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Astro Qualifier Topic List
*This topic list covers the Spring 2012 to Spring 2015 Qualifiers

e Astrophysics Basics
Angles/Solid Angles
Flux
Luminosity, Eddington Luminosity
Magnitudes
Power Law
Standard Candles
»  Cepheid Variable Stars
»  Type la SNe
¢ Binary Systems
o Habitable Zones
.o~ Masses of bodies in system
o Orbits/Semi-major axis calculations (from parallax)
o Radial Velocity Curves
o Separation Distance
o
o

e} o®\®\o\“®\

Surface gravity calculations
Transits (both star and planet)
»  Transit depth
= Transit duration
»  Luminosity calculations during transit
o Cosmology
o Composition
= Effects of relative abundances
= Equations of state for each component
o Constants and their meanings
o Cosmological redshift and how to determine age from it
o Distances
=  Angular diameter
» Co-moving line of sight
» Co-moving transverse
» Luminosity
o Friedman Equation
o Inflation
=  Equation of state
= Impact on energy/momentum
o Scale factor (including derivation)
o Surface brightness calculations
o TypelaSNe
= Calculations
=  Uncertainties
e Galaxies
o Age-metallicity relation
o Components (include evidence)
= Dark matter
= Bulge
= Halo
»  Cold/hot ISM



=  Central black hole
= Population I/II stars
o G-dwarf problem
o Isophotal radius
o Luminosity functions
»  Schechter luminosity function
o Mass-light ratio
o Mergers
.~ Rotational velocity curves
o Tully-Fisher Relation
o Thin v thick disk
Interstellar gas clouds
o Stromgren Sphere
o Wind speed of expanding gas clouds
Lorentz Force
Kepler’s Laws & Mechanics
Neutron Stars
o GR effects
o Magnetic field strength
Nuclear Fusion
¢~ PP Chain (including rxn’s and tunneling)
CNO cycle (including rxn’s)
Impact of fusion on elemental abundances outside of star
S-process and r-process
He burning
Heavy element (C, O, Ne, Si) burning
Planetary systems
o Derive temperature
o Derive period

8 R &0 B

Pulsars
o Types
o Light Cylinder
o Rotational velocity/Energy Loss
o Magnetic Fields
o PP Diagram
o Period-distance relation

o Period variability
Quasars
o Damped Lyman Alpha systems
o Calculations using cosmology
Stellar Evolution
o Timescales
& Evolutionary Tracks (including pre-MS)
@  Formation
» Initial Mass Function
o Virial Theorem & Gravitational Energy
o Lifetime estimates
Stellar Structure
& 4 equations
o Polytropes



o Hydro-static equilibrium calculations
o Equations of State
Radiative Transport
o Plane-parallel approximation
= Derive zeroth and first moments
Grey Atmosphere approximation
Optically thin v optically thick
Rosseland Mean Opacity
Source Functions, etc.
o Semi-infinite gas clouds
Synchrotron Radiation
Telescope Optics
o Focal Length
o Diffraction Limit
o Quantum efficiency
o CCD’s
Virial Theorem
o Derive Jeans mass
o Derive central temp of star
21 cm H-I Line
o Temperature of Interstellar Medium
o Optical Density
o Radiative Transport

0 0 O O



Astronomy Qualifier - August 2011

Lots of necessary (and some unnecessary) “constants” and possibly useful integrals at end.

\\lb ﬁ\‘\g

Problem 1:

The inflationay theory of the very early Universe solves the horizon problem
of standard cosmology.

a) [ 2 pts] What is the horizon problem?

b) [ 2 pts] Show that inflation solves the horizon problem if a(t) oc {* during
inflation, with o > 1.

¢) [4 pts] Derive the requirement from inflation on the equation of state of the
matter-energy in the universe.

d) [2 pts] Does any matter-energy component that has been studied in cos-
mology satisfy this requirement?
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Problem 2:

a) [ 5 pts] Assume that a model for the dark matter halo of the Galaxy is:

(r) = gt

A= @y

where p is density, r is distance from the galactic center, and a = 2.8 kpc.
Show that the amount of dark matter interior to a radius r is given by the
expression:

M, = 47 Cy {r —a tan™* <T-)]

a

b) [ 2 pts] If 5.5 x 10' Mg of dark matter is located within 100 kpc of the
Galactic center, determine Cy in units of Mg /kpe. Repeat your calculation if
1.3 x 10'2 Mg, is located within 230 kpc of the Galactic center.

¢) [ 3 pts] Estimate the amount of dark matter (in solar masses) within a
radius of 50 kpc of the Galactic center. Compare your answer to the mass of
the stellar halo (choose a reasonable value for the latter).
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Problem 3: W\?)O\?;) - 7%«]7

Consider an eclipsing spectroscopic binary with the following properties:

Orbital period is 6.31 yr.

Maximum radial velocities of Star A and Star B are 5.4 kms™! and 22.4
km s~ 1.

Time period between first contact and minimum light is 0.58 d, and the
length of the primary minimum is 0.64 d.

The apparent bolometric magnitudes of the maximum, primary mini-
mum, and secondary minimum are 5.40 magnitudes, 9.20 magnitudes,
and 5.44 magnitudes, respectively.

Assuming circular orbits and that the plane of the system lies in our line of
sight, find the following:

a)
b)
c)
d)

)

e

[ 2 pts] Ratio of the stellar masses.
[ 2 pts] Sum of the masses.

[ 2 pts] Individual masses.

[ 2 pts] Individual radii.

[ 2 pts] Ratio of the effective temperatures of the two stars.
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Problem 4:

a) [ 4 pts] Compare the nucleosynthesis evolution of low-mass (stars like the
sun) and high-mass (20 solar mass) stars. In particular, describe all of the
hydrostatic and and/or explosive phases of element formation for each type of
star. List the elements that are fused (or burned), the order that they happen
during stellar evolution and the most likely products of those reactions.

b) [3 pts] What is the heaviest element that can be fused in low-mass and
high-mass stars and why? What about iron fusion? When does it occur, or
if not, why not? What about the heaviest elements such as precious metals?
How are they formed? Describe the processes?

¢) [ 3 pts] How do we know that nucleosynthesis occurs in stars? Give specific
examples of observations that indicate element formation must occur in certain
stars. What stage of evolution are these stars in, and how are the elements
that we observe formed inside the star?
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Problem 5:

A telescopic survey to find nearby “space rocks” can find moving objects to
a magnitude of 18.5. The relationship between magnitude and flux for the
“visible” passband used is:

mag = —2.5log(f/ fo)

where f is the flux from the target and fy is the flux from a mag = 0 object
(assume fy = 1.0E—8 W m™2).

An approximately spherical space rock, 50 meters in diameter, with an albedo
of 0.2, comes near the Earth. The rock shines in the visible only by reflected
sunlight.

a) [ 1 pts] Calculate the flux of sunlight in the visible at a distance of 1 AU from
the Sun. Assume the “visible” pass band encompasses 1/3 of the bolometric
power output of the Sun.

b) | 2 pts] From the parameters given calculate the visible power of the rock
(power of reflected sunlight) when approximately 1 AU from the Sun.

¢) [4 pts] What is the maximum distance from Earth that the survey could
detect the rock? (The rock will not emit isotropically, of course, but only from
its illuminated side. Just assume it reflects uniformly from half its surface (the
day” side)). Don’t worry about the changing solar flux with distance- just

assume the rock is near 1 AU from Sun.

d) [ 3 pt] Assume the rock has a density of a typical rocky asteroid. Assume
it hits the Earth with a speed equal to the escape speed of the Earth. How
many megatons of energy would be released by the impact? (1 MT = 4.2E15
Joules).
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Problem 6:

The equation of radiative transfer in spherical coordinates is:

%_}_1—;&%)[,,
K or r  Ou

= ""XVIV + My

a) [ 3pts] Show that the moment equations can be written:

1 0

— 2 — _
St H) = (= 5.)

0K, N (J, —3K,) _
or, (x.7) o

H,

b) [ 2pts] Introduce the Eddington factor f, = K, /J, and rewrite the moment
equations in terms of it.

c) [ 2pts] Explain the problem with deriving a single second order equation for
J, as is done in the plane-parallel case.

1 .1 4 td- 1

d) [ 3pts] Show that in fact with the spherici
r
in(r*g,) = [ [(3f, = D/ (f)ldr' + In(r2)
Jre
where 7, is the radius of the opaque core, the two moment equations can be
combined to give:
32

0X?

