Frequency of Debris Disks at White Dwarfs

Sara D. Barber

The University of Oklahoma Homer L. Dodge Department of Physics and Astronomy

April 9, 2012

Introduction

Planets Around Main-Sequence Stars Debris Disks Around White Dwarfs

Observations and Reduction

Sample Photometry Spectroscopy

Analysis and Results

Blackbody Deviations Error Analysis Initial-Final Mass Relation

Conclusions

Detection Sensitivity

▶ Current detection techniques insensitive for $M_{\star} > 3M_{\odot}$

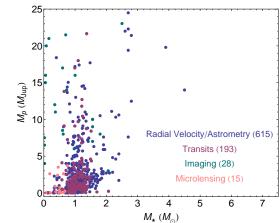
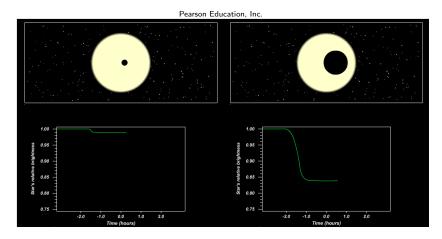



Figure: Data from The Extrasolar Planets Encyclopedia Catalog


Radial Velocity

- Massive stars
 - harder to move
 - fewer narrow absorption lines

Transits

Subtle dimming for massive stars

Sara D. Barber

Imaging

- ► Reflected starlight / IR emission
- Massive star outshines planet

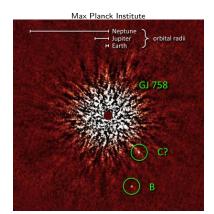


Figure: Near IR image taken of $10-40 \ M_{jup}$ companion of sun-like star

Microlensing

▶ Planet signal washed out by massive star signal

Scott Gaudi

Microlensing

lacktriangle Planet signal washed out by massive star signal $(q=m_p/m_\star)$

Scott Gaudi

- Probe elusive regime using WD remnants
- ► Planetary systems destabilize
 - Giant planet resonances perturb planetesimals
 - ► Tidal disruption creates observable debris disk

Figure: Debris disk around white dwarf

- ► SED superposition of two blackbodies
- Peak location and intensity determined by disk geometry

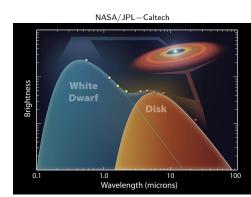


Figure: SED of a white dwarf + disk system GD 16

 Disk composition dominated by silicates

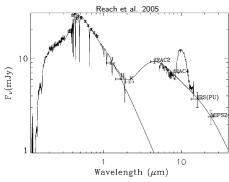
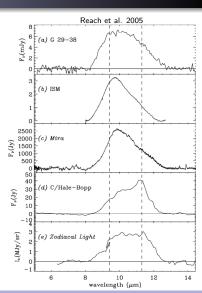



Figure: SED of PG2326+049

 Abundances similar to Solar System terrestrial bodies

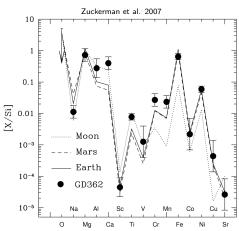


Figure: Elemental abundances by number relative to Silicon.

 Debris disks are tracers for planetary systems that have survived the death of their host star

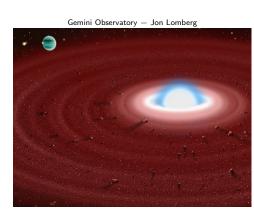
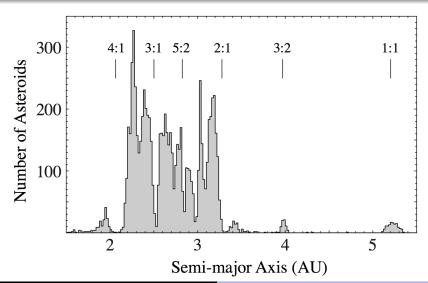


Figure: Visualization of dust disk around white dwarf GD 362 featuring hypothetical shepherding giant planet.

Resonances in the Solar System

- Numerical relation between periods
 - Spin-orbit coupling
 - Orbit-orbit coupling


Figure: Lunar synchronous rotation + small librations in latitude and longitude

Resonances in the Solar System

- Numerical relation between periods
 - Spin-orbit coupling
 - ► Orbit-orbit coupling

Figure: Mean motion resonance exhibited by three of the Galilean moons.

