Using Machine Learning to Increase the significance of our measurement of WW_Y

Caroline Doctor

OU Summer REU 2020

QUICK REMINDER

• significance = sigma value

significance of 5 σ = 5 standard deviations away from mean; 1 in 3.5 million chance of being a fluctuation

• significance = number of most likely signal events / square root of number the most likely background events

WHY INCREASE SIGMA?

dσ

$$N = \sigma L \rightarrow \sigma = \frac{N}{L}$$

Example: 100 signals total

- 60 with pT between 20-30
- 20 with pT between 30-40
- 10 with pT between 40-50
- 10 with pT > 50

N = # of events
σ = cross-section
L = luminosity

pT

MY PROJECT

- I give the BDT variables and set the parameters
- It sorts the collision events
- a second code will translate the BDT results into a variable called "classifier" ranging from 1 to -1
- -1 = most likely background
 - 1 = most likely signal
 - We can cut on the classifier variable

BOOSTED DECISION TREES

- boosted decision trees are sequential and seek to improve in the next tree what the previous tree didn't do well
- "Each successive tree uses the residuals of the previous tree"

NOT ALL BACKGROUNDS ARE EQUAL

• 2 types of backgrounds: ones containing real photons, and ones containing 'fake' photons

FAKE PHOTON BACKGROUNDS

- ZZ
- Diboson
- Zjets
- Wjets
- ttbar
- tW

REAL PHOTON BACKGROUNDS

- Wy
- tty
- Zy

QUICK VARIABLE RUNDOWN

- Photon ID Variables:
- just various shower shapes in the calorimeter.

Ph1rhad1 Ph1rhad Ph1reta Ph1weta2 Ph1rphi Ph1fracm Ph1deltaE Ph1ws3 Ph1wstot

QUICK VARIABLE RUNDOWN

n

Rθ

¦ pT

transverse view

- missing transverse energy (MET)
- invariant mass of the two leptons (mll)
- Eta (η)
- transverse momentum (pT)
- number of jets produced (Njets)

$$\eta = -ln(tan(\frac{\theta}{2}))$$

beam view /side-view

QUICK VARIABLE RUNDOWN

¦ pT

θ

- Physics variables that are functions of others:
- theta of each particle (θ)
- momentum of each lepton and the photon (p)
- the transverse mass (MT)
- the \triangle R between all three particles

$$MT = \sqrt{2 * pT * MET(1 - cos(\varphi - \varphi_{MET}))}$$

beam view /side-view

HICCUPS ALONG THE WAY

- 1) Typos/errors in one code affecting the next code.
- 2) BDT code allowed "function" variables but the code creating our classifier variable did not.
- 3) Simple variables weren't enough to differentiate between signal and background so the function variables had to be included somehow if we wanted results.

Solution: repurpose the classifier variable code

RUNNING PROCESS

repurposed classifier variable code

writes out all regular variables and the function variables as regular variables into a root file

train + test over the photon ID variables

creates classifier for Photon ID BDT

take in all variables and create new root file with new classifier0 variable included

2nd BDT - over Physics Variables

train + test over the physics variables

creates classifier for Physics BDT

take in all variables and create new root file with new classifier1 variable included

analyze results

BDT RESULTS

Photon ID

Photon ID

WWy

tty

Wjets

Wy

SO WHAT DID WE GAIN?

- 1) We know which variables when run through a BDT will enable us to increase the significance by 30%
- 2) Know the parameters required for this result
- 3) Know which backgrounds the BDT will most likely mistake as WWy
- 4) Have codes ready to go to run the real data through instead
- of the Monte Carlo simulated data

thanks for listening!

credit to Slidesgo again for the slides template and a big thank you to OU for having me (virtually) for the summer!

1st CODE : TMVAClassification.C

- 1st Code I worked with and was able to begin adjusting.
- It hasn't been used in 2 years so had to swap out the variables for updated versions and make sure it ran.
- Eventually got it to run and had a great plot:

Blue is signal, Red is background. The dots are from the training and the bars are from the test.

1st CODE : TMVAClassification.C

- 1st Code I worked with and was able to begin adjusting.
- It hasn't been used in 2 years so had to swap out the variables for updated versions and make sure it ran.
- Eventually got it to run and had a great plot:

Add in cuts that there must be one electron, one muon and at least one photon:

without cuts

with cuts

1st CODE : TMVAClassification.C

- What Changed?
- The size of sample was now much smaller.
- less events for the BDTG to train on therefore worse results.

SOLUTION?

• try splitting up the BDTG into training on two sets of variables: the ones relevant to the physics and photon shower shapes; allowing it to focus on one set at a time instead of dividing its attention and doing a poor job.

2nd CODE : ApplicationCreateCombinedTree.C

- This code basically would just rewrite all the variables into a new .root file while also creating a new variable "classifier" which was the likelihood of an event being signal or background on a scale of -1 to 1.
- -0.9 being a high likelihood of being a background event,
 0.9 being a high likelihood of being a signal event,
 0 being it's equally likely to be background or signal based off the BDTG's assessment.

2nd CODE : ApplicationCreateCombinedTree.C

Since we split into photon ID specific variables and physics related variables and are running two BDTGs, we are actually getting two sets of classifier variables:

- classifier0 is an event's likelihood of being signal based off the photon ID variables.
- classifier1 is an event's likelihood of being signal based off the physics variables.

MY PROJECT

- Using Boosted Decision Trees (BDTs) to increase σ
- TMVA: Toolkit for Multivariate Data Analysis
- Multivariate Analysis = analysis that takes into account multiple
 - measurements made on each experimental unit and the relations among
 - those measurements.