14

(r2quVJl/) = qu—17a2(t]u - Su)

where dX, = g, dT,.
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CONSTANTS

0 =567x10% ergem™ s K™% ¢=3.00x 10" em s7'; Ty = 5,800K
G=667x10%g  em®s™? k=138x10"" erg K™
my=167x10"% g m,=911x10"2%g My=1.99x10% g
Moo = 5.97 x 107 g; Mg = 4.0 x 10" Mg,
h=663x10"% ergs; a=7.56x10"" erg cm™ K™*

Ro = 6.96 x 10° cm;  Reyren = 6.37 x 10° cm
1 AU = 1.496 x 10*® cm
1 parsec = 3.09 x 10 cm; 14 =10"° cm
My(©) =4.8; My(®) =47, Lo =39 x10% ergss™
1 year = 3.16 X 107 s



ASTRONOMY QUALIFYING EXAM
January 2012

Possibly Useful Quantities

Lo = 3.9 x 10% erg s™!

Mg =2 x 10% g

Mpgro = 4.74

Ro =7 x 109 cm

1 AU = 1.5 x10% em

1 pc = 3.26 Ly. = 3.1 x10*® cm
a =756 x1071 erg em™ K4
¢ =3 x10" cm 57!
o=ac/d=57x10"% erg em ™ K™ 57!
k = 1.38 x10710 erg K*

e = 4.8 x10719 esu

1 fermi = 107" cm

Nj = 6.02 x 10% moles g™

G = 6.67 x107% g”! cm?® 72
me=91x10%g

h = 6.63 x107?" erg s

1 amu = 1.66053886 x107** g
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PROBLEM 1

A star of magnitude 0 delivers a flux density equal to 4.17 x 107 ergs™ em™2A~" in the K
band (A = 2.2um).

a. Derive the flux density in units of Wm™Hz™" (2 points).
b. What is the count rate in terms of photonss™ em™2A~1? (2 points)

¢. What will be the diameter of a telescope whose diffraction limit at this wavelength is
0.05 arcsec? (2 points)

d. The telescope in part ¢ has a focal ratio of 2. What would the size of a pixel in the
detector have to be to critically sample the diffraction limit (NB: critically sampled
means that the airy disk FWIHM subtends two pixels)? (2 points)

e. The sky background at this wavelength is about 13.7 mag arcsec™2. Assuming that the
detector and telescope present a quantum efficiency of 50%, what is the background
rate per pixel for the detector imagined in part d7 Assume that you are observing
through a filter that has a width of 0.3 pm. (2 points)
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PROBLEM 2

When a 5Mg star leaves the main sequence it enters the largely horizontal sub-giant branch.
Models indicate that the star spends about 350,000 years on this section of the HR diagram
before beginning its ascent on the red giant branch. Compute the expected Kelvin-Helmholtz
time scale for this phase of stellar evolution and explain any differences by doing the following:

a. (4) Show that the gravitational energy ultimately radiated away is:

_ 3GM?
T
where M and R are the the stellar mass and radius, respectively. Assume the virial theorem
and that the density of the star at any distance from its center is equal to the star’s average
density, M/$7R3.

b. (3) If L = 10°L, and Tep = 10%° K, estimate the time in years that this luminosity could
be sustained if it is based solely on gravitational energy.

¢. (3) Compare your answer in b. with the model-predicted time and explain why they are
different. Make sure you explain what current theory tells us is going on inside the star.
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PROBL 3

This problem concerns the important 21-cm line in astrophysics and its production mecha-
nismi.

a. (1) Briefly discuss the physics of the 21 c¢m line. What causes it? What’s happening
at the atomic level? Mention what kind of interstellar environment (density, temperature,
state of hydrogen) is associated with this line.

b. (2) Estimate a minimum temperature that is necessary to excite this line and compare
with a typical temperature of the interstellar environment which you identified in a. Discuss.

c¢. (3) Assuming a 2-level configuration, ie., a ground state and one excited state, write
down a rate equation which takes collisional excitation, collisional deexcitation, and sponta-
neous deexcitation into account. Use qup and Qaown tO represent excitation and deexcitation
collisional rate coefficients, respectively, A to represent the spontaneous downward rate, and
N, and N to represent volume densities of ground and excited states.The sum of all the
rates should equal zero.

d. (2) Based on yowr equation in c., show that the volume emissivity of 21 cm radiation, o,
is given by €giem = (Ng)2qupE2icm, where Eajen 18 the encrgy associated with the transition.
Assume that qgown << A.

e. (2) Supposc an interstellar cloud produces 21-cm radiation with an optical depth at its
center of 7 = 0.5. The line’s full width at half-maximum of the line Av = 10 km/s. Find

the thickness of the cloud in parsecs if 7 = 5.2 X 10”23%‘&, where N is column density in

em? and Av is in km/s. Assume an order-of-magnitude temperature and density which is
characteristic of the system that typically emits 21-cm radiation.
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PROBLEM 4
(1) Define the Eddington luminosity. (2pts)

(2) Derive the Eddington luminosity by balancing the radiation force and gravity for an
electron. (3pts) g%?

(3) What is the Eddington luminosity for a 108My AGN? (3pts)

(4) An AGN is observed to emit at a super-Eddington rate. What are the possible explana-
tions? (2pts)
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PROBLEM 5

The observed universe can be described by the cosmological parameters that include Ho, {2,
Qy, , and Qx.

(1) Define what Hg, Qm, €, (4, and Qx are. (1 pt)
(2) Write down the expansion rate of the universe as a function of redshift. (3 pts)
(3) Derive an expression for the age of the universe as a function of redshift z (2pts)

(4) Galaxies have been observed at z ~ 8. Estimate the age of the universe at z = 8. (4 pts)



PROBLEM 6

Consider a rigid satellite of mass m, radius r, and density py, orbiting at a distance d from
its massive primary planet of mass M, radius R, and density pm (see the figure below).

a. (2 pts) Show that the angular speed of the satellite about the primary is w = 1/%1%‘—

b. (3 pts) Find the differences in the gravitational acceleration between the center of the
satellite (point 1) and the outer edge (point 2) due to the primary. Also find the differences
in the centripetal acceleration between these two points. Show that the combination of the

two effects is
N 3GMr

43
c. (3 pts) The satellite will be tidally disrupted if the acceleration found in (b) is larger
than the satellite’s self gravitational acceleration. Show that the disruption occurs at
d = r(§M)<1/3> — R(%EM)O/Z%)
m Pm
d. (2 pts) Assuming that the Barth and the Moon have the same density, at what

distance would the Moon be disrupted? What about a moon around an Earth-size 1Mg
(3 x 10%Meapin) white dwarf star?
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ASTRONOMY QUALIFYING EXAM
August 2012

Possibly Useful Quantities

Lo = 3.9 x 10% erg s

My =2 x 10% g

NIbol(:) =4.74

Rg =7 x 10 em

1 AU = 1.5 x10'® cm

1 pe =3.26 Ly. = 3.1 x10*® ¢m
a = 7.56 x1071® erg cm™® K4
¢ =3 %10 cm 57!

o =ac/4=57x10"%erg em ™ K™* 57"
k = 1.38 x107% erg K™!

e = 4.8 x1071% esu

1 fermi = 107 em

N, = 6.02 x 10%® moles g™

G = 6.67 x1078 g~! cm3 572
me=91x10"28¢g

h = 6.63 x107%" erg s

1 amu = 1.66053886 x107* g
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PROBLEM 1

Suppose a main sequence star at a distance of d = 8 pc from the Earth has been observed to
have a maximum radial velocity of 0.1 m/s, and the radial velocity varies periodically with a
period P =1.5 years. From this we conclude that the star must have an unseen companion,
a planet.

