Visualizing with VESTA to Plot Cross Sections of Electron Densities of Gold and Sulfur Bonding Atoms

Grace Ward Advisor: Dr. Lloyd A. Bumm Experimental Condensed Matter Physics University of Oklahoma REU Program 2020 July 31, 2020

Motivation

- Au-S bonding is not completely understood
 - Least understood part of SAMs (self-assembled monolayers)
- Applications for SAMs:
 - Electronics
 - Nanotechnology
 - Surface Modifications

atop

bridge

hollow fcc

hollow hcp

Adsorption Sites on Au(111) Surface

- Atop
- Bridge
- Hollow-fcc (face centered cubic)
- Hollow-hcp (hexagonal close packed)

Bridge Site: Top-Down View

Bridge right = bridge-fcc (face centered cubic)

al

~25 meV More

stable

Problem: What makes them different? Bridge left = bridge-hcp (hexagonal close packed)

Terms:

- Bands (orbitals): the range of energies that an electron may have within it
- Occupancy: filling orbitals with electrons
 - $\circ \quad Filled \to 1$
 - \circ Empty $\rightarrow 0$

Determining Bands

- COOP (Crystal Orbital Overlap Population)
- -12.5 to -10.8 eV corresponds to our data as bands 7-47
- Below Fermi Level
 - Occupancy =1, filled state
- Above Fermi Level
 - Occupancy =0, empty state

F. P. Cometto, P. Paredes-Olivera, V. A. Macagno and E. M. Patrito, J. Phys. Chem. B 109(46), 21737 (2005)

- VASP (Vienna Ab initio Simulation Program) → density functional theory (DFT) program
- $c2x \rightarrow to convert dataset files to smaller files$
- VESTA (Visualization for Electronic and STructural Analysis) \rightarrow 3D visualization program for crystal structures and volumetric data

We were all learning!

Input Data to Output Visualization

<u>Unit Cells</u>

- VESTA: Bridge Right
- Isosurfaces \rightarrow polarity
- Adsorbate Layer
- Periodic Gold Structure

Cross Sections

- Contours lines of the electron densities
- VESTA: Atop
 - 3 planes
 - 1 plane

Observations

Initial plots \rightarrow total charge densities

Study orbitals at different energy ranges where Au-S bonding is expected

C

Bridge Right

Charge Density Difference

 $= \rho_{AB} - \rho_A$

 $AB \rightarrow CH_3$ -S-Au(111)

A (Adsorbate) \rightarrow CH₃-S

B (Substrate) \rightarrow Au(111)

Charge Density Difference - Bridge Right

Conclusion and Future Work

- We learned how to use c2x and VESTA
- Plotted total charge densities
- Plotted charge density differences

Future work:

- Continue working with VESTA
- To plot more charge density differences \rightarrow bands

Acknowledgements

Thank you,

Dr. Bumm and his group,

Dr. Speyer and Dr. Ferry from Arizona State University,

Dr. Strauss and Dr. Abbott.

