Characterizing a

Microwave Cavity

Kellan Brown

Dr. Marino




New, emerging field

Many applications
Enhanced computing
Sensing
Privacy

Communication




Interaction Between Light and Atoms

Energy States

» When field is on resonance,
electron jumps states

» Photon is absorbed, then
photon is emitted

» Optical pumping




Interaction in Rubidium

Energy States of
Rubidium

» Substates are separated by 3.036
GHz

» Looking to couple the two IS
substates together §
S
!

» Astrong field is required for
coupling to occur

13.036 GHz



Cavities

» Optical Cavities

» A hollow object with two
parrallel mirrors

» Light is bounced between the
mirrors, where resonant
wavelengths will be amplified

» Microwave cavities have
different boundary conditions
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Microwave
Cavity

» Cylindrical Cavity

» Creates an electrical
and a magnetic field




Characterizing
the Cavity

» Microwave signal is
sent to cavity

TM and TE Modes
» Off resonance are sent
back to spectrum < 0
analyzer -
c -5
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Characterizing
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TM Mode

Cavity Resonant Frequency
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Changing the Resonant
Frequency

» Cavity length increased in the z-

. . 14.0
direction
» As Length decreases, frequency 513-5
increases =
. . o130
» Higher temperature increases c
resonant frequency i 5B
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Changing the Resonant

Frequency | \
» As Length increases, depth of 1.05
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Inside the Microwave Cavity
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Electron States

Single Beam

§
S
D
» Absorption spectra of
Rubidium
13.036 GHz
» Dips correspond with

transition from one .

state to another Beam Transmission
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Electron States

Single Beam
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Initial
Effects

» Each section has
a particular amount
of absorption

» The cavity
creates more
absorption
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Initial
Effects

» Each section has
a particular amount
of absorption

» The cavity
creates more
absorption

» Now, we put
all the transmission
data together

Change in Transmission
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Effects Microwave Field

With Microwave Field

has on Beam i
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Effects Microwave Field
has on Beam

Beam Transmission

=
o

Transmission (Arb. Units)

oy

o

0.2

0.4 0.6
Time (Frequency)

0.8

1.0

1.0

o o o
B (o)) o

Time (Frequency)

=
N

0.0

— S e e e e e e e e
. o

—

With Microwave Field

10

4 6 8
Data Points




Effects Microwave Field ~ With Microwave Field
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Effects Microwave Field ~ With Microwave Field
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Four-Wave Mixing
Process (FWM)

» Two photons are absorbed
» Electron gains then loses energy

» Two photons that are entangled
are then emitted

Energy States




Four-Wave Beam Transmission

Four-Wave Mixing  @»
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Four-Wave Beam Transmission

Four-Wave Mixing  @»
=
. 80 |
Process Cont. E ;
= e
S |
. . B 40 i
» Absorption spectra ascociated = |
with four-wave mixing £ 2 \ .
— 0 N |
0.2 0..4 0.6 0.8 1.0
» Depending on the temperature, Tk (FreduUency)
one peak will increase and the
other with decrease Single Beam Transmission
1'0\15‘
5 \ //M\ ///w
» Spectra broken into sections = ; \
again SE’:m \ ff \ ;/
s \\ X | |
= \ | ~‘ |
g 5 \ f \\ |
c "\ | | |
© / \ /
g | i \
0 0.2 0.4 0.6 0.8 1.0

Time (Frequency)



Off Resonance
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Off Resonance
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Conclusion

» Resonant frequency was characterized
» Position decreased as temperature and length decreased

» Width and depth decreased as length increased

» Cavity was shown to influence interaction between light and atoms

» Cavity has shown increased gain in FWM




