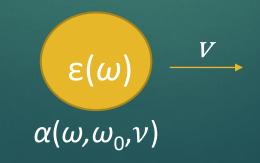
Casimir Friction

Bill McNulty Mentor: Dr. Milton University of Oklahoma

Background


Short-range electromagnetic force

Quantum interpretation involves dipole and field fluctuations

Sign of the force can vary

Scenario

Isotropic spherical particle moves through vacuum
Particle is made of polarizable dielectric
Constant velocity
Force in direction of motion represents friction (if negative)
Particle and background temperatures can be different

Polarizability Equation

Lorentz oscillator model:

$$\blacktriangleright \alpha(\omega) = \frac{4\pi}{3} a^3 \frac{\omega_p^2}{\omega_1^2 - \omega^2 - i\omega\nu}$$

• *a* is radius, ω_p is plasma frequency, ν is damping parameter, ω_1 is shifted resonance frequency $\left(\omega_1 = \sqrt{\omega_0^2 + \frac{1}{3}\omega_p^2}\right)$

•
$$Im[\alpha(z)] = \frac{4\pi}{3} a^3 \frac{(\beta'\omega_p)^2 zy}{(x^2 - z^2)^2 - y^2 z^2}$$

 $x = \beta' \omega_1, \ y = \beta' \nu, \ z = \beta' \omega, \ r = \beta/\beta'$

• β is inverse temperature of background, β' is inverse temperature of particle

Force Equation

Force in direction of motion given by:
F = - ¹/_{2π²γ²β'} ∫₀[∞] dz z⁴ Im[α(z)] ∫_{-u_-}^{u₊} du u (¹/_{e^{z-1}} - ¹/<sub>e<sup>rz(¹/_γ+Vu)-1</sub>)
v is velocity, γ = ¹/_{√1-V²}
u₊ = √^{1+V}/_{1-V}, u₋ = √^{1-V}/_{1+V}
Overall factor of - ^{2a³}/_{3π} ^{ω²p^y}/_{γ²β'} neglected in results that follow
</sub></sup>

Method

Numerical integration of force equation

Interested in conditions that lead to sign change

Fixed $\beta' = 40 \text{ eV}^{-1}$ for simplicity

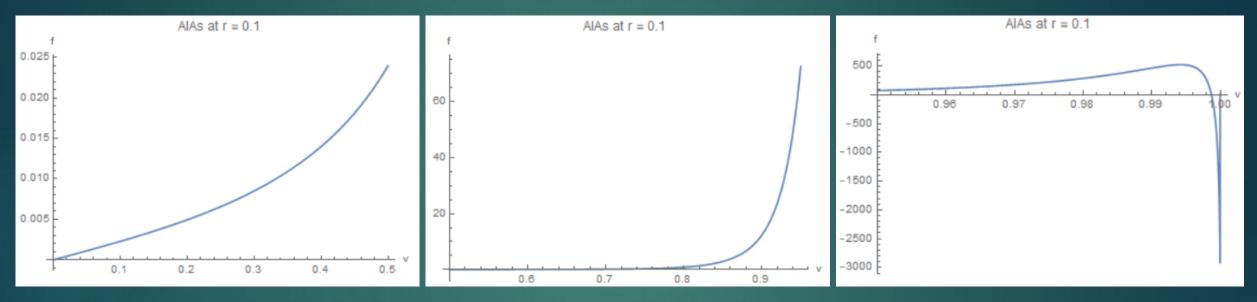
• Looked at critical value of r for v = 0.1 and v = 0.9

• Looked at critical value of v for r = 0.1

Method

Considered 17 different substances

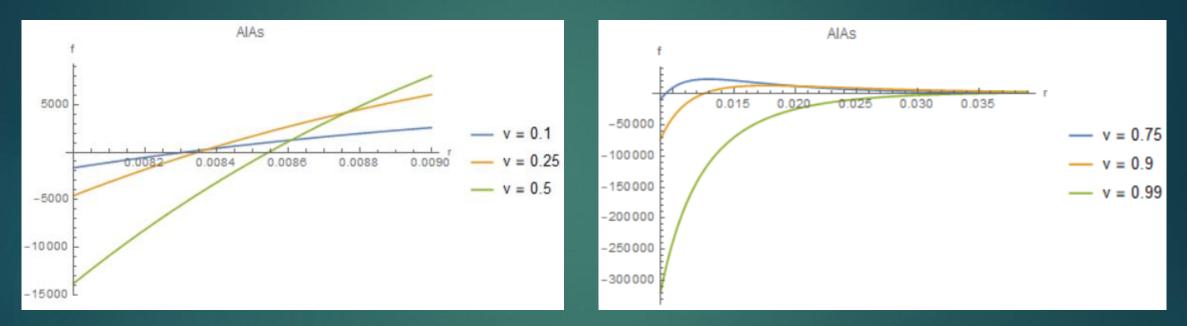
Many "typical" values, a few outliers


	<i>y</i> = 1-10	10-50	50-100	100-350
x = 0-100		1		
100-300	1	1	1	
300-500	1	3	2	1
500-700	2	1		
700-900		2		1