Resonances in the Solar System

Post Main-Sequence Evolution

- Resonances more efficient at perturbing planetesimals during post main-sequence
- Mean motion resonances have finite width

$$\frac{\delta a_{\text{max}}}{a} = \pm \left(\frac{16}{3} \frac{|C_r|}{n} e\right)^{1/2} \left(1 + \frac{1}{27j_2^2 e^3} \frac{|C_r|}{n}\right)^{1/2} - \frac{2}{9j_2 e} \frac{|C_r|}{n}$$

where

$$\frac{|C_r|}{n} = \frac{m_p}{m_{\star}} \alpha f_d(\alpha)$$

n- mean motion e- asteroid eccentricity a- asteroid semi-major axis $\alpha-$ ratio asteroid/planet semi-major axes

Solar System Dynamics - Murray & Dermott (1999)

Post Main-Sequence Evolution

- ► AGB star loses most of its mass
- Resonance widths increase
 - Asteroids previously exterior to resonance become trapped

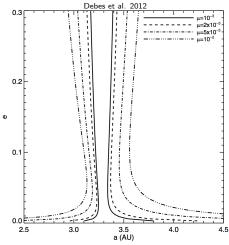


Figure: Growth of δa_{max} with increase of $\mu = m_p/m_\star$

Planetesimal Disruption

- Newly perturbed asteroids enter highly eccentric orbits
- Approach stellar remnant tidally ripped apart

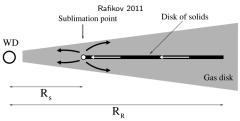
$$R_{tide} = C_{tide} R_{WD} \left(\frac{\rho_{WD}}{\rho_{ast}}\right)^{1/3}$$

$$\begin{array}{c} R_{WD} = 0.01~R_{\odot} \\ \text{For} \quad M_{WD} = 0.69~M_{\odot} \\ \rho_{\textit{ast}} = 3~\mathrm{g~cm}^{-3} \end{array} \right\} R_{\textit{tide}} = 0.7~R_{\odot}$$

Figure: Fragmented Comet Shoemaker-Levy 9

Disk Formation

- Initially fragments stay on orbits similar to host
- Inward migration facilitated by Poynting-Robertson drag


$$\tan\left(\frac{\theta'}{2}\right) = \sqrt{\frac{c-v}{c+v}}\tan\left(\frac{\theta}{2}\right)$$

▶ Decay time $\sim .003 - 3$ Myr

Figure: Relativistic aberration of light

Disk Formation

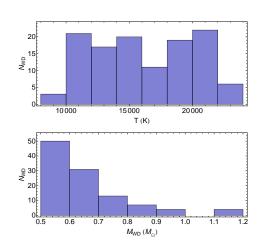

- ▶ Inner boundary set by sublimation radius (typically $\sim 0.1~R_{\odot}$)
- Outer boundary set by radius of tidal disruption (typically $\sim 1~R_{\odot}$)

Figure: Debris disk surrounding white dwarf GD362

Sample

► 119 cool DA WDs from Palomar-Green catalogue

Photometry

- ▶ 114 WDs
- ► J (1.2μm), H (1.6μm), K (2.2μm)

Figure: 1.3 m Peters Automated InfraRed Imaging TELescope (PAIRITEL)

Photometry

- ▶ 25 WDs
- \blacktriangleright 3.6, 4.5, 5.8, and 8 μ m

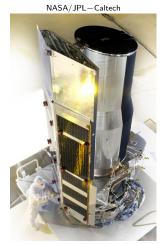


Figure: 0.85 m Spitzer Space Telescope prior to 2003 launch

Spectroscopy

▶ 42 WDs

▶
$$0.8 - 5.4 \mu m$$

$$\frac{\lambda}{\Delta} = 150$$

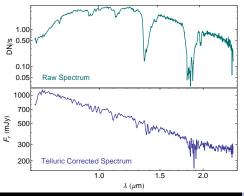


Figure: 3 m NASA InfraRed Telescope Facility (IRTF)

Blackbody Deviations

- Scale each WD's spectrum and blackbody to J-band photometry
- Look for excess $\geq 3\sigma$ deviation from blackbody