Assume that the star has mass of 0.8 solar masses, and T=5000 K. For simplicity, assume
circular orbits and an inclination angle of 90°.

a. Calculate the average separation between the star and the planet. (4 points)
b. Calculate the mass of the planet. (4 points 3 ? 3
p (4 points)  T—_ m 3 Loy

v R
__ o T gl
¢. Can life exist on this planet? Explain. (2 points) (mb1- mP)
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PROBLEM 2

The Crab pulsar has a period of P = 0.0333 seconds, and a slow-down rate of P = 4.21x107%3,
The Crab nebula emits a total luminosity of 5 x 1031 W. A neutron star can be assumed to
have a mass equal to 1.4 My and a radius of 10km.

a. What is the size of the light cylinder for the crab pulsar? (2 points)

b. Show that the rate of rotational energy lost approximately equals the luminosity of the
nebula. (3 points)

¢. The energy per second emitted by a rotating magnetic dipole is

dE 327°B2RO sin® 0
dt 3ppc3P4

Assuming that the rotational kinetic energy lost by the star is carried away by magnetic
dipole radiation, derive an equation for the magnetic field at the pole of the neutron
star. Use the parameters for the Crab pulsar to obtain a value of the magnetic field in
Teslas. (2 points)

¢. Discuss and explain the properties of various classes of pulsars. Sketch the PP diagram,
show how it is populated by different classes of pulsars, and explain how we use this
diagram to infer the magnetic field and age of these objects. (3 points)
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PROBLEM 3

In this problem you are asked to discuss and compare two types of H fusion which occur in
stars along with the chemical evolution of nitrogen.

a. (1 point) Write down the three reaction steps in the PPI reaction. Show all isotopes and
bi-products involved.

b. (1 point) Write down the six reactions in the CN cycle. Show all isotopes and bi-products
involved. Identify the two relatively fast reactions and the slowest reaction of the six. Why
is carbon referred to as a catalyst?

c. (2 points) Make a qualitative comparison of PPI and the CN cycle in terms of the threshold
temperature and temperature sensitivity of the energy generation coefficient ¢, i.e., de/dT.
Discuss the relative amount that each cycle contributes to the total energy generation in the
Sun’s core.

d. (3 points) Explain the relevance of the CN cycle to the evolution of the total nitrogen
abundance in a galaxy. Explain what stellar types (mass ranges) are thought to produce
significant amounts of N,

e. (3 points) The nearby figure shows the universal behavior of the N/O abundance ratio
as a function of metallicity, as measured by O/H. Note the flat behavior at low metallicities
and the upward turn starting at around solar metallicity of about 8.7. Explain this change
in slope.
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PROBLEM 4
a. (3 points) The hot gaseous halo of galaxy clusters is pressure supported, and thus it fol-

lows the hydrostatic equilibrium equation. Write down the hydrostatic equilibrium equation
and the ideal gas law.

b. (4 points) First derive the following equation
&Pk [(_8p AT
a __x (yor 90 1
dr /LmH( 8r+p8r>’ <)

assuming that the mean molecular weight is a constant for the gas. Then derive the expres-
sion for the total gravitational mass

_ kTr (dlnp . olnT
Alnr  Olnr )’

(2)

T ,umHG

c¢. (3 points) Using a so-called 8 model for the gas density and assuming that the gas is
isothermal, the expression for M can be written as

Mﬂwm(l;) .

- umHG r2 + I’g

For a cluster with a temperature of T = 5 keV, a core radius r=400 kpc, mean molecular
weight g = 0.61, and § = 0.7, find the total mass of the cluster within 2 Mpec.
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PROBLEM 5

Inflationary paradigm is an integral part of modern cosmology.

a. Why do we need inflation in the extremely early universe? (2 pts)

b. What condition on the equation of state must be satisfied for inflation to occur? Explain.
(2 pts)

c. Use the conscrvation of energy and momentum to derive the condition in (b). (6 pts)
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PROBLEM 6

a. (2 pts) Write down the equation of radiative transfer for a plane-parallel atmosphere and
define all the terms.

b. (3 pts) Assuming that there is no external irradiation at the surface, show that
Iy = S)\(l — e“T'\)

c. (5 pts) What is I, in terms of Sy for the optically thin and optically thick cases? Do you

expect to see emission or absorption lines at the wavelengths of large opacity, 17
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ASTRONOMY QUALIFYING EXAM
January 2013

Possibly Useful Quantities

Lo = 3.9 % 10% erg 571

My =2 x10% g

Mygio = 4.74

Rg = 7 % 10%° cmm

1 AU = 1.5 x10'% cm

1 pe = 3.26 Ly. = 3.1 x10% cm
a=7.56 x107% erg cm™2 K™
¢c=3 x10"* cm s}

o =ac/d=>57x10"% erg.em 2 K™*s7*
k = 1.38 x1076 grg K!

e = 4.8 x10710 esu

1 fermi = 10713 em

N = 6.02 x 10% moles g™*

G = 6.67 x1073 g cm?® s72
m, = 9.1x 1074 g

h = 6.63 x107% erg s

1 amu = 1.66053886 x107% g
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a. (7 points) Assume that the gas component of a galaxy, with a mass fraction f,, is virialized
and follow the overall density profile of the galaxy, a singular isothermal sphere mass profile,

o) = s, ¢y

where o is the velocity dispersion of the galaxy. The galaxy has a central AGN, which is
radiating at the Eddington luminosity,

LEdd == 47chmpMBH /O'T. (2)

A fraction, f,, of the energy radiated by the central AGN is deposited to the gas in the form
of kinetic energy. This kinetic “feedback” energy from the AGN can drive the gas in the
host galaxy to flow outward. Assume that the final gas outflow is in a spherical shell with a
constant velocity, v, and half of the kinetic feedback energy is converted to the gravitational
potential of the gas and the other half to the kinetic energy of the gas during the outflowing
process. Use the conservation or transfer of energy to show that the final gas wind speed is

Gleggdfw .
V3 == 20—2 . (3)

b. (3 points) If the wind speed is large enough to escape the potential well of the galaxy
(v = o), the central AGN will blow out the majority of gas in the galaxy and terminate the
formation of stars. Show that this gives us the Mpg—o relation,

1 ot 1 5 \
27 GZcm, fwa ’ (4)

Mgh
where (3 is the gravitational constant, o is the Thomson cross section, ¢ is the speed of
light, and m,, is the mass of a proton.
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Womey
PROBLEM 2

The Universe is dominated by dark energy today, but for a rough estimate of the age of
the Universe at 2 < z < 100, we can assume a matter dominated universe.

The Friedman Equation is

R k= 22 e, (5)
where
o= (6)

(1) Derive the formula for the age of a matter-dominated universe at redshift z, assuming
that we know to (the age of the Universe today). (5 pts)

(2) What is the current measurement of to? Estimate the age of the Universe at z = 10
using this information. (2 pts)

(3) How does dark energy change the age of the Universe today, compared to a flat universe
with matter only? (3 pts)

3
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PROBLEM 3

An electron in an electromagnetic field will experience a Lorentz force. Write down
the equation for the Lorentz force. (2 points).

Comnsider an electron in a uniform magnetic field with a velcocity v. What is the fre-
quency of light emitted by this electron if the velocity vector is oriented perpendicular
to the magnetic field lines? (2 points)

The figure below shows the X-ray spectrum of an isolated neutron star. Direct your
attention to the lower panel, which shows the difference between the spectrum and
a blackbody continuum model. Three (possibly 4) absorption lines are seen. Please
estimate the frequencies (in Hz) of these absorption lines. Which one is the fundamental
frequency and which are harmonics? (2 points)

Estimate the magnetic field strength, in gauss, of the neutron star, ignoring general
relativistic effects. (2 points)

Neutron stars are very compact, and general relativity should not be ignored. GR
will affect the frequency of the absorption feature. Will the real feature have a higher
frequency or lower frequency than estimated in part (d)? Explain. (2 points)

Normislizad counts 5 key-t 8

0.5 1.0 2.0 3.0
Energy (keV)

4
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Froney
PROBLEM 4

Briefly define and discuss the relevance of the following terms to modern astronomy. 1
point per question

1. Cepheid variable star

B

Initial mass function

tunneling in the context of the PPI chain reaction

-

age-roetallicity relation

':‘.J'!

damped Lyo system (DLA)
$-process
G dwarf problem

Tully-Fisher relation

© o =N o

Galactic thin disk

10. isophotal radius

5
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PROBLEM 5

The following radial velocity phase curve is observed for a companion orbiting a star. As-
sume e=0 and P=79 days:

a. (7 pts) Derive a general expression for the companion mass.

b. (1 pt) What is the minimum mass of the companion, assuming the host star is a So-
lar analog?

c. (1 pt) What is the semi-major axis, a, of the companion in AU? Assume sini = 1 and the
host star is a Solar analog.

d. (1 pt) The companion is observed to transit the primary star, producing a 2% drop

in flux. Assuming the primary is a Solar analog, what is the radius of the companion in
RSun?

6
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TEdde
PROBLEM 6

(4 pts) Show that the formal solution of the plane-parallel radiative transfer equation
can be written:

iv('rl) N) == lV(T21 p‘)e“(m“ﬁ)/“ + %L /Tz Su(t)e—-(t_n)/y d”t (7)
0

where S, (t) is the source function, 2 are optical depth points in the atmosphere, and
& is the cosine of the angle of the ray.

