) Starting from the description of kinetic and potential energy in Cartesian coor-
dinates, obtain the Lagrangian in terms of the angles  and ¢ and their time
‘ derivatives, § and ¢. (2 points)
(b) Now simplify the Lagrangian to the situation when both angles are small, § < 1,
¢ < 1, and obtain the form of two coupled harmonic oscillators. (1 point)

(c) For this system, obtain the mass matrix M and the spring-constant matrix K,
where the Lagragian is written:

(e om(3) e 2% (3)

I =

N —

(2 points)
(d) Show that the normal modes satisfy
(WM -K) -Q=0.

(1 point)
(e) Determine the characteristic frequencies (eigenfrequencies) w in terms of the quan-
tity w2 = g/l. (2 points)

(f) If we write the normal mode vector as

_ [ a4
Qw—<€/2>7

determine the ratio ¢»/¢, which characterize the normal modes. (2 points)
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: Stati'sticéd M'echan.iés .

4. A heat engine is made from N atoms of an ideal mono-atomic gas starting at an
initial temperature T, and volume Vi. Call this state “1. It is initially heated
isochorically (at constant volume) to a state “9” with a temperature Ty = 477. It then
undergoes an adiabatic expansion to state “3” where it has returned to its original
pressure. Finally it is then cooled isobarically (at constant pressure) until it returns

to its original condition.

(a) Draw the thermodynamic cycle in the PV plane. (1 point).

(b) Calculate the volume and temperature at states 2 and 3 in terms of V4, Ty and
N. (1 point).

(c) Calculate the work done by the gas in each step of the cycle. (3 points).

(d) Calculate the heat in (or out) of the gas during each step. (3 points)

(e) What is the efficiency of this engine? (2 points)



%




Lo 3 c
C) Ca‘\co late The UOorn olope

\
k/kj} {l‘ -2 X\/

L

= O b,

Wy ¢

“%‘}‘\E 0 m s ‘;\:) A\.\ j

M
&

ool

<

P ——_




5. Consider a system of N distinguishable particles with only 3 possible energy levels: 0,
¢ and 2¢. The system occupies a fixed volume V and is in thermal equilibrium with
a reservoir at temperature 7. Ignore interactions between particles and assume that
Boltzmann statistics applies.

(a) What is the partition function for a single particle in the system? (1 point).

(b) What is the average energy per particle? (1 points).

(c) What is probability that the 2¢ level is occupied in the high temperature limit,
ksT > €? Explain your answer on physical grounds. (1 point).

(d) What is the average energy per particle in the high temperature limit, kpT" >> €7
(1 point).

(e) At what approximate temperature is the ground state 1.1 times as likely to be
occupied as the 2¢ level? (1 point).

(f) Find the heat capacity of the system, c,, analyze the low-T' (when kpT < ¢€) and
high-T (kT > ¢€) limits, and sketch ¢, as a function of T". Explain your answer
on physical grounds. (5 points).
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6. Consider an ideal gas of bosons confined in a three-dimensional box of linear size L on
each side. The gas obeys a dispersion relation ¢; = ok, where £1s a positive constant

and k = |k| and where o

B2 (nai by +n )

and where the n,, n,, and n, are integers.

(a) Find the density of states. (2 points)

(b) Now assume that the bosons are photons with two possible polarizations. This
fixes y, the chemical potential, so that = 0. Why? (1pt).

(¢) Show that the average energy density in the box varies as T*. (3 points)

(d) Calculate the pressure on the walls of the box and show that it is proportional to
the average energy density. (4 points).
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Possibly Useful Information
Handy Integrals:

[ rema - 2
[

/Ooox e dy = %
/Oooa: e’ dy = 31\/57%
/°° iaz—bs® g _ \/ge—az/tlb

8

Geometric Series:

Z for |z| <1
Stirling’s approximation:
n n
n! =~ <—> 2mn
e
Riemann and related functions:
< 1
=
o zTI,
Li = —
p(z) Z P

Physical constants:

h o= 1.05457 x 10**m?%kgs™*
Melectron = 9.109 x 1O~31kg
kg = 1.38x 107 %m’kg s ?K™*



Classical Mechanics

1. A uniform stick of length £ and mass m is initially held upright at an angle
8(t = 0) = 0, to the horizontal with one end on the floor. The stick is released
and falls to the floor so that 6 changes in time. As it falls, it pivots around its
contact point P with the floor without sliding, due to the coefficient of static
friction p, between the stick and the floor. You should ignore the thickness of
the stick, and assume that p is constant.

-— Q

?
V(a) Draw the free-body diagram for this problem. (1 point)
(b) Calculate the moment of inertia of the stick with respect to the contact
point, P. (1 point) :
‘;/(c) Determine the tangential velocity of the end of the stick (point Q) as a
function of 0, assuming that the pivot point does not slide. (2 points)

(d) Show that if 0 < 0y < m/2, the frictional force at the pivot changes sign
(direction) as a function of 8, and calculate the angle at which it does so
as a function of m, ¢, g (the acceleration due to gravity) and/or 6o. (3
points)

() Show that in the limit 65 — m/2 there is an angle 0. at which the stick will
always slide, for any finite value of y, and calculate 6.. (3 points)
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2. Consider a pendulum that consists of a mass, m, suspended by a massless

spring of equilibrium length ¢ and spring constant k. The spring is located
on Earth, in a uniform gravitational acceleration, g, pointing downward (the
—# direction). The pendulum swings only in the x-z plane, and the point of
support of the pendulum accelerates upward with a constant acceleration ay.

