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Outline of festivities

• I. Introduction to the problem

• II. Preliminary quantum mech.

• III. Two Ring Cases

• IV. Three Ring Cases

• V. Rings in Magnetic Fields

• VI. Future Directions
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Why are we here? 

• What is topology?
• Connectedness

• Boundary conditions

• Holes

• Why do we care?
• 1D quantum rings: topological 

polarization

• Where do we go from here?
• Tunneling
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Preliminaries – δ-function potentials

• Intuition: Attractive δ-function 
potential in 1D creates a 
bound state
• Lower energy than propagating 

states 

• Exponential localization of 
wavefunction
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Preliminaries – quantum wires

• Crossed quantum wires with point of 
contact tunneling

• Zero Boundary Conditions (ZBC) at ± L
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Preliminaries – ZBC Results
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• Exponentially localized bound state!

• Positive coupling constant causes a phase shift of π between 
the two wires



Setting up the rings
• How do we make the wires into rings? We have two choices for 

connecting the edges
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• These options are topologically distinct!
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Two ring results - Wavefunctions
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Two ring results - Spectra
• Different topologies lead to different degeneracies and different  

spectra
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Three rings and geometrical frustration

• Triangular lattices can create geometrical frustration

• Alternating systems not self consistent, adopt complicated forms
• Ising Model Spin Lattices
• Three Rings with a > 0?
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Three ring results
• Successfully see frustration!

• Triply degenerate at a = 0
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Doubly degenerate

Non-degenerate



Three ring topology – two hole
• Doubly degenerate at a = 0
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Three ring topology – one hole
• Two Embeddings:

• Triple Crossing (A): • Double Crossing (B):
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Preliminaries –AB Effect

• 1959: Y. Aharonov and D. Bohm show an e- moving along a path P in
picks up a phase:

• Jumps cause a phase, but what is the path?

• “Over” and “under”-ness of crossings matters!
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Preliminaries – Knot Theory
• Our tool for this description of systems and crossings

• Two useful ideas:
• Knottedness: can you deform one embedding into another?

• Writhe: counts the total number of “over” or “under” crossings

Writhe: +1 Writhe: -1
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Mickey Mouse Ears (Double Crossings)
• Equivalent to the unknot, but two possible writhes

Writhe: 0 Writhe: 2
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Trefoils (triple crossings)
• Can be equivalent to trefoil knot or unknot: distinguished by writhe

Writhe: 3
Trefoil

Writhe: 1
Unknot
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Conclusions and next steps

• Systems of quantum rings offer the ability to see both topological and 
pseudo-topological effects in an experimentally viable setting
• Effects observed in both the presence and absence of external fields

• Currently conducting research on these effects on larger systems of 
rings, and crystal lattices of rings

• Future research to investigate magnetic phase commensuration
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Two ring results - Gradients

• Different topologies lead to introduction of unbound state in figure 
eight
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