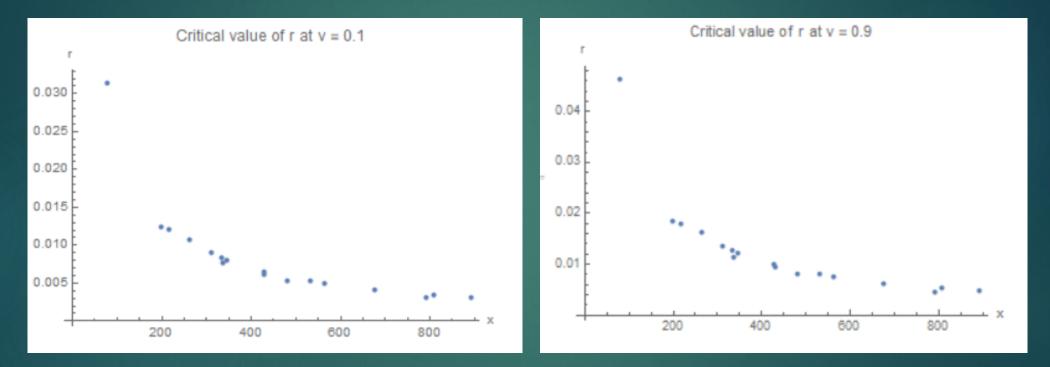
• Minimum x = 78.95, maximum x = 890.49

Minimum y = 4, maximum y = 336.64

Example: AlAs

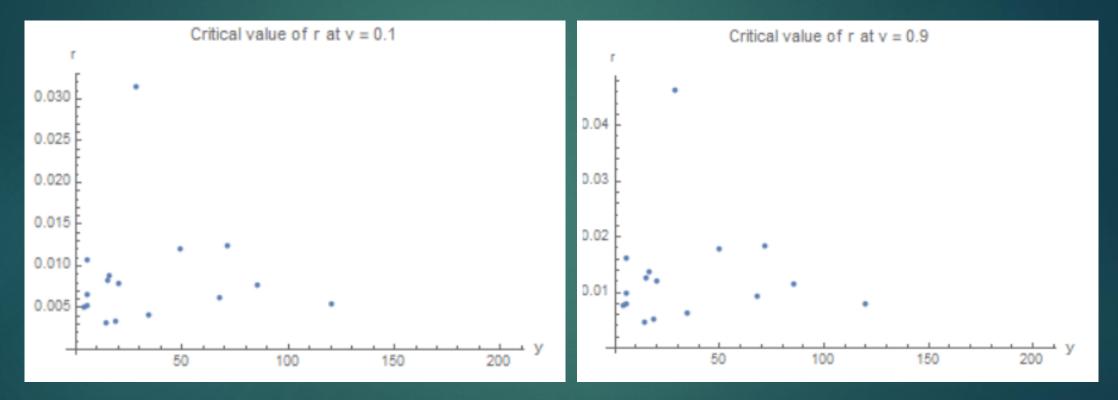

Force vs. velocity for r = 0.1:

- Force is reduced by overall factor of $-2.04 \times 10^{-8} \gamma^{-2}$
- ► *x* = 334.45, *y* = 15.12
- Peak at 520.917 for v = 0.994204
- ▶ Negative at ultra-relativistic velocities, v > 0.998697


Force near critical value of r for various v:

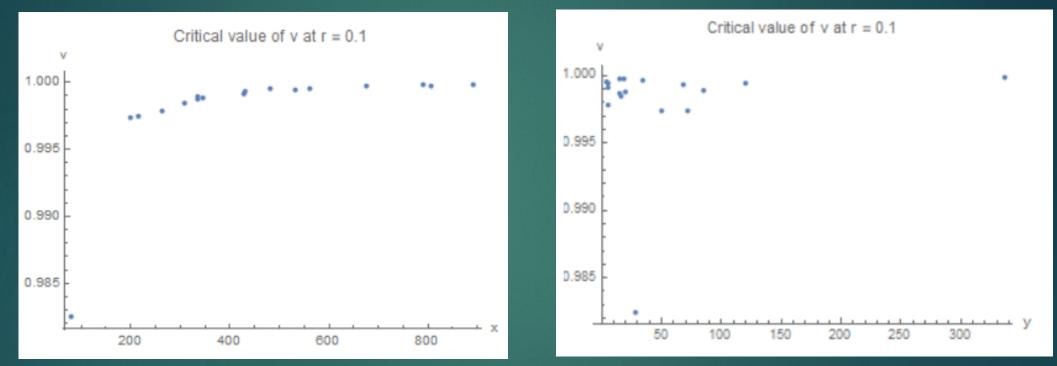
- $\blacktriangleright \quad \text{Critical value of } r \text{ increases with velocity}$
- Increases faster at higher velocities

Results


• Critical value of r vs. x at fixed v

• Critical value of r increases with decrease in x

Results


• Critical value of r vs. y at fixed v

• Critical value of r not well-correlated with y

Results

• Critical value of v vs. x at r = 0.1

Critical value of v vs. y at r = 0.1

- Critical value of v increases slightly with x
- Not well-correlated with y

Conclusion

Force typically changes sign at high v and/or low r (environment hotter than particle)

Critical values appear to be more strongly dependent on x than y

Critical values are less extreme at low x (low resonance frequency and/or high particle temperature)

Acknowledgments/References

Acknowledgments

- Dr. Milton and his group
- Dr. Abbott and Dr. Strauss

References

- K. A. Milton, H. Day, Y. Li, X. Guo, G. Kennedy, "Self-force on moving electric and magnetic dipoles: dipole radiation, Vavilov-Čerenkov radiation, friction with a conducting surface, and the Einstein-Hopf effect" (2020) [arxiv:2006.15375 [hep-th]].
- ▶ Horiba, Ltd., "Lorentz Dispersion Model," TN08 (2006).

Questions?