2. The isotropic harmonic oscillator.

(a)

(b)

(d)

Write the Lagrangian for a point mass m moving under the influ-
ence of an isotropic 3-dimensional harmonic oscillator potential

k A .
Ve, y,z) = 72—(:v2 + 9%+ 22).

There is no external gravitational field. (1 point)
Using the Lagrange equations of motion show that angular mo-
mentum is conserved. i.e.,

£1~L = —(L(r x mv) = 0.

dt dt

Because the Lagrangian is invariant under rotations about the
origin, you can choose coordinates so that motion is constrained to
the x-y plane, i.e., the angular momentum points in the z direction.
(3 points)

For 2-dimensional motion in the x-y plane choose cylindrical polar
coordinates and proceed to solve the Lagrange equations of mo-
tion. You can leave the solution for r(¢) as an integral of the form
t = [ f(r)dr. (Don’t forget to use conservation of energy, Fo.) (3
points)

Compute the minimum and maximum values or the radial coor-
dinate r as functions of the constants m, Eo, k, L*. (3 points)
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