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Background: Quantum
Metrology

» Study of quantum measurements, especially the
uncertainty

» Traditional uncertainty: AC? = AA? + AB?

» Doesn’t work for variables that aren’t independent

» Instead, we have covariance terms Variable A Variable B
» AC? = AA? + AB? + Cov(A,B) + Cov(B, A) o
» We can use this to get a better result

» The inter-parameter dependencies come from

the Hamiltonian and the input state.



Background: The Quantum Fisher
Information Matrix (QFIM)

» A measure of the information a random variable carries
about some unknown parameter.

» For example, the Hamiltonian H = 64 + ®B, where A |
and B are operators, yields the QFIM below for \

ing 6 and @
measuring 6 an (AA)? COU(A’B)—FCOU(B,A))

(Om:(A, B) + Cov(B, A) (AB)?

» Square n x n matrix, for n parameters.

» The Cramér-Rao bound

» Variance is greater than the corresponding diagonal
element of the inverse of the QFIM

» The system Hamiltonian determines what values are
present in the QFIM, while the input wavefunction is
used to evaluate them.




Input States

» The input state is used to evaluate the QFIM

» In a Spinor-Bose-Einstein condensate
interferometer, the input state is the state of the
BEC before the Hamiltonian is applied to imprint
the phase.
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Input state Dynamic evolution Output state Measurement Estimation

» States are a multiparticle state, such as the Fock state
|IN_{, Ny, N;).

» My research has used the Vacuum, Pure Fock, and
coherent spin states as input states.




The System
Hamiltonian

>

The Hamiltonian determines what
parameters and operators can appear in
the QFIM, and how they are related.

The Hamiltonian in my research comes
from spin-mixing dynamics under the
undepleted pump approximation. The
Hamiltonian contains terms which
describe what changes in angular
momentum can occur.

The parameter we wish to estimate is
imprinted as a phase.

The split modes are recombined in such a
way to yield a particle number difference
dependent on the phase.




Results for Input State into
Phase Imprinting.

» For our system, where b = &I cﬂl + 4, G_;and N, =
N; + N_; we have a Hamiltonian H = 6 N, + ®b and a

general QFIM as below

4(AN,)? Cov(Ny,b) + Couv(b, N,)
Cov(Ng,b) + Cov(b, Ny) 4(Ab)?

» For the vacuum state, it reduces to a single value of 4
corresponding to the upper bound for precision in ®.

» Likewise, the pure Fock state also reduces to a single
value for ®, 4(N, + N_;N; + 1).

» The coherent state yields a QFIM of < ~ >
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Graphs of uncertainty vs particle
psumber
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Future Work

» The initial state will be allowed to evolve in our
Hamiltonian before being input to the phase imprinting

» This allows a more informative input state to be used
with the ease of setting up a simpler initial state.

» As our system is not ideal, it also accounts for the non-
negligible time between when the Hamiltonian is applied
and when the phase is imprinted.

» Likewise, evolution after phase imprinting will be taken
into account.
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