+Z

+X

Vi

(a) Find the Lagrangian in terms of the generalized coordinates consisting of
the length of the spring, £(¢), and the angle 6(t) it makes with respect to
the vertical. (2 points)

v

(b) Find the equations of motion for the generalized co-ordinates. (2 points)
N/
(c

)
) Find the Hamiltonian for the system from the Lagrangian. (2 points)
v,
(d)
)

(e) Assume that £(t) and 6(t) undergo small, slow oscillations. What are the
periods of the swinging motion and the oscillation of the spring? (2 points)

Derive Hamilton’s equations of motion for the system. (2 points)



3. Consider a relativistic particle of rest mass mo moving in a given potential V,
described by the Hamiltonian

H = y/p?c® + mct + V(r).

\/(a) Write down Hamilton’s equations. (2 points)
~/(b) From these obtain an expression for the momentum in terms of the velocity.
(2 points)
\/(c) Using the result of (b) above, obtain an explicit expression for the rate of
change of the momentum in terms of the velocity v and the acceleration
. v. (2 points)
v (d) Derive the corresponding Lagrangian. Be sure to write the Lagrangian as
a function of velocity and position. (2 points)
\/(e) What is the energy expressed in terms of the velocity rather than the
momentum? (1 point)
?
V/(f) If the potential is rotationally invariant, what are the corresponding con-
stants of the motion? Is the Hamiltonian among these? Why or why not?
(1 point)

Note that you may find it convenient to introduce the quantity v = =.

-z



Statistical Mechanics

4. Tt can be shown that the Helmholtz free energy for a photon gas is given by:

1
F(T,V,N) = — ga\/ir4

where o is the Stefan-Boltzmann constant. Using this relation, answer the
following:

‘o

What are the equations of state (that is, P, S, and p as a function of T,
V and N)? (3 points)

Consider a Carnot cycle using a photon gas as its working fluid. The cycle
is driven by one hot and one cold temperature reservoir, with temperatures
T, and T, respectively. Draw the cycle in the P-V plane. Caution: This
is not an ideal gas! Think carefully about the steps in a Carnot cycle and
use your results from above to determine what the cycle will look like. (2
points) \

Solve for the heat exchanged in each leg of your Carnot cycle. Your answer
may depend upon T}, T, and any other variables you might choose in
defining your cycle. (3 points)

Using these values for the heat exchanged, calculate the efficiency of a
Carnot cycle that uses a photon gas as its working fluid. If you cannot
calculate it, devise a careful argument for its value. (2 points)



5. Consider a two-dimensional model of a solid at absolute temperature T' that
contains a small number N of electron donor atoms, represented by a square
in the figure below. These atoms replace a small fraction of the number of
ordinary atoms of the solid, and rapidly ionize. The donated electron always
sits on one of the four atoms immediately and diagonally adjacent to the donor
atom. While the positively charged donor ion is fixed in place, the electron is
free to move between any one of the four lattice sites surrounding the positive
ion. The lattice spacing is a. Neglect any interaction between impurities on
different sites, and assume that all donor atoms are ionized in this fashion.

In this problem a uniform electric field will be applied in the x-direction, polar-
izing the system.

(a) Calculate the mean electric polarization, i.e. mean electric dipole moment
per unit volume, in the presence of a uniform electrical field applied along
the x direction, so that F = Fyi. (2 points)

(b) Calculate the entropy per unit volume as a function of temperature. (3
points)

(c) What is the entropy per unit volume at very low temperature (kg7 <
eaF)? Explain why this must be the case based on the physics of the
problem. (If you cannot solve part (b) above, you can still determine the
correct answer based on principles of symmetry). (2.5 points)

(d) What is the entropy per unit volume at very high temperature (kg7 >>
eaF)? Explain why this must be the case based on the physics of the
problem. (If you cannot solve part (b) above, you can still determine the
correct answer based on principles of symmetry). (2.5 points)



6. Consider a set of spinless free bosonic gas atoms each of mass m moving in three
dimensions. The state of an atom is given by its momentum p, and a variable
o which can be either 0 or 1. The energy for an atom is given by

p2
E(ﬁ(f):%—'—O’A

where A > 0, and ¢ € {0, 1}.

(a) If A = 0, then we have a degeneracy of two for every energy eigenstate.
What is the transition temperature for Bose-Einstein condensation for the
system in this limit, and how does it compare to a similar gas without the
o degree of freedom? (4 points)

/ (b) Write a formal expression for the partition function in the grand canonical
ensemble when A > 0. Show that it factors into a product of a partition
function for the ground state atoms, and a partition for the excited state
atoms. (This expression will involve a product over states that you cannot
simplify.) (1 point)

‘/(c) Calculate N = (N) for this system. You should get an expression in terms
of T, z = e**3T (or u) and A. (2 points)

(d) Determine the critical density at which the transition occurs as a function
of T, m, and A, and expand it to lowest order in A/kgT. Is the critical
density increased or decreased as A is increased from zero? Why? (3

points)
L= 7% n(%)

(\) = M%@ %ﬁ, ( 25 }



