Do Massive Stars Have Planets?

Sara D. Barber¹, Mukremin Kilic¹

1: The University of Oklahoma

Background

- The vast majority of planets have been discovered using transits, radial velocity, and imaging. These methods break down, however, with increasing stellar mass.
- One can more easily search for planets around massive $(M > 3M_{\odot})$ stars in post main-sequence.
- Some white dwarfs (WDs) exhibit excess emission in the IR due to reprocessed light from circumstellar dust.
- Dust disks result from tidal disruption of asteroids that pass within WD's Roche lobe (Debes & Sigurdsson 2002; Jura 2003).
- Disks serve as tracers for planets at WDs.
 - Abundance analysis of dusty WDs shows that accreted metals are similar in composition to bulk Earth (Zuckerman et al. 2007; Xu et al. 2013).

First Detection

Figure 1: Spectral energy distribution of the most massive WD found to host circumstellar dust (Barber et al. 2014). J1234 has a mass of $1.04~M_{\odot}$ (progenitor mass $5.4~M_{\odot}$) and its discovery offers the first confirmation that massive WDs (and their massive progenitor stars) host planetary systems.

Observations

- We chose a sample of 100 WDs in SDSS with $M>0.8M_{\odot}$ and 9500 < T_{eff} < 22,500 K.
- This temperature range is where almost every known dusty WD system lies and this temperature cut optimizes our chance of finding disks.

Figure 2: There is a strong cutoff in exoplanet detections around stars above 3 M_{\odot} . Our 100 massive WDs probe an untapped parameter space by looking for planets in post main-sequence.

- We obtained 4.5 μm IRAC photometry of 100 WDs in Spitzer Cycle 9
- We are in the process of following up 23 WDs with 4.5 μm excess in the 3.6 μm IRAC band in *Spitzer* Cycle 10 to rule out extraneous sources of the observed excesses.
- We will also obtain NIR photometry of the WDs with an infrared excess using the MMT+SWIRC to constrain the parameters of our disk models.

Preliminary Results

- Out of 100 WDs observed with *Spitzer* in the 4.5 μm band, 23 exhibit excess emission.
- We are observing these 23 WDs in the $3.6\mu m$ band and so far have two with excesses consistent with circumstellar dust.

Figure 3: Spectral energy distributions of two massive WDs with infrared excesses indicating the presence of circumstellar dust.

References

Barber, S. D., Kilic, M., Brown, W. R., & Gianninas, A. 2014, ApJ, 786, 77

Debes, J. H., & Sigurdsson, S. 2002, ApJ, 572, 556

Jura, M. 2003, ApJL, 584, L91

Xu, S., Jura, M., Klein, B., Koester, D., & Zuckerman, B. 2013, ApJ, 766, 132

Zuckerman, B., Koester, D., Melis, C., Hansen, B. M., & Jura, M. 2007, ApJ, 671, 872