Characterizing a Microwave Cavity

Kellan Brown

Dr. Marino

Quantum Technology

- ▶ New, emerging field
- Many applications
 - Enhanced computing
 - Sensing
 - Privacy
 - Communication

Interaction Between Light and Atoms

- Photon is absorbed, then photon is emitted
- Optical pumping

Interaction in Rubidium

- Substates are separated by 3.036
 GHz
- Looking to couple the two substates together
- A strong field is required for coupling to occur

Cavities

- Optical Cavities
 - A hollow object with two parrallel mirrors
 - Light is bounced between the mirrors, where resonant wavelengths will be amplified
- Microwave cavities have different boundary conditions

Photo Credit: : Intorduction to Optics: Pedrotti

Cavities

- Optical Cavities
 - A hollow object with two parrallel mirrors
 - Light is bounced between the mirrors, where resonant wavelengths will be amplified
- Microwave cavities have different boundary conditions

Photo Credit: : Intorduction to Optics: Pedrotti

Microwave Cavity

- Cylindrical Cavity
- Creates an electrical and a magnetic field

Photo Credit: : Rev. Sci. Instrum. 82, 074703 (2011); https://doi.org/10.1063/1.360 6641

Characterizing the Cavity

- Microwave signal is sent to cavity
- Off resonance are sent back to spectrum analyzer
- On resonance enters the cavity

Characterizing the Cavity

- Microwave signal is sent to cavity
- Off resonance are sent back to spectrum analyzer
- On resonance enters
 the cavity
 Out

(0)

Characterizing the Cavity

- Microwave signal is sent to cavity
- Off resonance are sent back to spectrum analyzer
- On resonance enters
 the cavity
 Out

(0)

TM Mode

Changing the Resonant Frequency

- Cavity length increased in the zdirection
- As Length decreases, frequency increases
- Higher temperature increases resonant frequency

Changing the Resonant Frequency

- As Length increases, depth of the peak decreases
- As length increases, the width of the peak decreases

Inside the Microwave Cavity

Inside the Microwave Cavity

Inside the Microwave Cavity

- Absorption spectra of Rubidium
- Dips correspond with transition from one state to another

Single Beam

- Absorption spectra of Rubidium
- Dips correspond with transition from one state to another
- We can observe transmission at a single point in the spectra

Initial Effects

- Each section has a particular amount of absorption
- The cavity creates more absorption

Initial Effects

- Each section has a particular amount of absorption
- The cavity creates more absorption
- Now, we put all the transmission data together

Effects Microwave Field has on Beam

Effects Microwave Field has on Beam

Four-Wave Mixing Process (FWM)

- Two photons are absorbed
- Electron gains then loses energy
- Two photons that are entangled are then emitted

Energy States

Four-Wave Mixing Process Cont.

- Absorption spectra ascociated with four-wave mixing
- Depending on the temperature, one peak will increase and the other with decrease
- Spectra broken into sections again

Four-Wave Mixing Process Cont.

- Absorption spectra ascociated with four-wave mixing
- Depending on the temperature, one peak will increase and the other with decrease
- Spectra broken into sections again

On Resonance

On Resonance

Conclusion

- Resonant frequency was characterized
 - Position decreased as temperature and length decreased
 - Width and depth decreased as length increased
- Cavity was shown to influence interaction between light and atoms
- Cavity has shown increased gain in FWM