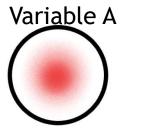
OU Physics REU Final Talk: Quantum Metrology in an Interferometer

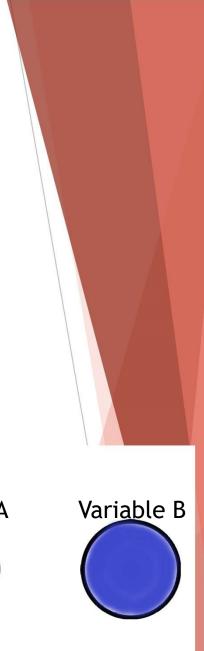
By Samuel Bayliff

Background: Quantum Metrology

- Study of quantum measurements, especially the uncertainty
- Traditional uncertainty: $\Delta C^2 = \Delta A^2 + \Delta B^2$
- Doesn't work for variables that aren't independent
 - Instead, we have covariance terms
 - $\blacktriangleright \Delta C^{2} = \Delta A^{2} + \Delta B^{2} + Cov(A, B) + Cov(B, A)$
 - We can use this to get a better result

The inter-parameter dependencies come from the Hamiltonian and the input state.





Background: The Quantum Fisher Information Matrix (QFIM)

- A measure of the information a random variable carries about some unknown parameter.
- For example, the Hamiltonian $\mathcal{H} = \theta \hat{A} + \Phi \hat{B}$, where \hat{A} and \hat{B} are operators, yields the QFIM below for measuring θ and Φ

$$\begin{array}{cc} (\Delta A)^2 & Cov(A,B) + Cov(B,A) \\ Cov(A,B) + Cov(B,A) & (\Delta B)^2 \end{array}$$

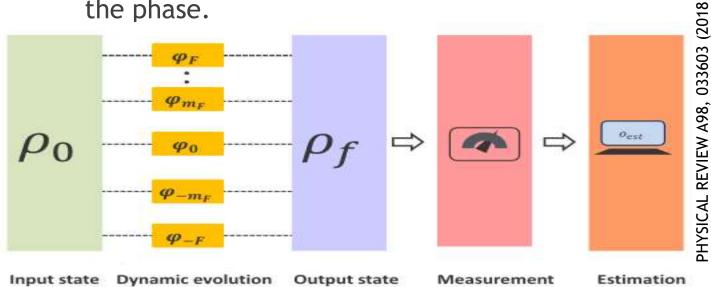
Square *n x n* matrix, for *n* parameters.

- The Cramér-Rao bound
 - Variance is greater than the corresponding diagonal element of the inverse of the QFIM
- The system Hamiltonian determines what values are present in the QFIM, while the input wavefunction is used to evaluate them.

Input States

The input state is used to evaluate the QFIM

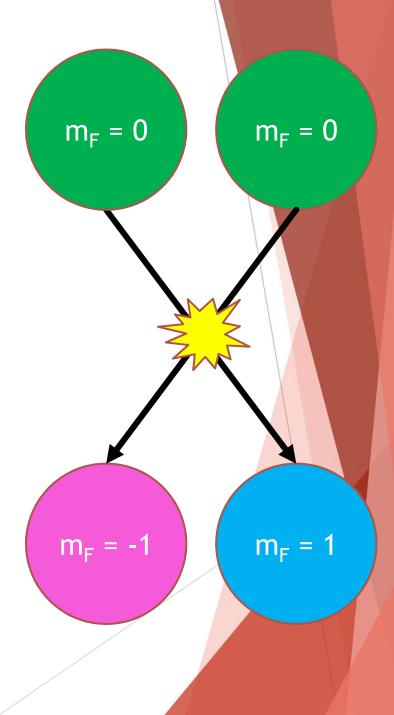
In a Spinor-Bose-Einstein condensate interferometer, the input state is the state of the BEC before the Hamiltonian is applied to imprint the phase.



- States are a multiparticle state, such as the Fock state $|N_{-1}, N_0, N_1\rangle$.
- My research has used the Vacuum, Pure Fock, and coherent spin states as input states.

The System Hamiltonian

- The Hamiltonian determines what parameters and operators can appear in the QFIM, and how they are related.
- The Hamiltonian in my research comes from spin-mixing dynamics under the undepleted pump approximation. The Hamiltonian contains terms which describe what changes in angular momentum can occur.
- The parameter we wish to estimate is imprinted as a phase.
- The split modes are recombined in such a way to yield a particle number difference dependent on the phase.