(2 pts) Apply Eqn. 7 to an arbitrary point in the atmosphere of a semi-infinite slab to
find: 00
L(mp) = / S, (t)e - /ede/y for0<p<1 (8)

(T, ) = /Or S, (t)e /WM gt /(+-p) forl < p <0 (9)

(2pts) Integrate Eqns 8 and 9 over angle to find
PR * *° ~w(t—1) i 0 —w(T—1)
L) =172 [ / dt S, (t) /1 dw e~ fuy /0 dt S, (1) A dwe /w] (10)

These integrals are of standard form (the first exponential integral):

(1 pt) Show that in terms of Eq, J may be written:
m P
W) =1/2 [ deS,()Eu(t— )

(1 pt) Explain the nature of this final operator.
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ASTRONOMY QUALIFYING EXAM
August 2013

Possibly Useful Quantities

Lo = 3.9 x 10*® erg 51

Mg =2x10%g

Myt = 4.74

R.@ =T X 1010 cnl

1 AU = 1.5 x10'® em

1 pe = 3.26 Ly. = 3.1 x10*® cm
a = 7.56 x1071 erg em™ K™
¢ =3 x10'% cm s™*
o=ac/4=>57x10"% ergem 2K 45!
k = 1.38 x107% erg K!

e = 4.8 x10710 esu

1 fermi = 1073 em

Ny = 6.02 x 10%* moles g*

G = 6.67 x10°8 g1 cm? s72
me=91x10"%g

h = 6.63 x107%" erg s

1 amu = 1.66053886 x10% g
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PROBLEM 1

Briefly discuss the observational evidence for the following components of the Milky Way
Galaxy. 1 point per question

1. dark matter

2. thin disk and thick disk

3. bulge

4. halo

5. cold ISM

6. hot ISM

7. magnetic field and cosmic rays

8. central black hole

9. population I and population II stars

10. accretion of dwarf galaxies
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Wana,
PROBLEM 2

Dark energy was discovered using the observations of Type Ia supernovae (3Ne Ia).

(1) The measurement of X (using SN Ia observations) led to the discovery of the existence
of dark energy. What is X? (2 pts)

(2) Express X in terms of the cosmological parameters that describe our Universe. Explain
in as much detail as you can. (2 pts)

(3) If the peak brightness of a very large sample of SNe Ia has an observational uncertainty
of 0.05 mag, and an intrinsic uncertainty of 0.12 mag, what is the resultant uncertainty in

X7 (3 pts)

(4) What are the systematic uncertainties of SNe Ia as a dark energy probe? How can these
be mitigated? Explain in as much detail as you can. (3 pts)

3
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PROBLEM 3

A new pulsar is discovered. It is observed to have a period of 1.3 seconds. It is observed
for several years, and its motion on the sky is shown in the plot below, where the axes are
orthogonal.

a. What is the distance to the pulsar in parsecs? (3 points).
b. What is the minimum velocity of the pulsar in km/s? (3 points).

¢. What is maximum amplitude of the period variability observed during the monitoring
time period in seconds? (3 points).

d. What is the size of light cylinder in km? (1 point)

0.06

%

theta2 {arc seconds)

0.04

0.02

¥ T T I T H T I T T T I H T H I H T T ‘ T T T

i i 1 " i i ] ' ] i 1 I L L L I L L i l i i 1

0.00 L L ' L i L L L 1 i X . N L L :
-0.0010 -0.0005 0.0000 0.0005 0.0010
thetat (arc seconds)
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PROBLEM 4

a) [3 pts.] Describe the Pre Main Sequence (PMS) contraction of a 1 Mg gas cloud up to the
7ZAMS stage. Draw the path in the HR diagram. What part of the HR diagram is this? Why
is the path here and not in some other part of the HR diagram? Relate what is happening
inside of the PMS object to its observable parameters in the HR diagram.

b) [3 pts.] Now describe the evolution of a 5 My star from the time it arrives on the main
sequence until it reaches the top of the second giant branch {(or AGB). In particular, give
the position in the HR diagram at various stages. Describe in detail the physics of the red
giant phase (first ascent of the giant branch). What is the final fate of this star? How do we
know?

¢) [2 pts.] How does the evolution of a 5 M, star differ from that of a 1 Mg and 25 M, star?
Compare the evolution of a 1 Mg, star with solar metallicity to that of a 1 M star with low
metallicity (i.e. a Pop II star). What are the final fates of stars of 1 and 25 Mg?

the convection and radiation zones) of these three stars while on the main sequence. Do not
forget to indicate the energy sources in these stars.

5
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PROBLEM 5

a. (2pts) Draw a typical velocity rotation curve for a spiral galaxy. What does the observed
rotation curve tell us about the matter distribution in spiral galaxies?

{

b. (3pts) Describe the Tully-Fisher relationship for spiral galaxies and why it is important.

c. (5pts) Assume a spiral galaxy has a mass to light ratio -y. Use the virial theorem to derive
an expression for the galaxy’s dynamical mass in terms of 7, L, v, and(,"- S

6
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PROBLEM 6

1. {4pts) Define and explain the difference between:

(a) Effective Temperature
(b) Excitation Temperature

(¢) Tonization Temperature
To get full credit you need to use both words and equations.

2. (1pt) In what physical situation are all the temperatures defined above exactly the

same?

3. (1pt) When in the history of the Universe are the almost exactly the same?

The Boltzmann formula is: _ _
_n_l e gle"‘(Xi‘"Xj)/kT
o &

4. (4pts) Figure 1 shows an energy level diagram for sodium. At what temperature is the
total population of the levels at 3.6eV equal to the population of the level at 3.2eV?

NETR ' - ) ,
Fig. 17 An approxitnate teom diggroan for
. the electronie configurstion of the clement
3.2 wotlium,  The excitation enevgy above the
: energy of the ground state ig labeled by the
quantum numbers of the configuration,
~ Tha lotter designutes the orbital angulor
R | : | momentum of the electrons (u this crs of
P m——— a single-valeure elestron), and the subacript
e dasignates the tutul sngulse momenture of

' the atetes, . .

S:/x

Figure 1:



ASTRONOMY QUALIFYING EXAM
August 2014

Possibly Useful Quantities

Lo = 3.9 x 10% erg s
Mg =2 x 10% g
My = 4.74
Ro = 7 x 10 cm
1 AU = 1.5 x10"% cm
1 pe =326 Ly. = 3.1 x10¥ cm
a = T7.56 x107'% erg cm™® K™
¢ =3 x10'° cm g™
o =ac/d=57x 107% erg em? K~* s7*
k = 1.38 x107%6 erg K!
e=4.8 x107% esu
1 fermi = 107 em
Ny = 6.02 % 10?* moles g™
G = 6.67 x107% g1 cm?® 572
m,=9.1x108 g

= 6.63 x107% erg s
1 amu = 1.66053886 x10°% g
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PROBLEM 1

Use the Virial Theorem to:

a) (6 points) Derive the internal temperature of the Sun. How much hotter is this value
compared to the Sun’s effective surface temperature?

b) (4 points) Derive the Jeans Mass of a molecular cloud that is starting to collapse,
thereby starting the star formation process.



Eddie
PROBLEM 2

a) (2 points) Calculate the zeroth and first moments of the plane-parallel radiation trans-
port equation and explain why we can’t simply solve the moment equations rather than the
original equation.

b) (3 points) Explain the physical content of the grey atmosphere approximation and de-
rive the radiation transport equation, its the zeroth and first moments in that approximation.

¢) (5 points) The Rosseland mean opacity is defined as the grey opacity that reproduces
the total flux with the following approximations:

1. The pressure is isotropic

2. The radiation field is in LTE

Use parts (a) and (b) to derive the Rosseland mean opacity. What is the meaning of
these 2 approximations and when are they valid?

3
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PROBLEM 3

a) (2 points) What is the definition of the luminosity function of a class of astronomical
objects?

b) {3 points) The Schechter luminosity function is commonly used to model the luminosity
function of galaxies, which has the following functional form:

* (L™ —L
r;S(L)m-E;(E;) XD T

with three parameters, ¢*, a, and L*. What is the total luminosity of this class of objects?
Simplify the formula using the I' function,

c) (2 points) For a clags of objects with ¢* = 0.016 Mpc™3, a = 0.9, and 1* = 10"%Le,
what is the total number density of this class of objects (I'(0.1) == 9.5)7

d) (3 points) A class of objects, located at a fixed distance, has a Schechter luminosity
function with o = 0.9. It is composed of two populations, one obscured and one norrmal. The
normal population contributes to 70% of the total population intrinsically. The obscured
population is dimmed by a factor of two by intervening obscuration.