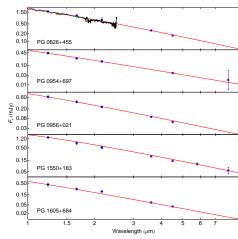


Figure: Five white dwarfs with non-detections of excess IR radiation

Blackbody Deviations

- ▶ 5 out of 119 white dwarfs exhibit excess IR emission
 - Frequency = $4.2^{+2.7}_{-1.2}\%$

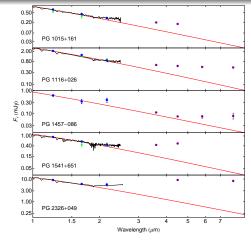


Figure: Five white dwarfs with detections of excess IR radiation

Error Analysis

Binomial probability distribution function

$$P_n(N,p) = (N+1)\frac{N!}{n!(N-n)!}p^n(1-p)^{N-n}$$

▶ 68% confidence confidence level (1σ Gaussian)

$$\int_{\rho_{low}}^{1} P_n(N, \rho) d\rho = \int_{0}^{\rho_{up}} P_n(N, \rho) d\rho = 0.84$$

$$\int_{\rho_{low} = 0.030 \ \rho = 0.042}^{\rho_{up} = 0.069} P_n(N, \rho) d\rho = 0.84$$

$$\int_{\rho_{low} = 0.030 \ \rho = 0.042 \ \rho_{up} = 0.069}^{\rho_{up} = 0.069} P_{up}(N, \rho) d\rho = 0.84$$

Initial-Final Mass Relation

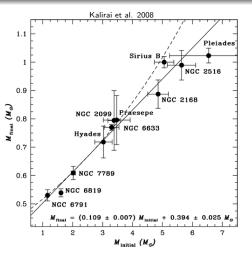
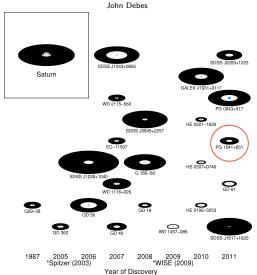
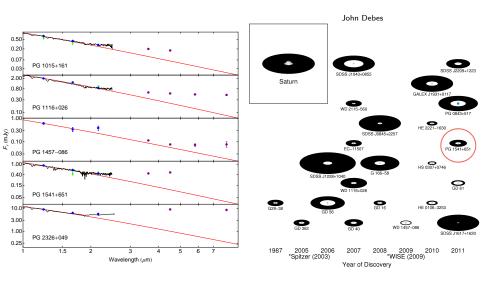


Figure: Initial-final mass relation

- Average MS mass = $2.3 M_{\odot}$
- ▶ MS mass range = $1.1 7.2 M_{\odot}$

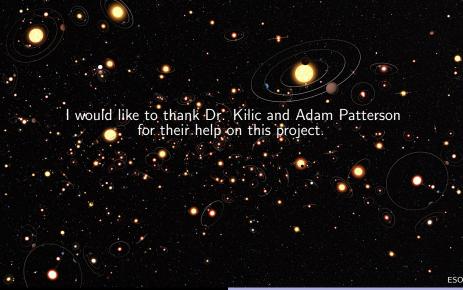



Frequency of planets around $1 - 7M_{\odot}$ MS stars $\geq 4.2^{+2.7}_{-1.2}\%$

Conclusions

- 1. Frequency of debris disks around WDs $4.2^{+2.7}_{-1.2}\%$
- 2. Debris disks persist for $4.2^{+2.7}_{-1.2}\%$ WD cooling time
 - Average cooling age = 340 Myr
 - ightharpoonup Observed WD accretion rate = $10^8 10^{11} \text{ g/s}$
 - lacktriangle Average total mass accreted $= \left\{ egin{array}{ll} 0.003 & -3.0 & M_{
 m pluto} \ 0.0006 & -0.6 & M_{
 m luna} \ \end{array}
 ight.$
- 3. Frequency of planets around $1-7\ensuremath{M_{\odot}}$ MS stars $\geq 4.2^{+2.7}_{-1.2}\%$

Menagerie of Disks



Future Work

- Wide-field Infrared Survey Explorer
- All-sky imaging survey in 3, 5, 12, and 22 μ m
- Data released March 2012
- Expand sample

Figure: WISE prior to 2009 launch

