For a constant acceleration a, you can derive useful equations that relate two specific points in time, called the initial time t_i , and final time t_f , as well as the initial position $x_i = x(t_i)$, the final position $x_f = x(t_f)$, the initial velocity $v_i = v_x(t_i)$, and the final velocity $v_f = v_x(t_f)$. For example, in one dimension defined by an x-axis,

$$v_f = v_i + a\Delta t \tag{1}$$

$$x_f = x_i + v_i \Delta t + \frac{1}{2}a(\Delta t)^2 \tag{2}$$

$$v_f^2 = v_i^2 + 2a\Delta x \tag{3}$$

where $\Delta t = t_f - t_i$, and $\Delta x = x_f - x_i$.

- 1. You release a ball from rest and it falls without friction or air resistance. What is its velocity after it has fallen a height h? Leave in terms of the acceleration due to gravity, g.
- 2. You throw a ball upward with an initial velocity, v_o . What is the maximum height it reaches? Leave in terms of the acceleration due to gravity, g.
- 3. You throw a ball upward with an initial velocity of 19 m/s when your hand is 1.5 m above the ground. How long is the ball in the air before it hits the ground. (You move out of the way.)
- 4. An object is sliding across the floor. It starts with a speed of 3.2 m/s but is slowing down at a rate of 0.6 m/s^2 . how long does it take to stop?
- 5. A bad driver is driving at 20 m/s when they see a light turn yellow 50 m ahead. They accelerate at 5 m/s² to try to beat the light. How fast are they moving when they get to the intersection? How long does it take for the car to get there?
- 6. A car going 30 m/s slams on their brakes, decelerating at a rate of 20 m/s², but still hits a parked car 1.3 seconds later. how far apart were the cars when the person slammed on their brakes? What was the speed of the first car when they collided?