Analysis of a Higgs decay Control Region

Katherine Sloan Mentor: Dr. Strauss University of Oklahoma

Introduction

- The Standard Model unifies 3 of the elementary forces and classifies elementary particles
- ° Higgs boson-the last Standard Model particle to be discovered
- ° Decay channels
- ° Higgs->WW->eυμυ
- ° SM predicts how often different decays happen
 - ° We want to confirm/find deviations from SM

- **LHC and ATLAS** \circ The LHC collides protons \circ Energy = 13 TeV \circ *E* = *mc*²
- ATLAS sees the collision debris
 Cylindrical detector
 Transverse momentum

Data Analysis Techniques

° Monte Carlos

- ° Signal vs control regions
- ° Orthogonal cut/selection criteria to data
- Control regions are dominated by a single particle

ttbar control region, 0 jets (left) and 1 jet (right)

Programming Tools

• ROOT

 \circ C++ coding

• Different graphing methods

- ROOT tuples and trees
 - Preselections
 - Chaining
 - Stackplots

WW 1 jet Control Region

 \circ About three times the data used in the original graph

- \circ Colors for the right plot are similar to those for the left one
- These graphs were each made using different programs and data formats

ht vector sum with 1 jet WW(magenta), ttbar(blue),

Variable Distributions

- Applied Cuts corresponding to the WW 1 jet control region
- Normalized to same area
- These were analyzed for all variables in the root tuples and for combinations of variables, meaning that over 80 of these pairs of graphs were created

Variable Correlation Check

- Yellow = more events
- Blue = less events
- Top graph shows a good deal of correlation
- Bottom graph shows much less correlation, as both variables have a somewhat uniform distribution centered around a number

Attempted New Cuts

- Second plot has slightly greater percentage of WW (from 37% to 45%)
- Overall number of events was halved
- Probabilistic indicator, $\frac{s}{\sqrt{s+b}}$, where s is signal (WW) and b is background (ttbar) favored the original
- \circ Yellow = ttbar; purple = WW

Moving to a More Complex Analysis

- Making New ROOT tuples
 - Include the original cuts only
- Multivariate Analysis (MVA)
 - Boosted Decision Trees (BDT)
- Outputs like this graph inform overall efficacy of certain BDT cuts

My Next Steps Are...

- Running the BDT multiple times to determine which variables are best to use in the analysis
- Adding data to the BDT results
- Expanding the MVA analysis to other control regions for this same decay channel

Acknowledgements

- Dr. Strauss
- University of Oklahoma

