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L asers in Telecom

« Semiconductor lasers that operate at 1.3 and 1.5 pum are widely
used in the telecommunications industry.

* InGaAs(P) lasers have high sensitivity to temperature, and so Iin
commercial applications, additional components are required
which add to the cost of the device.

 To fix this problem, the authors propose we first identify the
recombination mechanisms and study their temperature
dependence.

Photovoltaics Materials & Device Group, University of Oklahoma: http://www.nhn.ou.edu/~sellers/group/index.html



Recombination Processes
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http://ecee.colorado.edu/~bart/book/recomb.htm
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Recombination Processes

[ =eV(An + Bn? + Cn3) + Ijoqx

A — recombination due to traps and defects

B — radiative or bimolecular recombination, associated with
spontaneous emission

C — recombination due to Auger processes
I,.q1 — thermal leakage of carriers over the heterobarrier
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Dominant Recombination

If radiative recombination is dominant, then I o« n?
If Auger recombination is dominant, then I « n3
So we say that I «< n?, where z is some value from 2-3

The total integrated spontaneous emission rate L is related to
the injected current.

Since L o< Bn?, then n o L1/2. We can then plug this n into nZ.
Then we have I o (L1/2)Z. We take the natural logarithm of
both sides.

Ln(I) = z Ln(LY/?)
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Dominant Recombination
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Fig. 3. Graph of In(I) versus Jn(L'fﬁB] for the 1.5-pm laser at 293 K, Fig. 4. Variation of = from around 80 K to above 350 K for the 1.5-ym
showing the method for the determination of . (open squares) and the 1.3-pm (closed circles) lasers.
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Threshold Current and Temperature
Sensitivity

1 1 dity
To(Ury) Iy dT
Using this, we can find temperature sensitivity for radiative
threshold current Ty (Iz,4), Where you plug in Ip,4 fOr I7y.

For a QW, the radiative recombination coefficient B changes as
BxT™ 1

Threshold carrier density varies as n,, o T1**

For the Auger current, the Auger coefficient is assumed to vary
asC=Cy Exp(—E_ /kT)

We can plug these in to the top equation to get some
temperature dependence
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Threshold Current and Temperature

Sensitivity
° Radlatlve Current - TO(IRad) — 1_|_T2x
T

» Auger Current - To(Ly,g) = TR T BT

 The x iIs introduced to account for nonidealities In the laser
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Experiment

 Pure spontaneous emission is collected from the side of the
lasers via an optical fiber.

 This light is then sent to an optical spectrum analyzer (OSA)
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Effect of Bandgap on Auger processes

» Here a pressure vessel is used to subject the sample to high
pressures. The application of pressure increases the bandgap E,

at the Brillouin zone center.

* “In an i1deal QW, the radiative current increase is approximately
equal to Eg2 , While the Auger recombination rate decreases

with increasing bandgap.”
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Fig. 5. Graph showing the vanation of lasing energy with pressure for the
1.3pim laser (closed circles) and the 1.5-ym laser (open squares).
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Fig 6. Normalized threshold current as a function of lasing energy. The
1.3-pm data were normalized to the value of the 1.5-ym data at the point
where the 1.5-pm device lased at 1.3 pm.
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Fig 11. Relative slope efficiency as a function of temperature for 1.3-yim
lasers (closed circles) and 1.5-yim lasers (open squares). The data are offset
for clarity. A rapid decrease of 7; above room temperature can be seen.
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Fig. 12. The mverse of the differential quantum efficiency as a function of
cavity length and temperature for (a) 1.3-ym lasers and (b) 1.5-m lasers.
The solid lines are least-squares fits to the data from the four longest cavity
lengths for a common mtercept. The dashed lines show how dramatically
1/1 increases for the shorter cavity length lasers.
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Fig 13. Internal loss v, as a function of temperature for (a) 13-pm

eight-QW InGaAsP lasers and (b) 1.5-yim 4-QW InGaAs lasers. A superlinear
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Conclusion

At low temperature, the threshold current and its temperature
sensitivity are governed by radiative recombination.

Past a certain breakpoint, and at room temperature, Auger
recombination becomes a factor.

At room temperature, the strong contribution of Auger
recombination results in I o n3

Above room temperature, the increase in threshold current may
come from increased optical losses and carrier overflow into
the barrier and SCH regions.
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