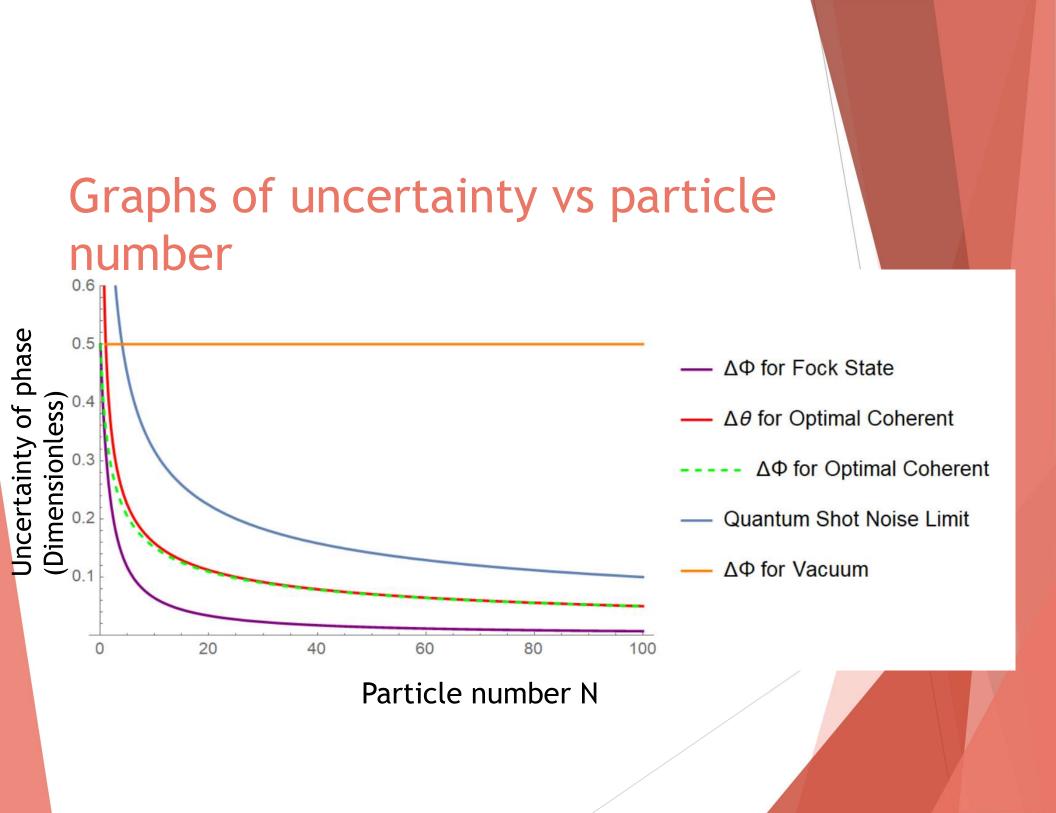
Results for Input State into Phase Imprinting.

For our system, where $\tilde{b} = \hat{a}_{1}^{\dagger} \hat{a}_{-1}^{\dagger} + \hat{a}_{1} \hat{a}_{-1}$ and $\hat{N}_{s} = \widehat{N}_{1} + \widehat{N}_{-1}$ we have a Hamiltonian $\mathcal{H} = \theta \ \widehat{N}_{s} + \Phi \widetilde{b}$ and a general QFIM as below

$$\begin{pmatrix} 4(\Delta \hat{N}_s)^2 & Cov(\hat{N}_s, \tilde{b}) + Cov(\tilde{b}, \hat{N}_s) \\ Cov(\hat{N}_s, \tilde{b}) + Cov(\tilde{b}, \hat{N}_s) & 4(\Delta \tilde{b})^2 \end{pmatrix}$$

- For the vacuum state, it reduces to a single value of 4 corresponding to the upper bound for precision in Φ .
- Likewise, the pure Fock state also reduces to a single value for Φ , $4(\hat{N}_s + \hat{N}_{-1}\hat{N}_1 + 1)$.
- The coherent state yields a QFIM of

 $\begin{pmatrix} \langle N_s \rangle & \langle b \rangle \\ \langle \tilde{b} \rangle & \langle \hat{N}_s + 1 \rangle \end{pmatrix}$



Future Work

- The initial state will be allowed to evolve in our Hamiltonian before being input to the phase imprinting
- This allows a more informative input state to be used with the ease of setting up a simpler initial state.
- As our system is not ideal, it also accounts for the nonnegligible time between when the Hamiltonian is applied and when the phase is imprinted.
- Likewise, evolution after phase imprinting will be taken into account.

Acknowledgements

I've been working under Dr. Blume with Post-Doctoral student Jianwen Jie.

Questions!