A survey has a limit to detect the L* objects of the normal population. Considering the
two sub-classes of objects detected in this survey, what is the observed fraction of obscured
objects to the total number of detections? Express the answers using the incomplete T'
function,



-
o

PROBLEM 4
Sirius is a visual binary with a period of 49.94 yr. Its measured trigonometric parsllax is
0.37921 4+ 0.00158 arcsec and, assuming that the plane of the orbit is in the plane of the sky,

the true angular extent of the semimajor axis of the reduced mass is 7.61 arcsec. The ratio
of the distances of Sirius A and Sirius B from the center of mass is as /ag = 0.466.

a) (3 points) Find the mass of each member of the system.
b) (3 points) The absolute bolometric magnitudes of Sirius A and Sirius B are 1.36 and
8.79, respectively. Determine their luminosities. Express your answers in terms of the lumi-

nosity of the Sun.

¢) {2 points) The effective temperature of Sirius B is 24,790 K. Estimate its radius, and
compare your answer to the radii of the Sun and Farth.

d) {2 points) Estimate the surface gravity of Sirius B in cgs units. Compare your answer
to the surface gravity of the Sun and Earth.

3]
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PROBLEM 5

a) (6 points) Compute the Kelvin-Helmholtz timescale for the Sun. Assume the virial
theorem and that the density of the star at any distance from its center is equal to the star’s
average density.

b} (2 points) Assuming that 10 eV could be released by every atom in the Sun through
chemical reactions, estimate how long the Sun could shine at its current rate through chem-
ical processes alone. For simplicity, assume that the Sun is composed entirely of hydrogen.

¢} (2 points) Assuming that the Sun is 100% hydrogen, and that only the inuner 10% of the
Sun’s mass becomes hot enough to burn hydrogen, estimate how long the Sun could shine at
its current rate through nuclear reactions alone. Assume that 0.7% of the mass of hydrogen
is converted to energy in forming a helium nucleus.

6
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PROBLEM 6

The Universe contains different components that have different equations of state. These
include matter, radiation, and dark energy.

a) (1 point) What is the equation of state for matter? Explain.
b) (1 point) What is the equation of state for radiation? Explain.

¢} (2 points) What is the best current estimate for the equation of state for dark energy?
Fxplain.

d) (6 points) Derive the cosmic scale factor as a function of time for a cosmic component
with constant equation of state w, assuming a flat Universe.



ASTRONOMY QUALIFYING EXAM
January 2014

Possibly Useful Quantities

Lo = 3.9 x 10% erg s™*

My =2 x 103 g

Myt = 4.74

Ro = 7 x 10% cm

1 AU = 1.5 x10'® ¢cm

1 pe = 3.26 Ly. = 3.1 x10'® cm
a = 7.56 x1071% erg cm™3 K™
¢ =3 x10% cm s*
o=ac/d=57x10"%ergem 2 K4 57!
k = 1.38 x10716 erg K™*

e = 4.8 x107% esu

1 fermi = 107 cm

Ny = 6.02 x 10% moles g™*

G = 6.67 x1073 g™t cm® 2
m,=901x10"%g

h = 6.63 x107%" erg s

1 amu = 1.66053886 %10 g



John
PROBLEM 1

a) (3 points) Calculate the orbital semi-major axis (asum) of the Sun’s orbit about the
barycenter of the Solar System, in AU, in response to Jupiter’s orbital motion. Since Jupiter
constitutes ~70% of the non-solar mass of our Solar System, you can ignore Solar System
bodies less massive than Jupiter in your computation. Assume ajyupiter = 5.2 AU.

b) (2 points) To an external observer, what would be the transit depth of an Earth-size
Radius = 0.8 Rsun)?
¢) (3 points) To an external observer, what would be the transit duration (in hours) of an

Farth-size planet located at a=0.1AU (assume circular orbit) about a M dwarf star (Mass
= 0.3 Msun; Radius = 0.8 Rsun)?

d) (2 points) To an external observer located 20 pc away, what would be the angular sep-
aration in arcseconds between an Earth-size planet located at a=0.1 AU and its host star?
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PROBLEM 2

For a blackbody the number density of photons is

gm? 1
ny(v, T)dv = Ty dv.

The energy density is then

8rhi? 1
Uy(v, T)dv = hun, (v, T) dv = Ry dv.

Assume that radiation is emitted at some prior epoch, t, in the history of the Universe when
the scale factor was given by R. The radiation is observed today at time to with scale factor

Ro = 1.

a) (6 points) Using your knowledge of how wavelengths of photons vary with the scale
factor, show that

8mu2 1
ny(vo, T) dg = c30 e dvyg.
b) (4 points) And therefore that
. 8whijd 1
U,y(llo, To) dl/o = C3 0 ehu/kTo 1 dI/Q,
so that
T/To = 1/R



Vilee
PROBLEM 3

a) (3 points) Describe the burning process on the main sequence. Explain the difference
of the sun on the main sequence and a 1.5My,, star.

b) (3 points) Describe He burning in the lower mass stars and intermediate mass stars.
What is the mass range for each approximately? Compare the timescale of helium burning
(lifetime on the helium main sequence) to that of hydrogen burning (lifetime on the main
sequence}.

c) (4 points) Describe the following burning stages in stars: carbon burning, neon burning,
oxygen burning, silicon burning.
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PROBLEM 4

a) (3 points) Imagine a large cloud of pure interstellar hydrogen having density n atoms femS.
& is the number of photons emitted by a star per second which are capable of photoionizing
neutral hydrogen (A < 912A), while an? is the number of recombinations per second per
cm®. If each photon results in a photoionization and the rate of photoionization equals the
rate of recombination, find an expression for the Stromgren sphere Ry, i.e. the radius of the
ionized gas cloud, in terms of n, @, and o.

=2 x 10718,

¢} (2 points) Find R, in parsecs for the sun if ¢ = 5x 10% photons/s, while n and « remain
the same.

d) (3 points) Could the cloud around the sun be seen by an astronomer on «-Centauri
(distance=1.31pc) using a telescope which can just barely resolve objects which are 17 in
angular size?

Constants:

1 parsec=3.086x10"%cm

1 radian = 206265 arcsec

5
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PROBLEM 5

a) (5 points) There are four commonly used distances in extra-galactic astronomy, the
co-moving line-of-sight distance, the co-moving transverse distance, the luminosity distance,
and the angular diameter distance.

Given a cosmological object at a redshift z (z > 1), describe how to calculate these four
distances. The cosmological parameters, Hy, {2, and {24 are all given.

b) (1 point) What is the definition of the surface brightness of an astronomical object?

c) (3 points) For a cosmological extended object at z (z > 1) with a constant emis-
stvity per unit area, show that the surface brightness, o, of the object scales as o (1+2)™4.

d) (1 point) If the object is nearby, show that the surface brightness is roughly a
constant as a function of distance.

6
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PRO&E 6

a) (3 points) A sequence of radio images from the quasar 3C 273 shows a blob of ra-
dio emission moving away from the nucleus with an angular velocity of 0.0008 arcsec yr™*.
Assuming that the radio knot is moving in the plane of the sky, and using the distance of
d = 440h~" Mpc for 3C 273, derive the apparent transverse velocity Vapp away from the
nucleus. What is the value, in units of ¢, for normalized Hubble constant h = 0.717 Is this
physically reasonable?

b) (4 points) Next, assuming that instead of moving in the plane of the sky, the blob
is moving at an angle ¢ to our line of sight with an actual speed v (as distinguished from
the apparent velocity vayp). Derive an equation for v/c in terms of the apparent transverse
velocity and ¢.

¢) (3 points) Show that v/c < 1 for angles satisfying

2 >

v: [fec—1
“Z‘EE‘I‘/“"E""“‘“’” <COS(/)< 1
vi, /2 +1



ASTRONOMY QUALIFYING EXAM

January, 2015

Possibly Useful Quantities

Lo = 3.9 x 10% erg 571

Mg =2 % 10% g

My = 4.74

Rg =T x 10" ¢m

1 AU=1.5 x 10" cm

1pe=326Ly= 3.1x 10¥ cm

a=7.56 x 107 erg cm™3 K¢

¢=3 x 10 ¢m s!

o =ac/d=5.7 x 107% ergem™? K~* ¢!
k=1.38 x 1076 erg K1

e=4.8 x 10710 esu

1 fermi=10"" cm

N4 =602 x 10% moles g™!

G=6.67 x 1078 ! cm3 g7

m,=91x 107%®g

h=6.63 x 107% ergs

1 amu= 1.66053886 x 10-2¢ g

r. = 2.8179 x 107 cm; (electron radius)
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PROBLEM 1

1. For this problem recall the thermodynamic identity P = — %f—, g

(a) (1 point) Write down the polytropic equation of state.

(b) (1 point) For a polytrope, the constant is a function of what thermodynamic quan-
tity?

