

Presentation on: Photoluminescence study of the defectinduced recombination in Cu(In,Ga)Se₂ solar cell

Collin Brown Condensed Matter Journal Club February 14th, 2017

Tinted areas:

- 67 87% representing thermodynamic limit
- 31 41% representing single bandgap limit

G. Conibeer, 2007 Third-generation photovoltaics Material Today 10 11 44 50

Cu(In, Ga)Se₂ Solar Cells

Leonid A. Kosyachenko, A Theoretical Description of Thin-Film Cu(In,Ga)Se2 Solar Cell Performance. (2015).

Sputtering for deposition

Hybrid Method

Image Credit: Angus Rockett

MiaSole

High throughput – All PVD process built on a roll of stainless steel Image Credit: MiaSole

Experimental details

- CIGS samples deposited on soda lime glass (SLG) substrates by a 2 step sputtering process
- H_2 Se in the second step for Selenization
- CdS layer by chemical bath deposition
- Other layers by Sputtering
- Annealed in N_2 gas ambient for 30s, with heating rate of 50°C/s
- SIMS to obtain compositional profile
- For PL, sample excited using 405 nm with 20 mW

Sims results

J-V curve results

Table 1

Comparison of parameters (conversion efficiency *Eff*, open-circuit voltage V_{∞} , short-circuit current density J_{∞} , fill factor *FF*, series resistance R_s , the reciprocal of the shunt resistance *G*, the diode ideality factor *A* and the dark saturated current density J_0) extracted from J-V analysis of as-deposited and RTA-treated CIGS solar cells.

Samples	<i>Eff</i> (%)	V_{∞} (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	$R_s (\Omega \text{ cm}^2)$	$G (ms/cm^2)$	A	$J_0 (\mathrm{mA/cm^2})$
as-deposited	8.1 ± 0.1	0.56 ± 0.01	26.9 ± 0.1	54 ± 1	1.5	5.0	3.6	$1.1 imes 10^{-1}$
150 °C RTA	8.2 ± 0.1	0.57 ± 0.01	27.8 ± 0.1	52 ± 1	1.9	3.8	3.7	1.7×10^{-2}
200 °C RTA	8.9 ± 0.1	0.58 ± 0.01	27.4 ± 0.1	56 ± 1	2.0	3.0	3.3	7.5×10^{-3}
300 °C RTA	11.4 ± 0.1	0.63 ± 0.01	29.2 ± 0.1	62 ± 1	0.9	2.1	2.8	2.1×10^{-5}
400 °C RTA	11.6 ± 0.1	0.59 ± 0.01	31.4 ± 0.1	63 ± 1	0.7	2.4	2.9	1.3×10^{-3}
500 °C RTA	3.6 ± 0.1	0.39 ± 0.01	27.9 ± 0.1	33 ± 1	1.1	5.1	9.7	1.6×10^{-2}

Important parameters increase up to 300 or 400 C, then decrease.

$$I_{PL}(t) = I_r(t) = \int_0^x \frac{n}{\tau_r} dx$$
$$= -S_0 \Delta n(0, t) + \int_0^x G_{ph}(x, t) - \frac{n}{\tau_{nr}} dx$$

A(diode ideality factor) could be over 2 due to tunneling enhanced process (interface state)

PL of CIGS layer is greatly increased. CdS layer has some increase, but not nearly as much.

Photovoltaics Materials & Device Group, University of Oklahoma: http://www.nhn.ou.edu/~sellers/group/index.html

Simulation Results

Interface states affect mostly Voc

Defect states affect Jsc more.

J-V curve results

Table 1

Comparison of parameters (conversion efficiency *Eff*, open-circuit voltage V_{oc} , short-circuit current density J_{∞} , fill factor *FF*, series resistance R_s , the reciprocal of the shunt resistance *G*, the diode ideality factor *A* and the dark saturated current density J_0) extracted from J-V analysis of as-deposited and RTA-treated CIGS solar cells.

Samples	<i>Eff</i> (%)	V_{∞} (V)	$J_{\rm sc}~({\rm mA/cm^2})$	FF (%)	$R_s (\Omega \text{ cm}^2)$	$G (ms/cm^2)$	A	$J_0 (\mathrm{mA/cm^2})$
as-deposited	8.1 ± 0.1	0.56 ± 0.01	26.9 ± 0.1	54 ± 1	1.5	5.0	3.6	$1.1 imes 10^{-1}$
150 °C RTA	8.2 ± 0.1	0.57 ± 0.01	27.8 ± 0.1	52 ± 1	1.9	3.8	3.7	1.7×10^{-2}
200 °C RTA	8.9 ± 0.1	0.58 ± 0.01	27.4 ± 0.1	56 ± 1	2.0	3.0	3.3	7.5×10^{-3}
300 °C RTA	11.4 ± 0.1	0.63 ± 0.01	29.2 ± 0.1	62 ± 1	0.9	2.1	2.8	2.1×10^{-5}
400 °C RTA	11.6 ± 0.1	0.59 ± 0.01	31.4 ± 0.1	63 ± 1	0.7	2.4	2.9	1.3×10^{-3}
500 °C RTA	3.6 ± 0.1	0.39 ± 0.01	27.9 ± 0.1	33 ± 1	1.1	5.1	9.7	1.6×10^{-2}

Increase of both Voc and Jsc indicates reduction of both interface and defect states.

Large drop in Voc at 500C indicates major interface state formation.

Modest interdiffusion at the interface at low temperature provides beneficial effects, but large interdiffusion increases interface recombination centers.

Recombination Mechanisms

