Emergent Phenomena in Topological Flat Bands

Brigham Godwin University of Oklahoma Mentor: Dr. Bruno Uchoa

The N-Body Problem

N = • 1 • 2 • 3 • 4

• 10²³ Particles..?!

Emergent Phenomena

"More is different"

- Superconductors
- Superfluids
- Topological Insulators
- Semiconductors
- Quantum Spin Liquids

Naturally occurring emergent phenomena (1)

Quantum locking of magnet and superconductor (2)

Topological Flat Bands

 "Flat bands" are systems where energy is independent of momentum

Honeycomb lattice structure of graphene (3)

Topology..?
Symmetries
Conserved Quantities

Edge states in the quantum Hall effect (4)

Why does condensed matter...matter?

- Broad applications across many fields of study
- Describes the world we see around us
- Important technological applications
- Active area of research, many unanswered questions

Questions?

- Resources:
- 1. https://manyworlds.space/2019/02/14/all-about-emergence/
- 2. https://newscenter.lbl.gov/2022/03/24/exotic-superconductors-superpowers/
- Hirotsu, Masaki & Onogi, Tetsuya & Shintani, Eigo. (2013). Position space formulation for Dirac fermions on honeycomb lattice. Nuclear Physics B. 885. 10.1016/j.nuclphysb.2014.05.014.
- 4. Shen, S.-Q. (2012). Topological insulators (2nd ed.). Springer Berlin Heidelberg.