(¢} (2 points) For a polytropic equation of state derive the relationship between pres-

sure and energy density. Hint: Define the energy per unit mass u = E/M and the

specific volume per unit mass v == V/M and then relate u to the energy density
e=E/V

(d) (3 points) Multiply the equation of hydrostatic equilibrium by 4rrr® and derive the
Virial Theorem.

(e) (3 points) Use the Virial Theorem to find the total energy of a star with a polytropic
equation of state. Show that vy = 4/3 gives zero total energy and that vy = 5/3
corresponds to the classic case that the internal epergy is half the gravitational
energy in magnitude.

Page 2
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PROBLEM 2
2. Consider a 3M main sequence star with L = 80Lg, X = 0.7,Y = 0.28, Z = 0.02 and

€aue == € (1 6""%?) (L
for m < 0.1M; m is the mass variable and M is the stellar mass.
(a) (2 points) Calculate and draw the luminosity profile, {, as a function of mass, m.
{(b) (2 points) What is the numerical value of ¢, in erg/g/s?

(c) (3 points) Assuming radiative energy transport, calculate the H mass fraction as a
function of mass and time, X = X(m,t). What is the central value of X after 100
Myr? Draw X as a function of m at 100 Myr. (Assume that the energy generation
per unit mass from hydrogen is 6 x 10'® erg g™?).

(d) (2 points) Assuming that the inner 20% of the mass is convective, draw the new X
profile as a function of m.

{e) (1 point) What is the H-burning lifetime for the star in {c) and (d)? How much is
the lifetime extended due to convection?

Page 3
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PROBLEM 3

3. A star has a temperature T = 6700 K, mass M = 1.4 Mg, and radius R = 1.25 Rg.
There is a super-Earth exoplanet orbiting the star with a semi-major axis a = 5 AU in a
circular orbit. The planet has a radius of 2 R; (R; = Jupiters radius). Assume the only
source of energy for the planet is the star, all light falling on the planet is absorbed, and
the star+planet are perfect blackbodies.

(a) (8 points) Derive the temperature of the planet, in units of Kelvin. Assume that
the teraperature is uniform over the entire planet.

(b) (2 points) Derive the period of the planet.

Page 4
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PROBLEM 4
4. The following two questions refer to the Milky \Vét.y Galaxy.

(a) (3 points) List at least seven components of the Milky Way, which must include
the most massive comaponent.

(b) (7 points) What are the observational evidences for these components?

Page 5
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PROBLEM 5

5. The star beta Pic was observed to have a parallax of 51.44 milli-arcsec from the Hipparcos
satellite.

(a) (3 points) Given the apparent K-band magnitude of beta Pic, mg = 3.53, what is
the absolute K-band magnitude of beta pic, Mg 7

(b) (2 points) A planet (beta Pic b) has recently been directly imaged around the star
beta Pic. The planet has an apparent K-band magnitude of mg = 12.73. How
much less flux is the planet emitting in the K-band compared to its host star?

(¢} (3 points) The beta Pic b planet is oberved to be separated from its host star by

0.5 arcseconds. How far away is the planet located from its host star, in units of
AU?

(d) (2 points) Assume aliens live on the planet beta Pic b, and an alien observes the
Earth/Sun system from his/her planet. Whats the angular separation (in units of
milli-arcseconds} he/she would measure for the Farth and Sun?

Page 6
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PROBLEM 6

6. The following questions refer to the Milky Way Galaxy and its chemical evolution.

{(a) (1 point) Contrast thin disk and halo stars in terms of their kinematics, and metal-
licity.

(b) (1 point) Give a plausible model for the formation of the Milky Way which explains
the differences discussed in part a.

(¢} (2 points) According to chemical evolution theory, why does the value of [Fe/O]
in any one location in the Galaxy tend to increase with time? If the initial mass
function were flatter (higher fraction of massive stars), how would you expect that
to affect the evolution of the local value of [Fe/O]? Explain.

(d) (1 point) Sketch a plot of the rotation curve of the Milky Way and describe its
behavior for both the bulge and disk. Make sure to include axis titles.

(e} (3 points) Derive a functional relation between surface density ¢ (mass/pc?), tan-
gential (circular) velocity v, and galactocentric distance r for the disk. What is
implied about the surface density in the disk? Explain.

(f} (2 points) Given the rotation properties of the bulge, what is implied about the
behavior of its volume density as a function of galactocentric distance? Use simple
algebra to prove your point.
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ASTRONOMY QUALIFYING EXAM

August, 2015

Possibly Useful Quantities

Lo = 3.9 x 103 erg s7*

Mg =2x10%g

My = 4.74

Ro =7 x 10 cm

1 AU=1.5x 10" cm

1 pe=326Ly= 3.1x 10® cm

a=7.56 x 10~1% erg cm™% K4

c=3 x 10* ¢cm s7*

o =ac/4=57 x 107% erg cm™? K4 57!
k=1.38 x 1076 erg K1

e=4.8 x 1071 esu

1 fermi=10"" cm

N, = 6.02 x 10% moles g~!

G=6.67 x 1078g~! cm?® 572

m,=91x 10728 g

h=6.63 x 107% erg s

1 amu= 1.66053886 x 107% g

re = 2.8179 x 107! cm; (electron radius)



1.

(a)

PROBLEM 1

(2 points) Write or derive an equation for hydrostatic equilibrium in a form that is
suitable for the interior of the sun, i.e., express dP/dr in terms of G, m, p, and r,
where m is the mass interior to radius r and p is the mass density.

(1 point) Rewrite the equation with m as the independent variable, i.e, dP/dm =

(1 point) Use the dP/dm equation to obtain an approximate expression for the
pressure at the center of the sun, in terms of G, M, and R, where M is the total
mass of the sun and R is the solar radius.

(1 point) To the nearest powers of ten, what are the temperature and the density
at the center of the sun?

(1 point) Write the “bottleneck” reaction (the least probable of the major reac-
tions) for fusing hydrogen to helium in the core of the sun.

(2 points) At the middle of the solar photosphere, where the optical depth at 5000 A
is about 1, what (to the nearest 1000 K) is the temperature? Is the mass density
at this depth much greater than, much less than, or about equal to the density of
air at sea level? Is hydrogen mostly ionized, mostly neutral, mostly locked up in
diatomic molecules, or in some other form? What is the dominant source of opacity
at 5000 A? Identify the atomic process as specifically as you can.

(2 points) In the approximation of local thermodynamic equilibrium (LTE), esti-
mate the fraction of all hydrogen (ionized, neutral, molecular) that is in the Balmer
(n = 2) level of neutral hydrogen.
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PROBLEM 2

(a) (6 points) A star located 19.6 pc from the Sun has a temperature T = 8000 K and
radius R = 0.5 Rsun. There is a planet orbiting the star with a semi-major axis a
— 5 AU in a circular orbit. The planet has a radius of 2 Rj (Rj = Jupiters radius).
Assume the only source of energy for the planet is the star, all light falling on the
planet is absorbed, and the star+planet are perfect blackbodies.

Estimate the temperature of the planet.

(b) (2 points) Assume the planet described in part (1) transits its host star. What
would be the observed transit depth?

(¢) (2 points) Assume aliens live on the planet, and an alien observes the Earth/Sun
system from his/her planet. Whats the angular separation (in units of milli-
arcseconds) he/she would measure for the Earth and Sun?
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3.

PROBLEM 3
(a) (1 point) Write down the general radiative transfer equation (RTE) in plane-parallel
geometry and define all the terms including units.
(b) (1 point) Define the 3 Eddington moments.
(c) (1 point) Explain what the grey approximation is.

(d) (1 point) Make the grey approximation and derive the 2 ordinary differential equa-
tions for the moments from the RTE.

() (1 point) What does radiative equilibrium tell you about H in this case?
(f) (1 point) Make the “two-stream” approximation
[ = I™ u>0
Tl IT ou<o0
and obtain the Eddington moments in this case.

(g) (1 point) From the two-stream case above, find the Eddington factors f = K /J,
and h(0) = H(0)/J(0), where H(0) is the value of H at the surface 7 = 0. Assume
no external illumination.

(h) (2 points) Using the Eddington factors found above, solve the moment equations
for J.

(i) (1 point) Assume S = B, where B is the grey planck function and find the temper-
ature as a function of 7.
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4.

