Classical Mechanics and
Statistical/Thermodynamics
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Classical Mechanics

1. A block of mass m; sits atop a triangular wedge of mass mo, which is
itself on a frictionless plane, as shown. The two are initially at rest,
and the block is a height A above the surface of the plane, a horizontal
distance L from the bottom edge of the wedge. The wedge has an
opening angle 6, as shown.

(a)

(d)

Assume that there is no friction between the block and the wedge.
The block slides down the wedge. What are the velocities (mea-
sured with respect to the fixed inertial reference frame denoted by
the z and y axes shown) of the block and wedge just as the block
reaches the lower edge of the wedge? (3 points).
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Now replace the block by a ball of radius R (and mass my). The
ball rolls down the wedge without slipping. What are the velocities
of the ball and wedge just as the ball reaches the lower edge of the
wedge? (3 points).

Return to the block problem, but now assume that the coeflicients
of static and kinetic friction between the block and the wedge are
@ (they have the same value). What is fimin, the minimum value
of u for which the system is stable? (1 point).

If 44 < pmin, calculate the minimum horizontal force that can be
applied to the wedge such that the block will not accelerate down
the wedge. (3 points).

Note: you can neglect the finite size of the block in your calculation, and
you are asked for the velocities before the block or ball make contact
with the frictionless plane.
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2. Consider a point particle of mass m constrained to move on a parabola
in the x-z plane, i.e.,
& 2
z = —x*

2

Assume the constraint force is frictionless and gravity acts vertically
(F, = —mg).

(a) Use Lagrangian mechanics to write a second order differential
equation for x(¢). (2 points)
(b) Find a first integral of this equation (any way you can) and eval-

uate the constant of integration using the maximum value z,,4,
reached by z. (4 points)

(c) Assume that the particle is pulled a short distance from the origin
and allowed to oscillate. Calculate the period in the limit of small
oscillations, € = amax << 1. (4 points)
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3. Angular momentum and the Rungé-Lenz vector: Given a point
particle of mass m, trajectory 7(t), and momentum p(¢), we can define
the angular momentum

(a) Prove that the Poisson bracket of H and L is zero, that is:
{H,L} =0

(3 points).
(b) Prove that the Poisson bracket of H and A is zero, that is:

{H,A}=0.

(3 points)

(c) What do your results in parts (a) and (b) imply about the behavior
of A and L? (1 point)

(d) Evaluate 7- 4 = rAcosd, using the explicit form for 4 above.
Use this to calculate the orbital motion of the particle (that is,
a relationship between r and 0 as the particle moves about its
orbit). (3 points)
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Statistical Mechanics

4. Heat Engines: A pulse jet operates under a Lenoir cycle. This con-
sists of an adiabat, an isobar, and an isochore, as shown.

ﬁA

isentropic expansion

pressure

) @)
=< constant volume heat addition

constant pressure heat rejection

volume

Assuming that the working fluid is an ideal 3D monoatomic gas of N
particles:

(a) Find the work done in one complete cycle. (3 points)

(b) Find the heat exchanged in each step in the cycle. (3 points)

(c¢) Find the efficiency of the engine. Express your answer in terms of
pressures and volutmes. (3 points)

(d) To produce work, should the engine cycle operate clockwise (A —
B — C' — A) or counterclockwise (A — C — B — A) ? (1 point)
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5. Consider a classical ideal gas in 3D that feels a linear gravitational
potential,
V(z) = mgz
where m is the mass of a single gas atom and 0 < z < oco. This is

not an interaction between gas atoms, it is simply their gravitational
potential energy near the surface of the Earth.

The gas is in a box of dimensions L, L,, and L,, so that:

0< 2z <L,
0< 2 <L,
0< y <1

(a) Calculate the partition function in the canonical ensemble. (3
points)

(b) Determine the internal energy of the gas. (3 points)

(c) Calculate the specific heat ¢,. (3 points)

(d) Explain the behavior of the specific heat when BmgL, >> 1 and
when fmglL, << 1. (The approximation for the gravitational
potential may or may not be valid for large L,. Don’t worry

about that.) (1 point)
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6. Boson Magnetism Consider a gas of non-interacting spin-1 bosons
in 3D, each subject to the Hamiltonian

2
H(p,s,) = ?%ﬁ — posB

where s takes on one of three possible states, s € (—1,0,+1), and
k= 7/h. In this Hamiltonian B is the z-component of the magnetic
field, m is the mass of a particle, and po is the Bohr magneton. (We
will ignore the orbital effect (or Lorentz force) where the momentum p

would have been replaced, § — p+ ef-l‘/ c).

(a) In a grand canonical ensemble of chemical potential u (which is
not to be confused with the Bohr magneton, po, above) and tem-

perature T, write down ns(E), the average occupation number of
the state with wave vector k and spin s. (1 point).

(b) Show that the total number of particles in a given spin state s is

given by v
N = Fws’ﬂ g3/2(zeﬁ“05B)
where z is the fugacity, z = e#, X is the thermal de Broglie
wavelength,
5 = h

v 2rmkgT

and g,(2) is defined on the formula section on page 2 above. (4
points)
(¢) The magnetization for fixed p and T is given by

M(T, 1) = po(Nex) — Ni-y)
Show that the zero field susceptibility, x, is given by:

oMl _ 2 spV

X=9B|,, kT N g1/2(2).

(5 points).



