3. Consider a double pendulum, consisting of a mass m suspended from a point with a
massless cord of length £, with a second mass m suspended from the first with another
massless cord of equal length ¢. At a given instant, the first mass makes an angle 6
with respect to the vertical, while the second mass makes an angle ¢ with respect to
the vertical. A uniform gravitational field, with gravitational acceleration g, acts in
the vertical direction.

(a) Starting from the description of kinetic and potential energy in Cartesian coor-
dinates, obtain the Lagrangian in terms of the angles  and ¢ and their time
‘ derivatives, § and ¢. (2 points)
(b) Now simplify the Lagrangian to the situation when both angles are small, § < 1,
¢ < 1, and obtain the form of two coupled harmonic oscillators. (1 point)

(c) For this system, obtain the mass matrix M and the spring-constant matrix K,
where the Lagragian is written:

(e om(3) e 2% (3)

I =
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(2 points)
(d) Show that the normal modes satisfy
(WM -K) -Q=0.

(1 point)
(e) Determine the characteristic frequencies (eigenfrequencies) w in terms of the quan-
tity w2 = g/l. (2 points)

(f) If we write the normal mode vector as

_ [ a4
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determine the ratio ¢»/¢, which characterize the normal modes. (2 points)
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