(a)

PROBLEM 4

(7 points) Assume that the gas component of a galaxy, with a mass fraction fq 18
virialized and follows the overall density profile of the galaxy, a singular isothermal
sphere mass profile,

0.2

pr) = 2w Gr?

where ¢ is the velocity dispersion of the galaxy. The galaxy has a central AGN,
which is radiating at the Eddington luminosity,

47chmpMBH
ar

Lgds =

A fraction, f,, of the energy radiated by the central AGN is deposited into the gas
in the form of kinetic energy. This kinetic “feedback” energy from the AGN can
drive the gas in the host galaxy to flow outward. Assume that the final gas outflow
is in a spherical shell with a constant velocity, v, and half of the kinetic feedback
energy is converted to the gravitational potential of the gas and the other half to
the kinetic energy of the gas during the outflowing process. Use the conservation
or transfer of energy to show that the final gas wind speed is

5 GLpaifw
P° = ————
202 f,

(3 points) If the wind speed is large enough to escape the potential well of the
galaxy, (v = o), the central AGN will blow out the majority of gas in the galaxy
and terminate the formation of stars. Show that this gives us the Mpy — o relation,

1 ar 19_0.5

Mgy = —
B on G2em,, fo

where G is the gravitational cnstant, o is the Thomson cross section, ¢ is the speed
of light, and m, is the mass of a proton.
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5. (a)

PROBLEM 5

(3 points) Describe the pre-MS to AGB evolution of a solar-metallicity 1 Mg star.
Plot the evolution in log Teentral VS. 10€ Peentra and H-R diagrams. Also plot a
Kippenhahn diagram showing the interior structure of the star (including burning
and convective regions) as a function of time. Describe each phase of evolution,
including the radiative properties and nuclear burning reactions and regions.

(3 points) Describe the pre-MS to AGB evolution of a solar-metallicity 5 M star.
Plot the evolution in log Tyentral vs. log p.entral, H-R, and Kippenhahn diagrams.
Describe each phase of evolution, including the radiative properties and nuclear
burning reactions and regions, emphasizing the differences between this star and a
1 Mg star.

(2 points) Describe the evolution of a 40 M star. Will this star create a Red
Supergiant and why?

(2 points) Describe WNL, WNE, WC, and WO stars. These stars form an evolu-
tionary sequence. Explain the connection between them.
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PROBLEM 6

6. A fraction of quasars have broad, blueshifted absorption lines that indicate high-velocity
outflows emerging from the central engine. Generally, an absorption profile can be

described as:
I

= = eap(~7()
0
where I is the observed flux density in the spectrum, I is the intrinsic continuum
(without absorption) and 7(\) is the optical depth of the absorption trough originating
from absorption by a single ion. An example of a broad absorption spectrum is shown
below. The absorption is occurring in metastable helium in the 10830A transition. A

range of gas outflow velocities causes the absorption line to be broad.

600
i
1

400
]

200
1
1

o L i i " 1 2 A i 2 A 1
i % J 1.06x104 1.1x104
- ' : )

8000 104 1.2x10%  1.4x104
Rest Wavelength (Angstroms)

F. (1077 ergs™'cm2A™)

1
6000

Analysis of broad absorption lines is complicated by partial covering: the absorbing
outflow does not cover all of the continuum emitting source, but rather covers only a
fraction of it, C;. Then, the absorption line looks shallower than it would be if the
absorber covered the whole thing, and the inferred apparent optical depth is lower.
However, this situation can be resolved, and the true optical depth and covering fraction
can be determined if there are two lines in the spectrum that arise from the same lower
level, because their true optical depth ratio is fixed by atomic physics. Specifically, the
true optical depth ratio will be proportional to the ratio of fixA, where fy, and A are the
oscillator strength and wavelength of the transition. In that case, the intensity ratio can
be expressed in these two equations:

I, =(1- Cf) + Cpe™™
I, = (1 — Cf) + Cfe_T“’

where the subscripts w and s stand for weaker and stronger lines, respectively, and 7; /T
is related by the ratio of their respective fixA values.
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(a)

(¢)

(5 points) Consider a doublet, e.g., C IV. The first excited state has fine structure,
so there are two possible transitions from the ground state to the first excited state,
at 1548.2 and 1550.8A (a doublet). The oscillator strengths for these two transtions
are 0.190 and 0.0952 respectively. This means that the ratio of the optical depths
7,/ Tw for these two transitions is effectively 2.

For the case of this doublet, solve the equations above for the covering fraction Cy
and 7.

(1 point) When scientists analyze an absorption line, they are often interested in
measuring the column density N (in particles per cm?) of the ion responsible for it.
The optical depth and column density are related by the following equation:

7(62

7(\) FaA2N (),

Mec?
where e is the charge on an electron, m. is the mass of an electron, and c is the
speed of light. Both 7 and N are functions of lambda because as the absorption
line is spread of a range of wavelengths due to the range of velocities over which
the outflow is distributed.

Show that
we?

7(v) = fikAN (v)

MeC

where v is velocity, A is in Angstroms, and N(v) is in atomscm™?(kms™")~".

(4 points) Further, show that

7(v) = 2.654 x 107" fxr AN (v).
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Astro Qualifier Jan. 2016

[ ]

There are 6 problems. Attempt them all as partial credits will be given.

Write on only one side of the provided paper for your solutions.

Write your alias (NOT YOUR REAL NAME) on the top of every page of your solutions.

e Number each page of your solution with the problem number and page number (e.g.
Problem 3, p. 2 is the second page for the solution to problem 3.)

Do not staple your exam when done.

e You must show your work to receive full credit.

Constants:
G = 6.67259 x 1078 dyne cm? g2
¢ = 2.99792458 x 10'% cm s7!
h = 6.6260755 x 107" erg s
k = 1.380658 x 10716 erg K!
o = 5.67051 x 107° erg cm™2 57! K™
my, = 1.6726231 X 107 g
my, = 1.674929 x 10724 o
m, = 9.1093897 x 1028 g
my = 1.673534 x 10724 ¢
e = 4.803206 x 10710 esu
1 eV = 1.60217733 x 10712 erg
1 Mg = 1.989 x 10% g
1 Lo = 3.826 x 108 erg s™*
1 pc = 3.0857 x 10™® cm
1 AU = 1.4960 x 10*3 cm



1. Briefly define and discuss the relevance of the following terms to modern astronomy.

a) (1 point) Cepheid variable star

(g) (1 point) G dwarf problem

@i Thin disk
G isophotal radius

2. The specific intensity at the surface of stars is given by

)
)
)
)
(f) (1 point) s-process
)
)
)
)

)
)
(h) (1 point) Tully-Fisher relation
(1 point)
(1 point)

= [ S,,(t)%ée“t/“, (1)

where S, is the source function, ¢ is the optical depth, and u = cosf. In addition, the
moments of order n of the radiative field M, (n) are

M, (n) = % / 11 L (w)udu, | @

where M, (0) = J, and M, (1) = H,.
(a) If the source function inside the star is S(7) = a+b7, where a and b are functions of
v but not 7, calculate the specific intensity I, at the surface, for outgoing directions
(u > 0).
(b) the average intensity J,.
(c) the Eddington flux H,.

3. Assume that as a pulsar slows down, the quantity

din P
dt =b

where b is positive constant and P is the rotation period.

(a) (5 points) If at time ¢ = 0, P = P, find an expression for P(t), the period as a
function of time.

(b) (3 points) If the initial rotation energy is Ey, find an expression for E(t), the energy
as a function of time

(¢) (2 points) If Py = 107* s, at what time is the period 3 s?
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4.

(a)
(b)
(c)

(b)

(d)
(e)

(3 points) Use the Virial Theorem to derive expressions for the quantized radius
AND energy of a Bohr hydrogen atom.

(1 point) Calculate the energy AND wavelength of light emitted by a Brackett
gamma (n = 7 to n = 4) emission photon.

(3 points) Assume you observe a massive, hot star that exhibits a Brackett gamma
emission line that has a P-Cygni line profile. What is the physical interpretation of
this line profile? Discuss how such a profile arises; include a picture that describes
where each region of the line profile arises from.

(3 points) Describe the process by which winds are driven in massive stars. Also
describe how the Doppler effect aids wind driving in these stars.

(2 points) Calculate the force due to radiation pressure experienced by an object
of radius, r, and density, p, in a circular orbit with semimajor axis, a, around the
Sun. Assume that the object absorbs all radiation and re-emits it isotropically in
its rest-frame.

(2 points) If the object were stationary, this force would act only in the radial
direction away from the Sun. However, because of our object’s orbital velocity,
the direction of the incoming photons has a small non-radial component in the
object’s rest-frame, and the radiation pressure exerted by the Sun in part a) has
a small non-radial component. Expressing the object’s orbital velocity in terms of
the Sun’s mass and a, solve for the non-radial component of the radiation pressure.
(This non-radial component can be thought of as a photon headwind known as
Poynting-Robertson drag.)

(2 points) This headwind causes the orbital semimajor axis to decay over time.
Write the time derivative of the semimajor axis due to Poynting-Robertson drag for
the object in part a. Assume that the radial component of the radiation pressure
force is very small compared to the Sun’s gravitational pull, so we only need to
consider the Poynting-Robertson component.

