Electron Carrier Density and Mobility in Semiconductors

OU REU 2019

Evelyn Vargas Olmos

Dr. M Santos

Ryan O'Toole

Preliminary Work:

- Equations
- Used to make predictions of the band gap energies
- Different material compositions have different properties that are also affected by doping

Material Compositions:

- Two sample sets:
 - B086, 1 sample, III-V, Dr. Santos, doped
 - CdSe, 3 samples, II-VI, Dr. Shi, doped
- Properties: Materials for solar cells and transparent conductors
 - PN junctions in solar cells
 - allow light to pass through the metal in infrared detectors

Fig. 1: Ning, Cz. "Bandgap Engineering in Semiconductor Alloy Nanomaterials with Widely Tunable Compositions." *Nature Reviews Materials* 2.12 (2017): 17070. Web.

Growing Process:

- B086 grown in an MBE
- Dr. Shi's samples were grown through an evaporation process

Layer Structure:

- Grown in layer structure that uses the materials' crystalline structures
- Super Lattice is created, but we are focused on a single layer
- B086:
 - 5 nm GaSb
 - 50 nm doped w/ Te
 - 100 nm n-type doped w/ Te
 - 1000 nm AlAsSb
 - 500 microns GaAs

n⁺-GaSb 5 nm
n* - Al _{0.35} In _{0.65} As_1x10 ¹⁸ 25 nm
i - AIAs _{0.16} Sb _{0.84} 30 nm
— i — InAs 2.1 nm/AlAs _{0.16} Sb _{0.84} 5 nm
<i>i</i> – AlAs _{0.16} Sb _{0.84} 50 nm
p ⁺ – AlAs _{0.16} Sb _{0.84} : 1x10 ¹⁸ 1μm
p ⁺ - GaAs substrate

The Hall Effect:

- Measurement Method
 - Sample wired with gold to In contacts
 - Reduced temperature, ranged from 297K to 25K
 - Electric current run through the contacts

Measurements:

- 2pt, checks that the contacts are ohmic relation, conductivity
- 4-pt, resistivity of the sample
- Hall Measurement; the Hall Voltage created, a magnetic field is present, carrier density deduced
- Combination of the measurements results in the mobility

The Hall Effect and its Interpretation:

- B086, Dr. Santos
- Interpolation of the information:
 - The carrier changes from nto p-type
- Need more information on the effects caused by the dopant

The Hall Effect and its Interpretation Cont'd...

- 3 samples from Dr. Shi
- Specifically searching for the carrier density and the mobility
 - Looking at the electron density
 - Varied results

Sample Parameters:

- CdSe_1:
 - Unannealed, 1800 nm
- CdSe_2:
 - Annealed at 200 C for 40 min, 1200 nm
- CdSe_3:
 - Annealed at 350 C for 30 min, 1200 nm

Mobility Temperature Dependence:

Expected Results:

- Dopant (Ionized Impurity)
- Piezoelectric effect

Wolfe, C M., et al. "Electron Mobility in High-Purity GaAs." *Journal of Applied Physics*, vol. 41, no. 7, 19 Nov. 1970, pp. 3+, doi:10.1063/1.1659368.

Significance and applications:

- Applications in industry, particularly components of solar cells and infrared detectors
- CdSe is a good transparent conductor in the infrared

Acknowledgments:

- Dr. Shi's Research group
- Dr. M. Santos
- Ryan O'Toole
- OU REU Program Coordinators