(2 points) If the object is orbiting at 1 AU, its radius is 100 um and its density is
1 g/cm3, then calculate the amount of time it takes to spiral into the Sun.

(2 points) The object in part (d) is typical of zodiacal dust (dust particles in the
Solar system, primarily located between the Sun and Jupiter). What does the above
calculation say about the theory that zodiacal dust was formed at the beginning of
the Solar system?

6. The image below is derived from data collected by the Eztreme Ultraviolet Explorer
satellite (EUVE). It shows photons near 0.1 keV collected from a luminous Seyfert
(active) galaxy 1H 0419—577 (upper left) that was the target of the observation, and
a serendipitously discovered Am Herculis star, an accreting magnetic white dwarf star
(lower right). The three-lobed structure of the image is an artifact of the telescope.

(a)

(5 points) This observation had a total exposure time of 171,841 seconds. During
the observation, 5529 photons total were collected in the region 60 arcseconds in
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radius around the Seyfert, and 4733 photons were collected from the region 60
arcseconds in radius around the AM Her. In the background region, which is 230
arcseconds in radius, and excludes the regions around the Seyfert and around the
AM Her that are each 105 arc seconds in radius, 6291 photons were collected. What
are the average net count rates and uncertainties from the Seyfert and from the AM
Her? Are these values significantly different? (Hint: you may assume that Poisson
statistics apply.)

(5 points) During the first 10,000 seconds of the observation, only 308, 288, and 394
photons were collected from the Seyfert, the AM Her and the background region,
respectively. What were the net count rates and uncertainties from the Seyfert and
from the AM Her during this time period. Are these values significantly different?

A Pair of Sources in the EUVE DS

200

A Dec. (arc seconds)
—~200

O foe
<t
I 200 0 —200

A R.A. (arc seconds)
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ASTRONOMY QUALIFYING EXAM
January 2017

Possibly Useful Quantities

Lo =39x%x10% erg s71

Mg =2 x10% g

Mg = 4.74

Re =7 x 10" em

1 AU = 1.5 x10" cm

1 pc=3.26 Ly. = 3.1 x10'® cm
a=7.56 x1071 erg cm™ K4
¢ =3 x10" cm 57!

0 =ac/4="57x107% erg cm™? K=4 57!
k = 1.38 x1071% erg K1

e =48 x10710 esu

1 fermi = 107 em

Na = 6.02 x 10%* moles g™*

G =6.67 x107% g~ cm?® 572
me=91x10"28g

h = 6.63 x107%" erg s

1 amu = 1.66053886 x10~* g



PROBLEM 1

Use the Virial Theorem to:

a) (6 points) Derive the internal temperature of the Sun. How much hotter is this value
compared to the Sun’s effective surface temperature?

b) (4 points) Derive the Jeans Mass of a molecular cloud that is starting to collapse,

thereby starting the star formation process. — .
Y SHarhing ’ avon Tob enegn < Gl
ol

PROBLEM 2 @
/a) (4 points) The observed wavelength )g is related to the emitted wavelength by
)\O/>\:1/R:1+Z,

where R is the scale factor, and z is the redshift. The energy density in radiation from a
black body is given by:

~1
U(v, T)dv = 8rhv?/c? <eh”/(kT) — 1) dv
Remembering that volumes increase like Vo/V = 1/R3. Show that:
Ulve, T)dvo = 8rrhug /2 (eM0/FKD 1) ™ duyy

/b) (4 points) Given that
[e.¢]
/ Uy, T)dv = aT*
0
or equivalently -
/ 53 /(e — 1)dx = 7 /15
Jo
show that the temperature of the Cosmic Background Radiation (CBR) must scale as 1/R.
£ ¢) (2 points) Compare the energy density in the CBR with that in diffuse starlight. Assume

that the diffuse starlight has a brightness temperature of 10, 000 K and a volume filling factor
of 1071,



The most easily observed white dwarf in the sky is in the constellation of Eridanus. Three
stars make up the 40 Eridani system: 40 Eri A is a 4th magnitude star similar to the sun;
40 Eri B is a 10th magnitude white dwarf; and 40 Eri C is an 11th magnitude red M5 star.
This problem deals only with the latter two stars, which are separated from 40 Eri A by 400

AU.

PROBLEM 3

v a) (4 points) The period of the 40 Eri B and C system is 247.9 years. The system’s
measured trigonometric parallax is 0.201 arcseconds, and the true angular extent of the
semimajor axis of the reduced mass is 6.89 arc seconds. The ratio of the distances of 40 Eri
B and C from the center of mass is ag /ag = 0.37. Find the masses of 40 Eri B and C in
terms of the mass of the sun.

/b) (2 points) The absolute bolometric magnitude of 40 Eri B is 9.6. Determine its lumi- [ (Mgigh
nosity in terms of the luminosity of the sun. Note that the absolute bolometric luminosity LOQ\
of the sun is Mpo = 4.74, while its luminosity is 3.839 x 102° W.

/C) (2 points) The effective temperature of 40 Eri B is 16,900 K. Calculate its radius and
compare your answer with the radius of the Earth (6.378 x 10°m).

\{i) (2 points) Sirius B is another famous white dwarf star. It has a mass of 1.063Mg. Do
you expect it to be larger or smaller than 40 Eri B? Explain.



&

You are planning to conduct high resolution optical spectroscopy toward Barnard’s Star,
whose current coordinates are o = 17:57:48.5 and §=+04:41:36.2. It has a V-band magni-
tude of 9.51 (Vega system).

PROBLEM 4

a) (1 point) What is constantly changing about Barnard’s Star that needs to be considered
when planning observations? What time of year is be to observed this star from the ground
and why?
by (1 point) What is the flux density of the star in V-band if the flux zero-point is
3.636 x107% erg cm™2 5! Hz ™17
\/c) (1 point) This observation will be source noise limited, what distribution describes the
uncertainty of these measurements and what is the simplest equation for the uncertainty o
in this case (1 point).

f d) (4 points) Derive an expression for the number of photons observed in a given At and
calculate the number in a single resolution element for the ARCES spectrograph on the
APO 3.5m at a wavelength of 5175 Angstroms. The ARCES spectrograph has a resolution
of R~31,500 in the optical band. Assume that the V-band flux density is the flux density at
5175 Angstroms.

{

e) (1 point) What is the maximum exposure time to avoid detector

)
) e )
detector goes non-linear at 35,000 ADU and the gain of the detector is 3.8 e~ ADU"

7 f) (2 points) Demonstrate mathematically that multiple short exposures are equivalent to
a single long exposure. Why is a single long exposure a bad idea in the first place and why
do we typically take multiple exposures during observations?



PROBLEM 5

Consider a satellite of mass m and radius s that is in a circular orbit about a planet with
mass M and radius R. Assume the planet and satellite are separated by a distance 1.

a) (3 points) Tidal forces arise because the gravitational force exerted by one body on
another is not constant across it. For instance, something on the near edge of the satellite
will feel a stronger gravitational pull toward the planet than the center of the satellite will.
Thus, the tidal force is differential. EDerive the tidal force (relative to the satellite’s center)
that a small object of mass u will feel if it is sitting on the edge of the satellite nearest to
the planet. In this derivation, assume that r > s.

b) (3 points) Find the distance, d, from the planet where the tidal force that the small
object experiences is equal to the gravitational pull exerted by the satellite’s gravity.

¢) (2 points) Express this distance in terms of the densities of the planet (py) and the
satellite (pm).

d) (2 points) Mars’ moon Phobos has a density of 2 g/cm®. It currently orbits Mars at
a distance of 9400 km but this distance decreases by 2 ¢cm every year. Using your work in
parts a—c, calculate the amount of time before Phobos will be destroyed by the tidal forces
of Mars. (The density and radius of Mars are 4 g/cm® and 3400 km, respectively.)



D
PROBLEM 6 (:/

Briefly define and discuss the relevance of the following terms to modern astronomy. 1
point per question

/Q 1. Cepheid variable star

“/\O 2. Initial mass function

v ¢. 3. tunneling in the context of the PPI chain reaction

‘/& 4. age-metallicity relation

¢ 5 damped Ly system (DLA)  tavkal 4" gecoe seted 1) quesacs
Q/w? 6. s-process Aeid + S0

v ﬁ 7. G dwarf problem \w*' @%O\J{jk \o el 6‘1@”:}

‘/“f\ 8. Tully-Fisher relation \U‘%’V’%iﬁf 5, ‘ @ roteon gé\ad%b

\(L 9. Galactic thin disk

") 10. isophotal radius
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